
Baseline Edi+on ISO/IEC TR 24772–11

ISO/IEC JTC 1/SC 22/WG23 N1495
Date: 2025-06-25

ISO/IEC WD 24772–11

Deleted: ¶

Deleted: 4036056

Deleted: 3-12-02-080-109-02

Deleted: TR

WG 23/N 1495

 - ii - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

Edi9on 1

ISO/IEC JTC 1/SC 22/WG 23

Secretariat: ANSI

Informa(on Technology — Programming languages — Guidance to avoiding
vulnerabili(es in programming languages – Part 11 – Vulnerability descrip(ons for the
programming language Java

Élément introduc/f — Élément principal — Par/e n : Titre de la par/e

Warning

This document is not an ISO Interna9onal Standard. It is distributed for review and comment. It is subject to change
without no9ce and may not be referred to as an Interna9onal Standard.

Recipients of this draS are invited to submit, with their comments, no9fica9on of any relevant patent rights of which they
are aware and to provide suppor9ng documenta9on.

Document type: Interna9onal standard
Document subtype: if applicable
Document stage: (10) development stage
Document language: E

Deleted: Page Break
¶

Page Break
¶

Deleted: Notes on this document¶
¶
This document is a draG of Avoiding programming language
vulnerabiliKes in Java.¶
¶
List of Java changes since Java 14¶
Switch statements and expressions – possibly further enhancements
(13)¶
Sealed classes and interfaces¶
Hidden classes¶
Records¶
Text Blocks¶
Java 15¶
Vector API ¶
Sealed Classes¶
Java 16¶
 Restore always-strict FP semanKcs¶
 Enhanced pseudo-random number generators¶
 Pa[ern matching for switch statements (trial)¶
 Deprecate security manager for removal¶
Java 18¶
 Pa[ern matching for switch statements (second)¶
 Deprecate finalizaKon for removal¶
Java 19 & 20¶
 Record pa[erns¶
 Virtual threads (preview)¶
 Vector API¶
Structured concurrency¶
Java 21¶
 String templates¶
Sequenced collecKons¶
 Record pa[erns¶
 Pa[ern matching for switch¶
 Virtual threads¶
 Scoped values¶
 Vector API¶
 Structured concurrency¶
¶
¶

Page Break
¶

Deleted: ¶
¶

Deleted:

Deleted: language:

™ ISO/IEC TR 24772-11 20xx – All rights reserved - iii -

Formatted: Font: 8 pt

Par%cipa%ng in writeup 25 June 2025

Stephen Michell – convenor WG 23

 Sean McDonagh

 Erhard Ploedereder

 Tullio Vardanega

 Larry Wagoner

Regrets

All issues discussed are captured in the document, either as comments or resolved issues. The previous version

of this document is N1490. See also N1489 about concurrency in Java.

Copyright no,ce

This ISO document is a working draT or commiUee draT and is copyright-protected by ISO. While the

reproduc%on of working draTs or commiUee draTs in any form for use by par%cipants in the ISO standards

development process is permiUed without prior permission from ISO, neither this document nor any extract

from it may be reproduced, stored or transmiUed in any form for any other purpose without prior wriUen

permission from ISO.

Requests for permission to reproduce this document for the purpose of selling it should be addressed as shown

below or to ISO’s member body in the country of the requester:

ISO copyright office
Case postale 56, CH-1211 Geneva 20
Tel. + 41 22 749 01 11
Fax + 41 22 749 09 47
E-mail copyright@iso.org
Web www.iso.org

Reproduc%on for sales purposes may be subject to royalty payments or a licensing agreement.

Violators may be prosecuted.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of

their respec%ve owners.

Deleted: 2 April

Deleted: Larry Wagoner¶

Moved (insertion) [4]

Deleted: ¶
Excused¶

Moved up [4]: Tullio Vardanega¶

Deleted: 74

WG 23/N 1495

 - iv - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

Contents	

CONTENTS	..	IV

FOREWORD	..	VII

INTRODUCTION	..	VIII

1.	SCOPE	..	1

2.	NORMATIVE	REFERENCES	...	1

3.	TERMS	AND	DEFINITIONS	..	1

4.	LANGUAGE	CONCEPTS	...	4

5.	AVOIDING	PROGRAMMING	LANGUAGE	VULNERABILITIES	IN	JAVA	...	5

6.	SPECIFIC	GUIDANCE	FOR	JAVA	VULNERABILITIES	...	7

6.1 General .. 7
6.2 Type System [IHN] ... 7
6.3 Bit representa=ons [STR] ... 8
6.4 Floa=ng-point arithme=c [PLF] .. 9
6.5 Enumerator issues [CCB] ... 11
6.6 Conversion errors [FLC] ... 13
6.7 String termina=on [CJM] ... 14
6.8 Buffer boundary viola=on (buffer overflow) [HCB] ... 14
6.9 Unchecked array indexing [XYZ] .. 14
6.10 Unchecked array copying [XYW] .. 15
6.11 Pointer type conversions [HFC] ... 15
6.12 Pointer arithme=c [RVG] ... 15
6.13 Null pointer dereference [XYH] ... 15
6.14 Dangling reference to heap [XYK] .. 16
6.15 Arithme=c wrap-around error [FIF] ... 16
6.16 Using shid opera=ons for mul=plica=on and division [PIK] ... 17
6.17 Choice of clear names [NAI] .. 18
6.18 Dead store [WXQ] .. 18
6.19 Unused variable [YZS] .. 19
6.20 Iden=fier name reuse [YOW] ... 19

™ ISO/IEC TR 24772-11 20xx – All rights reserved - v -

Formatted: Font: 8 pt

6.21 Namespace issues [BJL] ... 21
6.22 Missing ini=aliza=on of variables [LAV] ... 22
6.23 Operator precedence and associa=vity [JCW] .. 22
6.24 Side-effects and order of evalua=on of operands [SAM] .. 23
6.25 Likely incorrect expression [KOA] .. 24
6.26 Dead and deac=vated code [XYQ] ... 27
6.27 Switch statements and lack of sta=c analysis [CLL] ... 28
6.28 Non-demarca=on of control flow [EOJ] ... 29
6.29 Loop control variable abuse [TEX] ... 31
6.30 Off-by-one error [XZH] .. 33
6.31 Unstructured programming [EWD] ... 34
6.32 Passing parameters and return values [CSJ] .. 34
6.33 Dangling references to stack frames [DCM] .. 36
6.34 Subprogram signature mismatch [OTR] .. 36
6.35 Recursion [GDL] ... 37
6.36 Ignored error status and unhandled excep=ons [OYB] ... 37
6.37 Type-breaking reinterpreta=on of data [AMV] ... 38
6.38 Deep vs. shallow copying [YAN] .. 39
6.39 Memory leaks and heap fragmenta=on [XYL] ... 40
6.40 Templates and generics [SYM] .. 41
6.41 Inheritance [RIP] ... 41
6.42 Viola=ons of the Liskov subs=tu=on principle or the contract model [BLP] 42
6.43 Redispatching [PPH] .. 43
6.44 Polymorphic variables [BKK] ... 43
6.45 Extra intrinsics [LRM] .. 44
6.46 Argument passing to library func=ons [TRJ] ... 44
6.47 Inter-language calling [DJS] ... 45
6.48 Dynamically-linked code and self-modifying code [NYY] .. 46
6.49 Library signature [NSQ] ... 47
6.50 Unan=cipated excep=ons from library rou=nes [HJW] ... 48
6.51 Pre-processor direc=ves [NMP] .. 48
6.52 Suppression of language-defined run-=me checking [MXB] ... 48
6.53 Provision of inherently unsafe opera=ons [SKL] ... 48
6.54 Obscure language features [BRS] .. 49

Deleted: 30

Deleted: 32

Deleted: 34

Deleted: 35

Deleted: 35

Deleted: 37

Deleted: 37

Deleted: 38

Deleted: 38

Deleted: 39

Deleted: 40

Deleted: 41

Deleted: 42

Deleted: 42

Deleted: 43

Deleted: 44

Deleted: 44

Deleted: 45

Deleted: 45

Deleted: 46

Deleted: 47

Deleted: 48

Deleted: 49

Deleted: 49

Deleted: 49

Deleted: 49

Deleted: 50

WG 23/N 1495

 - vi - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

6.55 Unspecified behaviour [BQF] ... 50
6.56 Undefined behaviour [EWF] .. 51
6.57 Implementa=on–defined behaviour [FAB] .. 51
6.58 Deprecated language features [MEM] .. 52
6.59 Concurrency – Ac=va=on [CGA] .. 53
6.60 Concurrency – Directed termina=on [CGT] ... 55
6.61 Concurrent data access [CGX] ... 56
6.62 Concurrency – Premature termina=on [CGS] .. 57
6.63 Lock protocol errors [CGM] ... 59
6.64 Reliance on external format strings [SHL] .. 60
6.65 Modifying constants [UJO] .. 61

7.	LANGUAGE	SPECIFIC	VULNERABILITIES	FOR	JAVA	...	61

BIBLIOGRAPHY	...	62

Deleted: 51

Deleted: 52

Deleted: 52

Deleted: 53

Deleted: 54

Deleted: 55

Deleted: 56

Deleted: 58

Deleted: 59

Deleted: 61

Deleted: 61

Deleted: 62

Deleted: 63

Deleted: vviiiix1111457778911131414141515151516161718181
919212222232427283032343535373738383940414243444445454
6464749495050505152525354555657596061626263…

™ ISO/IEC TR 24772-11 20xx – All rights reserved - vii -

Formatted: Font: 8 pt

Foreword	

ISO (the Interna%onal Organiza%on for Standardiza%on) and IEC (the Interna%onal Electrotechnical Commission)

form the specialized system for worldwide standardiza%on. Na%onal bodies that are members of ISO or IEC

par%cipate in the development of Interna%onal Standards through technical commiUees established by the

respec%ve organiza%on to deal with par%cular fields of technical ac%vity. ISO and IEC technical commiUees

collaborate in fields of mutual interest. Other interna%onal organiza%ons, governmental and non-

governmental, in liaison with ISO and IEC, also take part in the work. In the field of informa%on technology, ISO

and IEC have established a joint technical commiUee, ISO/IEC JTC 1.

Interna%onal Standards are draTed in accordance with the rules given in the ISO/IEC Direc%ves, Part 2.

The main task of the joint technical commiUee is to prepare Interna%onal Standards. DraT Interna%onal

Standards adopted by the joint technical commiUee are circulated to na%onal bodies for vo%ng. Publica%on as

an Interna%onal Standard requires approval by at least 75 % of the na%onal bodies cas%ng a vote.

In excep%onal circumstances, when the joint technical commiUee has collected data of a different kind from

that which is normally published as an Interna%onal Standard (“state of the art”, for example), it may decide to

publish a Technical Report. A Technical Report is en%rely informa%ve in nature and shall be subject to review

every five years in the same manner as an Interna%onal Standard.

AUen%on is drawn to the possibility that some of the elements of this document may be the subject of patent

rights. ISO and IEC shall not be held responsible for iden%fying any or all such patent rights.

ISO/IEC TR 24772-11 was prepared by Joint Technical CommiUee ISO/IEC JTC 1, Informa%on technology,

SubcommiUee SC 22, Programming languages, their environments and system soTware interfaces.

Deleted: ¶
Page Break

¶

Deleted: ISO/IEC TR 24772-11,

WG 23/N 1495

 - viii - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

Introduction	

This Technical Report provides guidance for the programming language Java, so that applica%on developers

considering Java or using Java will be beUer able to avoid the programming constructs that lead to

vulnerabili%es in soTware wriUen in the Java language and their aUendant consequences. This guidance

can also be used by developers to select source code evalua%on tools that can discover and eliminate some

constructs that could lead to vulnerabili%es in their soTware. This report can also be used in comparison

with companion Technical Reports and with the language-independent report, TR 24772–1, to select a

programming language that provides the appropriate level of confidence that an%cipated problems can be

avoided.

This technical report part is intended to be used with TR 24772–1, which discusses programming language

vulnerabili%es in a language independent fashion.

It should be noted that this Technical Report is inherently incomplete. It is not possible to provide a

complete list of programming language vulnerabili%es because new weaknesses are discovered con%nually.

Any such report can only describe those that have been found, characterized, and determined to have

sufficient probability and consequence.

™ ISO/IEC TR 24772-11 20xx – All rights reserved 1
-

Informa(on Technology — Programming Languages — Avoiding
vulnerabili(es in programming languages — Vulnerability descrip(ons for
the programming language Java

1.	Scope	

This Technical Report specifies soTware programming language vulnerabili%es to be avoided in the

development of systems where assured behaviour is required for security, safety, mission-cri%cal and business-

cri%cal soTware. In general, this guidance is applicable to the soTware developed, reviewed, or maintained for

any applica%on.

Vulnerabili%es described in this Technical Report document the way that the vulnerability described in the

language-independent TR 24772–1 are manifested in Java.

2.	Normative	references	

The following referenced documents are indispensable for the applica%on of this document. For dated

references, only the edi%on cited applies. For undated references, the latest edi%on of the referenced

document (including any amendments) applies.

The Java Language Specifica%on [1], Java SE 10 Edi%on, 2018-02-20, hUps://docs.oracle.com/javase/specs/

The CERT® Oracle® Secure Coding Standard for Java™ [3] , Addison-Wesley Professional, September 2011.

3.	Terms	and	definitions	

For the purposes of this document, the terms and defini%ons given in ISO/IEC 2382, in TR 24772–1, the Oracle

Java Glossary (hUps://www.oracle.com/technetwork/java/glossary-135216.html) and the following apply.

Other terms are defined where they appear in italic type.

The following terms are in alphabe%cal order, with general topics referencing the relevant specific terms.

3.1

access
read or modify the value of an object

Note: Modify includes the case where the new value being stored is the same as the previous value.

Expressions that are not evaluated do not access objects.

Deleted: Scope¶

Deleted:

Deleted:

Deleted: ¶

Deleted: ,	symbols	and	conventions

Deleted: 3.1	Terms	and	Definitions¶

Deleted: .1

Deleted: Terms and Defini6ons

WG 23/N 1495

 - 2 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

3.2

behaviour

external appearance or ac%on

Note: See: 6.57 Implementa%on-defined behaviour, 6.56 Undefined behaviour [EWF], 6.55 Unspecified

behaviour [BQF]

3.3

bit

unit of data storage in the execu%on environment large enough to hold an object that has one of two values

Note: It need not be possible to express the address of each individual bit of an object.

3.4

byte

addressable unit of data storage large enough to hold any member of the basic character set of the execu%on

environment

Note: It is possible to uniquely express the address of each individual byte of an object. A byte is

composed of a con%guous sequence of bits, the number of which is implementa%on-defined. The least

significant bit is called the low-order bit; the most significant bit is called the high-order bit.

3.5

character

abstract member of a set of elements used for the organiza%on, control, or representa%on of data

3.6

correctly rounded result
representa%on in the result format that is nearest in value, subject to the current rounding mode, to what the

result would be given unlimited range and precision

3.7

implementaHon
par%cular set of soTware, running in a par%cular transla%on environment under par%cular control op%ons, that

performs transla%on of programs for, and supports execu%on of func%ons in, a par%cular execu%on

environment

Deleted: 1.

Deleted: i

Deleted: u

Deleted: u

Deleted: 1.

Deleted: .1

Deleted: 1.

Deleted: 1.

Deleted: 1.

™ ISO/IEC TR 24772-11 20xx – All rights reserved 3
-

3.8

implementaHon-defined behaviour
behaviour where mul%ple op%ons are permiUed by the standard and where each implementa%on documents

how the choice is made

3.9

implementaHon-defined value
value not specified in the standard where each implementa%on documents how the choice for the value is

selected

3.10

implementaHon limit
restric%on imposed upon programs by the implementa%on

3.11

memory locaHon

object of scalar type, or a maximal sequence of adjacent bit-fields all having nonzero width

3.12

mulHbyte character
sequence of one or more bytes represen%ng a member of the extended character set of either the source or

the execu%on environment, where the extended character set is a superset of the basic character set

3.13 task
3.13

thread

independent path of execu%on within a program

3. 14

undefined behaviour
use of a non-portable or erroneous program construct, or erroneous data

Note: Undefined behaviour ranges from completely ignoring the situa%on with unpredictable results, to

behaving during transla%on or program execu%on in a documented manner characteris%c of the

environment (with or without the issuance of a diagnos%c message), to termina%ng a transla%on or

execu%on (with the issuance of a diagnos%c message).

Deleted: .1

Deleted: .1

Deleted: .1

Deleted: 1.

Deleted: 1.

Deleted: .1

Deleted: 1.

WG 23/N 1495

 - 4 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

3.15

unspecified behaviour

use of an unspecified value, or other behaviour where the language standard provides two or more possibili%es

and imposes no further requirements on which is chosen in any instance

Note: For example, unspecified behaviour is the order in which the arguments of a func%on are evaluated.

4.	Language	concepts	

Java was originally developed at Sun Microsystems (acquired by Oracle Corpora%on in 2010) in the early 1990s.

Java was ini%ally defined as a syntac%c superset of the C programming language: adding object oriented

features such as classes, encapsula%on, dynamic dispatch, namespaces, and templates. It was designed to be

plarorm independent through the use of plarorm independent byte code which is then interpreted by the

Java Virtual Machine (JVM) on whichever plarorm it is executed on. Java espoused the Write Once, Run

Anywhere (WORA) goal.

While there is a core of Java that is syntac%cally iden%cal to C, it has always been the case that there are

significant differences between the two. Since Java was developed, the two languages have diverged even

further, both adding features not present in the other. Notwithstanding that, there is s%ll a significant syntac%c

and seman%c overlap between C and Java.

At its core, Java was designed to address some weaknesses that existed in other languages through the

addi%on of security management features. Some key features of Java are:

• Java uses a Garbage Collector to manage memory without the use of explicit commands to erase

memory or to aggregate freed space.

• Java provides ease of code reuse through inheritance.

• The javac compiler transforms Java code into byte code instead of into machine executable

instruc%ons. The byte code is then interpreted and run by a Java Virtual Machine (JVM) on a par%cular

plarorm.

• Classes provide single inheritance of specifica%ons and code.

• Interfaces provide mul%ple inheritance of specifica%ons.

Subsequently, in many cases, the addi%onal features of Java provide mechanisms for avoiding vulnerabili%es

based in memory management and other areas that are suscep%ble to language misuse, and these are

reflected in the following sec%ons.

Java does have some inherently unsafe features. For instance, as its name implies, sun.misc.Unsafe is

considered unsafe for general use, though it does provide some low level programming features such as

reinterpreta%on of data. Documenta%on is not widely available, and its use usually relies on miscellaneous web

pos%ngs, leading to even more unsafe use. Many of the features have been deprecated, but can be available in

the compiler being used.

Deleted: 1.

Deleted: ¶

™ ISO/IEC TR 24772-11 20xx – All rights reserved 5
-

5.	Avoiding	programming	language	vulnerabilities	in	Java	
In addi%on to the generic programming rules from ISO/IEC 24772-1:2024 clause 5.4, addi%onal rules from

this sec%on apply specifically to the Java programming language. The recommenda%ons of this sec%on are

restatements of recommenda%ons from clause 6 but represent ones stated frequently or that are

considered par%cularly noteworthy by the authors. Clause 6 of this document contains the full set of

recommenda%ons, as well as explana%ons of the problems that led to the recommenda%ons made.

Every avoidance mechanism provided in this sec%on is supported by material in Clause 6 of this document,

as well as other important recommenda%ons.

Number Recommended avoidance mechanism Reference

1 Access all private data components only through geXer and seXer methods. For
class-based enums, ensure that enum values are not mutable by making members
in an enum type private, by se[ng the members in the constructor and by not
providing seXer methods.

6.61
Concurrent
data access
[CGX]

2 Check the value of a larger type before conver9ng it to a smaller type to see if the
value in the larger type is within the range of the smaller type. Use comments to
document cases where inten9onal loss of data due to narrowing is expected and
acceptable.

6.6 Conversion
errors [FLC]

3 Use defensive programming techniques to check whether an opera9on will
overflow or underflow the receiving data type. These techniques can be omiXed if
it can be shown by sta9c analysis (e.g., at compile 9me) that overflow or underflow
is not possible.

6.15
Arithme9c
wrap-around
error [FIF]

4 Include checks for null prior to making use of objects. Less preferably, handle
excep9ons raised by aXempts to dereference null values.

6.13 Null
pointer
dereference
[XYH]

5 Mark all variables observable by another thread or hardware agent as vola9le. 6.18 Dead
store [WXQ]

6 Ensure that when the iden9fier that a method uses is iden9cal to an iden9fier in
the class that the correct iden9fier is used through the use or non-use of “this”.

6.20 Iden9fier
name reuse
[YOW]

7 Avoid the use of expressions with side effects for mul9ple parameters to func9ons,
since the order in which the parameters are evaluated and hence the side effects
occur is unspecified.

6.32 Passing
parameters
and return
values [CSJ]

Deleted: Index

WG 23/N 1495

 - 6 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

Number Recommended avoidance mechanism Reference

8 Use try-with-resources, which extends the behaviour of the try/catch

construct to allow access to resources without having to close them

aTerwards, as the resource closures are done automa%cally.

6.36 Ignored
error status
and unhandled
excep9ons
[OYB]

9 Enable verbose garbage collec%on to see a detailed trace of the garbage

collector’s ac%ons. Reduce the number of temporary objects to minimize

the impact and need for garbage collec%on. Enable verbose garbage

collec%on and profiling to locate and fix memory leaks to reduce the need

for garbage collec%on.

6.39 Memory
leaks and heap
fragmenta9on
[XYL]

10 Use Java profiler tools that monitor and diagnose memory leaks. 6.39 Memory
leaks and heap
fragmenta9on
[XYL]

11 Keep the inheritance graph as shallow as possible to simplify the review of

inheritance rela%onships and method overridings.

6.41
Inheritance
[RIP]

12 Be aware that na9ve code can lack many of the protec9ons afforded by Java, such
as bounds checks on structures not being performed on na9ve methods, and
explicitly perform the necessary checks. Use a foreign func9on interface such as JNI
to provide a clear separa9on between Java and the other language.

Minimize the use of those issues known to be error-prone when interfacing
between languages, such as:

1. passing character strings
2. dimension, bounds, and layout issues of arrays
3. interfacing with other parameter mechanisms such as call by

reference, value, or name
4. handling faults, excep9ons, and errors, and
5. bit representa9on.

6.47 Inter-
language
calling [DJS]

13 Always have an appropriate response for checked excep%ons since even

things that should never happen do happen occasionally.

6.50
Unan9cipated
excep9ons
from library
rou9nes [HJW]

14 Use the Java ExecutorService framework for thread group management. 6.62
Concurrency –
Premature
termina9on
[CGS]

 	

Deleted: Index

™ ISO/IEC TR 24772-11 20xx – All rights reserved 7
-

6.	Specific	Guidance	for	Java	Vulnerabilities	

6.1	General		

This clause contains specific advice for Java about the possible presence of vulnerabili%es as described in

ISO/IEC 24772-1:2024 and provides specific guidance on how to avoid them in Java code. This sec%on mirrors

ISO/IEC 24772-1:2024 clause 6 in that the vulnerability “Type System [IHN]” is found in 6.2 of ISO/IEC TR

24772–1, and Java specific guidance is found in clause 6 and its subclauses in this document.

6.2	Type	System	[IHN]	

6.2.1	Applicability	to	language	

Java is a sta%cally typed language. Java is also a strongly typed language, as it requires all variables to be typed

and places restric%ons on the values that a variable can hold. There are two categories of types in Java:

primi%ve types and reference types. Primi%ve types are boolean, byte, short, int, long, char,

float, enum, and double. Reference types are the class, interface, and array types. Records

are a restricted form of classes that are intended to hold immutable data, cannot par%cipate in inheritance,

and cannot be abstract.

When performing an arithme%c opera%on composed of all integers, all operands are first converted to an int.

If all of the operands are floa%ng point, all operands are first converted to the double type. When performing

opera%ons with mixed data types, the smaller type is converted to a larger type. For instance, adding a short

to an int results in the short being upsized to an int before the opera%on is performed. Java requires

explicit cas%ng when going from a larger primi%ve type to a smaller one. Implicit cas%ng is allowed when going

from a smaller primi%ve type to a larger one, even though it is likely that precision is lost in the conversion. This

and other type conversion vulnerabili%es are discussed in more depth in sec%ons 6.6 Conversion errors [FLC] ,

6.15 Arithme%c wrap-around error [FIF], and 6.44 Polymorphic variables [BKK].

For reference types, no explicit cast is required when assigning an object of a child type to a variable of its

parent type; however, an explicit cast is required when assigning an object designated by a parent type

reference to a variable of any of its child types. A ClassCastException will be thrown at run%me unless

the parent type reference is referring to an object of the child type.

The vulnerability documented in ISO/IEC 24772-1:2024 rela%ng to the ability to dis%nguish integer types

represen%ng different physical units (such as meters or feet) exists in Java. It can be mi%gated by genera%ng

dis%nct classes for each dimensional type and crea%ng operators and conversion methods that correctly

perform the conversa%ons.

6.2.2 Avoidance mechanisms for language users

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.6.5.

• Consider using classes instead of base types for values with physical proper%es, such as weight or size.

• Avoid deeply nested or complicated record types to minimize the possibility of unexpected behavior.

Deleted: 6.6 Conversion errors [FLC]

Deleted: 6.6 Conversion errors [FLC]

Deleted: 6.6 Conversion errors [FLC]

Deleted: 6.15 ArithmeKc wrap-around error [FIF]

Deleted: 6.15 ArithmeKc wrap-around error [FIF]

Deleted: 6.44 Polymorphic variables [BKK]

Deleted: 6.44 Polymorphic variables [BKK]

Deleted: ¶

WG 23/N 1495

 - 8 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

6.3	Bit	representations	[STR]		

6.3.1	Applicability	to	language	

The vulnerabili%es described in ISO/IEC 24772-1:2024 6.3 apply to Java.

Java supports a variety of sizes for integers, such as byte, short, int, and long, but Java only supports

signed integer types. This simplifies the understanding and use of integer types; however, Java supports

unsigned arithme%c using sta%c methods in class Integer. The result of the unsigned arithme%c is an

unsigned integer. No mixed opera%ons are provided.

Java also supports various bitwise operators that facilitate bit manipula%ons, such as leT and right shiTs and

bitwise “&” and “|”. Some of these bit manipula%ons can cause unexpected results. For instance, Java

differen%ates between a signed right shiT and an unsigned right shiT. The signed right shiT is performed using

the operator “>>” whereas the unsigned right shiT is performed using the operator “>>>”. Although Java has

simplified its language by only having signed integers, it has relegated the issue of whether the sign bit is

shiTed right to the choice of operator. It is easy to confuse the two operators “>>” and “>>>” and do a signed

right shiT instead of an unsigned right shiT or vice versa. For instance,

int a, b, c, d;
a = 0b00101000; // a = 0010 0100
b = a >> 3; // signed right shift yields b = 0000 0100
c = 0b11110100; // c = 1111 0100
d = c >> 3; // signed right shift of a negative number yields d = 1111
1110

int e, f, g, h;
e = 0b00101000; // e = 0010 1000
f = e >>> 3; // unsigned right shift yields f = 0000 0101
g = 0b11110100; // g = 1111 0100
h = g >>> 3; // unsigned right shift of a negative number yields
 h = 0001 1110

Another issue that can arise is that Java stores data in big-endian format, also known as network byte order.

This can cause issues when interfacing with liUle endian languages such as C.

6.3.2	Avoidance	mechanisms	for	language	users		

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.3.5.

• Ensure that the unsigned and signed right shiT operators are not confused with each other.

• Avoid manipula%ng numbers using unsigned arithme%c opera%ons in class Integer.

• Use java.nio.ByteBuffer to convert byte order between liUle endian to big endian.

Deleted:
Deleted:

Deleted:

Deleted:

Deleted:
Deleted:

Deleted: ¶

™ ISO/IEC TR 24772-11 20xx – All rights reserved 9
-

6.4	Floating-point	arithmetic	[PLF]		

6.4.1	Applicability	to	language	

The vulnerability described in ISO/IEC 24772-1:2024 6.4 applies to Java.

Java implements a subset of ISO/IEC/IEEE 60559:2011 Floa%ng-point arithme%c.

Java permits the floa%ng-point data types of float and double. Due to the approximate nature of floa%ng-

point representa%ons, using floa%ng-point data types in situa%ons where equality is to be tested or where

rounding could accumulate over mul%ple itera%ons could lead to unexpected results and poten%al

vulnerabili%es. Instead of tes%ng equality, comparison against a threshold will yield the intended effect, for

example:

final double THRESHOLD = .00001;
double f1,f2;
// Assignments and operations on f1 and f2
if (Math.abs(f1 – f2) < THRESHOLD){

. . .
}

As with most data types, Java is flexible in how float and double can be used. For instance, Java allows the

use of floa%ng-point types to be used as loop counters and in equality statements, even though, in some cases,

these will not have the expected behaviour. For example,

 float x;
 for (x = 0f; x != 1f; x += 0.0000001){

. . .
}

creates a scenario in which the loop likely will not terminate aTer 10,000,000 itera%ons. The representa%ons

used for "x" and the accumulated effect of many itera%ons cause “x” to not be iden%cal to 1.0, causing the

loop to con%nue to iterate forever.

Similarly, it is undecidable if the Boolean test,

 float x = 1.336f;
float y = 2.672f;

 if (x == (y / 2)){
. . .

}

evaluates to true. Given that “x” and “y” are constant values, it is expected that consistent results will be

achieved on the same plarorm. However, it is ques%onable whether the logic performs as expected when a

float that is twice that of another is tested for equality when divided by 2 as above.

Overflow in Java yields Infinity and underflow yields 0.0. In either case is an excep%on raised.

Deleted: types

Deleted: … a

Deleted: ¶

Deleted: :

Deleted:

Deleted:

Deleted:
Deleted:

Deleted:

Deleted: n

WG 23/N 1495

 - 10 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

Floa%ng point opera%ons are plarorm dependent. Different plarorms can yield different results. To counter

this problem, Java introduced the strictfp keyword. ATer version 17 of Java, the strictfp modifier

ensures that all floa%ng point opera%ons yield the same result across different JVMs and plarorms. For

example:

public class FloatingSum {
 public strictfp float sum() {
 float num1 = 5e+7;

float num2 = 3e+9;
return (num1 + num2);

}

public static strictfp void main(String[] args) {
 FloatingSum t = new FloatingSum();
 System.out.println (t.sum());
 }

}

Some%mes very high precision is necessary in calcula%ons. Mul%ple calcula%ons that exacerbate imprecise

calcula%ons and plarorm differences can cause unexpected results. To achieve higher precision and more

predictable performance, the Java class BigDecimal provides a variety of rounding choices to give beUer

control over rounding behavior.

6.4.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.4.5.

• Use thresholds in comparisons instead of equality.

• Use the strictfp keyword to ensure consistent floa%ng point results across different JVMs and

plarorms.

• If possible, use integers instead of floa%ng point numbers.

• Use the BigDecimal class to provide beUer precision such as for monetary or financial calcula%ons

and to mi%gate rounding issues, when performing high precision arithme%c or where more granular

control is needed.

 	

Deleted:
Deleted:

Deleted:

™ ISO/IEC TR 24772-11 20xx – All rights reserved 11
-

6.5	Enumerator	issues	[CCB]		

6.5.1	Applicability	to	language	

The vulnerability of arrays indexed by enumera%ons discussed in ISO/IEC 24772-1:2024 6.5 does not directly

exist in Java since arrays in Java can only be indexed by int values. This mapping can easily be created,

however, by indexing an array by the ordinals of an enum type, which can result in a subset of the issues

discussed in ISO/IEC 24772-1:2024. In par%cular, arrays with “holes” are difficult to create, but maintenance on

an enumera%on type that inserts values between other enum values could result in array indexing errors.

The vulnerabili%es related to user-provided encodings do not exist in Java since the enumerator capability does

not rely upon a user-provided encoding. Also, because enum constants are associated with a specific type, the

vulnerability associated with the mapping of enums to integer types is absent in Java.

The enumerator capability provided by Java has its own set of vulnerabili%es, which are discussed here.

Enums in Java can be done outside of a class or as part of a class. The basic enum type (outside of a class

enum) comprises a set of named discrete constant values as in the example:

 public enum Weekday {SUN, MON, TUE, WED, THU, FRI, SAT};

String [] WeekdayString = new String[Weekday.SAT.ordinal];
WeekdayString[Weekday.SUN.ordinal] = “Sunday”;

Each of the keywords must be unique. enum constants are implicitly static and final and cannot be

changed once created. The basic enum type in Java does not contain any public fields or methods that

change state, so the basic enum is immutable and cannot be changed.

enum declara%ons define classes, collec%vely referred to as enum types, which implicitly extend

java.lang.Enum. Java enum types thus have fields and methods. A more extensive example of date

classes1 provides an illustra%on of associated methods for an enum.

public enum Month implements TemporalAccessor, TemporalAdjuster {
JANUARY, FEBRUARY, MARCH, APRIL,
MAY, JUNE, JULY, AUGUST,
SEPTEMBER, OCTOBER, NOVEMBER, DECEMBER;

private static final Month[] ENUMS = Month.values();

public static Month_of(int month) {

 if (month < 1 || month > 12) {

1 Example taken from Joda.org.

Commented [SJM1]: Quotes?

Commented [SM2R1]: OK

Formatted: English (CAN)

WG 23/N 1495

 - 12 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

 throw new DateTimeException("Invalid value for MonthOfYear: " +
month);

 }
 return ENUMS[month - 1];

}

 // additional methods…

}

However, the flexibility that Java offers with enum types can lead to issues, as the following illustrates:

public enum Sea {

BERING (2261060,3937),
// ...
MEDITERRANEAN (2509698,5267);

private int area;
public int maxDepth; // Public

Continent(int area, int maxDepth) {

// ...
}

public void setArea(int area) { // Allows modification of private field

this.area = area;
}

}

When enum fields are public, Java allows them to be mutable. This can lead to unexpected consequences, such

as accidental or malicious changes to the object, while users expect enums to be immutable. Fields in an enum

should be private, set in the constructor, and have no seUer methods.

Java 14 added the no%on of a switch expression. A switch expression, unlike a switch statement,

guarantees coverage of all enumera%on values by its choices when applied to a basic enum type under the

circumstances shown in the examples in 6.27 Switch statements and lack of sta%c analysis [CLL].

6.5.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms from ISO/IEC 24772-1:2024 6.5.5.
• For class-based enums, ensure that enum values are not mutable by making members in an enum.

type private, by sewng the members in the constructor, and by not providing seUer methods.

• Set all enum fields to be final.

• Use an enum type to select from a limited set of choices to make possible the use of tools to detect

omissions of possible values such as in switch statements.

Formatted: Underline

™ ISO/IEC TR 24772-11 20xx – All rights reserved 13
-

6.6	Conversion	errors	[FLC]		

6.6.1	Applicability	to	language	

The vulnerability described in ISO/IEC 24772-1:2024 6.6 applies to Java, although the consequences are

mi%gated by checks in the language. In Java, automa%c type conversion is permiUed if both types are

compa%ble and the target type is wider than the source type, so there can be no loss of data.

In Java, automa%c type conversion is permiUed if both types are compa%ble and the target type is larger than

the source type, so there can be no loss of data. From the smallest to the largest capacity is the order: byte,

short, char, int, long, float, and double. For example, a byte can be implicitly cast to any of the

others since all of the others have a larger capacity, but a float can only be implicitly cast to a double since

there could be a loss of data if a float is cast to something smaller, such as an int.

There are 19 possible instances of widening primi%ve conversions in Java. These are:

• byte to short, int, long, float, or double

• short to int, long, float, or double

• char to int, long, float, or double

• int to long, float, or double

• long to float or double

• float to double

Though a floa%ng point number can store larger numbers than an integer, precision could s%ll be lost when

conver%ng an int to a long or a float, or from a long to a double. Because of the way floa%ng point

numbers are stored, the least significant bits can be lost in the conversion. Conver%ng from the smaller integral

types, such as a short to a floa%ng point type or a conversion from an int to a double, will not result in a

loss of precision.

Going in the opposite direc%on from a larger type to a smaller type requires explicit cas%ng. Though there must

be explicit cas%ng, the use of explicit cas%ng does not prevent either the produc%on of an incorrect truncated

value or the loss of precision (from floa%ng-point) in the conversion. A long containing a value not

representable in int will yield an incorrect value when explicitly downcast to an int. Data can be lost when a

float is explicitly downcast to an int.

The vulnerabili%es from ISO/IEC 24772-1:2024 6.6 related to the loss of values due to narrowing apply to Java.

In addi%on, the vulnerabili%es related to implicit change of units or sets of values with maximums and

minimums being exceeded but not genera%ng excep%ons also apply.

There are 22 possible instances of narrowing primi%ve conversions in Java where a poten%al loss of precision

could occur. These are:

• short to byte or char

Deleted:

WG 23/N 1495

 - 14 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

• char to byte or short

• int to byte, short, or char

• long to byte, short, char, or int

• float to byte, short, char, int, or long

• double to byte, short, char, int, long, or float

The use of an incorrect result of a downcast as an out-of-range index value will result in an excep%on. Thus, the

vulnerabili%es associated with out-of-range indexing cannot happen in Java. The vulnerability associated with

unhandled excep%ons is discussed in 6.36 Ignored error status and unhandled excep%ons [OYB]. Behaviours

such as termina%on of the executable or denial-of-service remain.

6.6.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.6.5.

• Check the value of a larger type before conver%ng it to a smaller type to see if the value in the larger

type is within the range of the smaller type.

• Use comments to document cases where inten%onal loss of data due to narrowing is expected and

acceptable.

• Be aware that conversion from certain integral types to floa%ng types can result in a loss of the least

significant bits.	

6.7	String	termination	[CJM]		

This vulnerability does not apply to Java because Java does not use a string termina%on character.

6.8	Buffer	boundary	violation	(buffer	overflow)	[HCB]		

The vulnerabili%es from buffer boundary viola%on documented in ISO/IEC 24772-1:2024 6.8 resul%ng in

undefined behaviours do not apply to Java, because Java has inherent protec%ons in the language to prevent

buffer boundary viola%ons. The vulnerabili%es associated with denial of service or termina%on of the program

are possible, depending upon how related excep%ons are handled. See 6.36 Ignored error status and

unhandled excep%ons [OYB].

6.9	Unchecked	array	indexing	[XYZ]		

This vulnerability described in ISO/IEC 24772-1:2024 6.9 does not apply to Java because Java performs explicit

out-of-bounds checks and raises an excep%on if the bounds are violated. The vulnerabili%es associated with

denial of service or termina%on of the program are possible, depending upon how related excep%ons are

handled. See 6.36 Ignored error status and unhandled excep%ons [OYB].

Deleted: 6.36 Ignored error status and unhandled excepKons
[OYB]…

Deleted: 6.36 Ignored error status and unhandled excepKons

Deleted: ¶

Formatted: Underline

Deleted: 6.36 Ignored error status and unhandled excepKons
[OYB]…

Deleted: 6.36 Ignored error status and unhandled excepKons
[OYB]…¶
¶

Deleted: ¶

Formatted: Underline

Deleted: 6.36 Ignored error status and unhandled excepKons
[OYB]…

Deleted: 6.36 Ignored error status and unhandled excepKons
[OYB].…

™ ISO/IEC TR 24772-11 20xx – All rights reserved 15
-

6.10	Unchecked	array	copying	[XYW]		

The vulnerability documented in ISO/IEC 24772-1:2024 6.10 does not apply to Java because Java performs

explicit range checks and raises an excep%on if the ranges are not compa%ble. The vulnerabili%es associated

with denial of service or termina%on of the program are possible, depending upon how related excep%ons are

handled. See 6.36 Ignored error status and unhandled excep%ons [OYB].

6.11	Pointer	type	conversions	[HFC]		

With the excep%on of conversions of references (Java’s equivalent to pointers) along the inheritance

hierarchies, which are described in 6.44 Polymorphic variables [BKK], the vulnerability described in ISO/IEC

24772-1:2024 6.11 does not apply to Java since no other conversions between references are permiUed.

6.12	Pointer	arithmetic	[RVG]		

The vulnerability described in ISO/IEC TR 62443-1 6.12 does not apply to Java because Java does not permit

arithme%c on references.

6.13	Null	pointer	dereference	[XYH]		

6.13.1	Applicability	to	language	

The vulnerability described in ISO/IEC 24772-1:2024 6.13 applies to Java. Prior to making use of a reference to

an object, verifica%on needs to be made to ensure that the reference is not null. This can be accomplished

through an explicit run%me check or other means of ensuring a reference is not null. Though a null

dereference is mi%gated in Java by compile-%me or run-%me checks that ensure that no null-values can be

dereferenced, it is oTen beUer to explicitly check for null rather than relying on raising and catching a

NullPointerExcep%on. The excep%on NullPointerException is implicitly raised upon such dereferencing

and needs to be handled, or else the vulnerability of a failing system or components prevails.

An alterna%ve mechanism that has been available since Java 8 called Optional, which can be used to

encapsulate the poten%al null values safely to avoid genera%ng a null pointer excep%on.

Optional.IsPresent returns true if the value is not null, and false otherwise to let one deal with

null values without raising an excep%on.	

6.13.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.13.5.

• Include checks for null prior to making use of objects. Less preferably, handle excep%ons raised by

aUempts to dereference null values.

• Consider using the Optional class java.util.Optional to handle objects as present or absent

instead of checking for null values.

Formatted: Underline

Deleted: 6.36 Ignored error status and unhandled excepKons
[OYB]…

Deleted: 6.36 Ignored error status and unhandled excepKons
[OYB].…

Deleted: 6.44 Polymorphic variables [BKK]

Deleted: 6.44,

Deleted:

Deleted: not rely exclusively on

Deleted: the

Deleted: excepKons

Deleted: present

Deleted: if there is a valid value

Deleted: or absent if the reference would be null

Commented [SJM3]: Appears to be incorrect. Returns
true/false. Need get() to acquire the value.
h[ps://docs.oracle.com/javase/8/docs/api/java/uKl/OpKonal.html

Commented [SM4R3]: OK

Deleted: ¶

Deleted: (
Deleted: l)

WG 23/N 1495

 - 16 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

6.14	Dangling	reference	to	heap	[XYK]		

The vulnerability described in ISO/IEC 24772-1:2024 6.14 does not apply to Java because, in Java, an object’s

life%me is controlled by the references to the object. Dealloca%on is only done by the garbage collector if no

references to the object exist. If any reference s%ll exists, the object will s%ll exist.

6.15	Arithmetic	wrap-around	error	[FIF]		

6.15.1	Applicability	to	language	

The vulnerability described in ISO/IEC 24772-1:2024 6.15 exists in Java. Given the fixed size of integer data

types, con%nuously adding a posi%ve value to an integer eventually results in a value that cannot be

represented in the space allocated. For Java, this is defined as an overflow. The integer operators do not

indicate overflow, so the poten%al exists for unexpected, meaningless, or incorrect arithme%c results as a result

of the overflow.

Similarly, repeatedly subtrac%ng from an integer leads to underflow. The integer operators also do not indicate

underflow in any way.

For example, consider the following code for an integer opera%on:

 int foo(int i) {
 i++;
 return i;
 }

Calling foo with the value of 2147483647 results in “i” containing the value of -2147483648 aTer the

“i++” statement. Con%nuing execu%on using such a value could result in unexpected results, such as

overflowing a buffer and erroneous opera%on. The programmer could have been unaware that the value was

gewng too big to represent in the allocated space. As it is impossible for the compiler or an analysis tool to

determine whether overflowing the variable is the expected behaviour, code should be annotated using

comments if wrap-around is expected.

6.15.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC TR 24772-1:2024 6.15.5.

• Use defensive programming techniques to check whether an opera%on will overflow or underflow the

receiving data type. For example:

o Check that an opera%on on an integer value will not cause wrapping, unless it can be shown

that wrapping cannot occur. Any of the following operators have the poten%al to wrap:

a + b a – b a * b a++ ++a a-- --a
a += b a -= b a *= b a << b a <<= b -a Deleted:

™ ISO/IEC TR 24772-11 20xx – All rights reserved 17
-

o Check that an opera%on on a floa%ng point value will not cause an overflow or underflow

unless it can be shown that either cannot occur. Any of the following operators have the

poten%al to overflow or underflow:

a + b a – b a * b a / b a % b a++ ++a

a-- --a a += b a -= b a *= b a /= b a %= b

a << b a <<= b -a

These techniques can be omiUed if it can be shown by sta%c analysis (e.g. at compile %me) that overflow or

underflow is not possible.

6.16	Using	shift	operations	for	multiplication	and	division	[PIK]		

6.16.1	Applicability	to	language	

The vulnerability described in ISO/IEC 24772-1:2024 6.16 exists in Java. OTen, the use of a shiT operator as a

subs%tute for the use of the mul%plica%on and division operators is to increase performance. The Java Virtual

Machine (JVM) usually performs such op%miza%ons automa%cally and can op%mize for the current plarorm.

Therefore, there usually is no difference in performance in the program execu%on when using a shiT operator

instead of a mul%plica%on or division operator.

Java provides three shiT operators: leT shiT “<<”, signed right shiT “>>”, and unsigned right shiT “>>>”. The

signed right shiT and the unsigned right shiT will produce iden%cal results for posi%ve integers. However, for

nega%ve numbers, the two results will be different.

The leT operand must be of type int or long. If the type of the leT operand is of type byte, short, or

char, then the leT operand is promoted to type int. Since the promo%on performs a sign extension, an

unsigned right shiT could cause the result of the shiT to be an unexpected large posi%ve integer.

Incorrect use of the shiT operators could lead to incorrect arithme%c, buffer overruns, and incorrect loops.

6.16.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.16.5. Also, see 6.15 Arithme%c

Wrap-around Error [FIF].

• Include both posi%ve and nega%ve values in any tes%ng of calcula%ons involving right shiTs to ensure

correct opera%on.

Deleted:
Deleted:
Deleted:
Deleted:
Deleted:
Deleted:
Deleted:
Deleted:
Deleted: ¶
Deleted:
Deleted:
Deleted:
Deleted:
Deleted: ¶
Deleted:

Deleted: (leG shiG)

Deleted:

Deleted: (signed right shiG)

Deleted: (unsigned right shiG)

Deleted: ,

WG 23/N 1495

 - 18 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

6.17	Choice	of	clear	names	[NAI]		

6.17.1	Applicability	to	language	

The vulnerability described in ISO/IEC 24772-1:2024 6.17 exists in Java. The possible confusion of names with

typographically similar characters is not specific to Java, but Java is as prone to it as any other language.

Depending upon the local character set, avoid having names that only differ by characters that can be

confused, such as “O” and “0” or “I” and “l”.

For Java, the maximum significant name length does not have a limit. Very long names can be problema%c from

the standpoint of readability and maintainability, even if Java does not impose a limit.

This issue is related to 6.20 Iden%fier name reuse [YOW], as they are both mechanisms by which the

programmer could inadvertently use an object other than the one intended. This can lead to user confusion

regarding variables and incorrect programming results.

6.17.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.17.5.

• Use names that are clear and non-confusing.

• Use consistency in choosing names.

• Use names that are appropriate to the scope of the code being wriUen, such as short meaningful

names in small constructs that involve only local scope, and more meaningful names when non-local

classes or methods are being accessed.

• Choose names that are rich in meaning.

6.18	Dead	store	[WXQ]		

6.18.1	Applicability	to	language	

The vulnerability described in ISO/IEC 24772-1:2024 6.18 exists in Java. Because Java is an impera%ve language,

programs in Java can contain dead stores (memory loca%ons that are wriUen but never subsequently read or

overwriUen without an intervening read). This can result from an error in the ini%al design or implementa%on

of a program, or from an incomplete or erroneous modifica%on of an exis%ng program. However, it can also be

intended behaviour, for example when ini%alizing a sparse array. It can be more efficient to clear the en%re

array to zero, and then assign the non-zero values, so the presence of dead stores should be regarded as a

warning of a possible error, rather than an actual error.

The Java keyword volatile indicates to the compiler that the variable should not be cached since its value

can be changed by en%%es outside of the scope of the program or by concurrent threads. A store into a

volatile variable is not considered a dead store because accessing such a variable can cause addi%onal side

effects, such as input/output (memory-mapped I/O) or observability by a debugger or another thread of

execu%on.

Deleted: ‘

Deleted: ’
Deleted: ‘

Deleted: ’
Deleted: ‘

Deleted: ’
Deleted: ‘

Deleted: ’

Formatted: Underline

Deleted: 6.20 IdenKfier name reuse [YOW]

™ ISO/IEC TR 24772-11 20xx – All rights reserved 19
-

6.18.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.18.5.

• Use compilers and analysis tools to iden%fy poten%al dead stores in the program.

• Mark all variables observable by another thread or hardware agent as volatile, also see 6.61

Concurrent data access [CGX].	

6.19	Unused	variable	[YZS]		

6.19.1	Applicability	to	language	

The vulnerability described in ISO/IEC 24772-1:2024 6.19 exists in Java. Variables can be declared, but never

used when wri%ng code or the need for a variable can be eliminated in the code, but the declara%on remains.

Most Java compilers will report this as a warning and the warning can be easily resolved by removing the

unused variable.

Having an unused variable in code indicates that warnings were either turned off during compila%on or were

ignored by the developer.

6.19.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.19.5.

• Resolve all compiler warnings for unused variables. 	

6.20	Identifier	name	reuse	[YOW]	

6.20.1	Applicability	to	language	

The vulnerability described in ISO/IEC 24772-1:2024 6.20 applies to Java. In Java, as in most languages, nested

blocks create nested scopes. Moreover, methods in classes create nested scopes. The usual hiding rule applies

to two iden%cally named variables at different levels in these scopes.

Java does allow local variables in a subclass to have the same name as a superclass, as in:

Formatted: Underline

Deleted: 6.61 Concurrent data access [CGX]

WG 23/N 1495

 - 20 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

class ExampleClass1 {
public static void main(String[] args) {

int i;
class Local {

int i;
for (int i = 0; i < 10; i++){

System.out.println(i);
 }
}

new Local();
}

}

Although each of these situa%ons likely resulted from decisions in designing Java that balanced alterna%ves,

such as the need to avoid renaming local variables when such variables were in use in a superclass, these

situa%ons can cause issues when performing even rou%ne maintenance such as accidental rebinds aTer

maintenance changes. Variables that are dis%nct could become intermingled if careful considera%on of the

scope of the variables is not considered.

Java allows scoping so that a variable that is not declared within a method can be resolved to the class. To

differen%ate between the class member and a locally declared en%ty, Java provides the keyword this as

shown in the following example:

public class usernameExample {
private String username;

public void setName(String username) {

 this.username = username;
}

}

The keyword this allows the this.username to indicate that username refers to the class variable

username instead of the method variable username. In the following example:

public class usernameExample {
private String username;
private String oldName;

public void setName(String username) {
 oldName = username;
 this.username = username;
}

}

™ ISO/IEC TR 24772-11 20xx – All rights reserved 21
-

oldName is assigned to the method variable username when the programmer intended to assign oldName

to the exis%ng username this.username before replacement.

Reuse of any publicly visible iden%fiers, public u%lity classes, interfaces, or packages in the Java Standard

Library can cause confusion. For instance, naming an iden%fier, Timer, the same name as the public class

java.util.Timer can cause confusion. Future maintainers of the code could be unaware that the

iden%fier Timer refers to a custom class instead of the public class.

6.20.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.20.5.

• Ensure that when the iden%fier that a method uses is iden%cal to an iden%fier in the class that the

correct iden%fier is used through the use or non-use of this.

• Choose unique names for any publicly visible iden%fiers, public u%lity classes, interfaces, and packages.

6.21	Namespace	issues	[BJL]		

The vulnerability described in ISO/IEC 24772-1:2024 6.21 does not apply to Java since the importa%on of

equally named en%%es is diagnosed as ambiguous by the compiler, making qualifica%on of the names upon

access mandatory.

Packages are one way that namespace issues can be handled when using the same name for two different

classes. Should, for example, two classes have the same name, but in different packages, as shown here:

com.app1.model (package)

Device (class)
...

com.app2.data (package)

Device (class)
...

If these two packages are both imported, then this requires either a name change of the Device class or the

use of the full package and class name when referencing them.

An iden%cal rule applies when two or more interfaces with equally named sta%c constants are inherited. The

use of the constant must be qualified by the interface name.

WG 23/N 1495

 - 22 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

6.22	Missing	initialization	of	variables	[LAV]		

6.22.1	Applicability	to	language	

The vulnerability described in ISO/IEC 24772-1:2024 6.22 related to ini%aliza%on in a method does not apply to

Java. Java requires that every variable in a program be ini%alized before it is used. With the excep%on of local

variables, Java will assign a default value to variables that are not explicitly ini%alized. Local variables are not

assigned a default value, though the compiler will ensure that each is ini%alized before use and report an error

that a variable might not have been ini%alized if the compiler cannot determine that a variable has been

ini%alized before use.

The vulnerability described in ISO/IEC 24772-1:2024 6.22 related to circular dependencies does exist in Java.

Java does have the problem of circular dependency. If a class A, which has class B’s object, and class B

is also composed of object of class A, there is an issue of circular dependency. Upon execu%on, the circular

dependency will cause memory to be exhausted and a StackOverflowError to occur.

6.22.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Avoid circular dependencies if possible.

• To remove a circular dependency between objects “A” and “B”, create a proxy for one of them and

derive that object from the proxy to remove the circular dependency.

6.23	Operator	precedence	and	associativity	[JCW]		

6.23.1	Applicability	to	language	

The vulnerability described in ISO/IEC 24772-1:2024 6.23 exists in Java. The order of operator precedence for

Java is well defined and is listed below in order from highest to lowest precedence.

Operator Precedence

Operators Precedence

postfix expr++ expr--

unary ++expr --expr +expr -expr ~ !

multiplicative * / %

additive + -

shift << >> >>>

relational < > <= >= instanceof

Deleted: O

Deleted: O

™ ISO/IEC TR 24772-11 20xx – All rights reserved 23
-

equality == !=

bitwise AND &

bitwise exclusive OR ^

bitwise inclusive OR |

logical AND &&

logical OR ||

ternary ? :

assignment = += -= *= /= %= &= ^= |= <<= >>= >>>=

As shown in the table above, operator precedence and associa%vity in Java are clearly defined, and mixing

logical and arithme%c opera%ons is allowed without parentheses. However, the language has more than 40

operators with the levels of precedence shown, and experience has shown that even senior programmers do

not always understand complex expressions.

6.23.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.23.5.

• Use parentheses when combining opera%ons in an expression to unambiguously specify the

programmer’s intent.

6.24	Side-effects	and	order	of	evaluation	of	operands	[SAM]		

6.24.1	Applicability	to	language	

The vulnerability described in ISO/IEC 24772-1:2024 6.24 exists in Java since Java allows methods and

expressions to have side effects. The vulnerability is significantly mi%gated by Java’s prescribed leT-to-right

evalua%on order so that the occurrence of side effects is determinis%c.

If two or more side effects modify the same expression as in:

int[] array={10,20,30,40,50,60};
int i = 2;
/* … */
i = array[i++]; // outcome is i == 30

Deleted:

Deleted:
Deleted: i

Deleted:

Deleted:

WG 23/N 1495

 - 24 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

the behaviour is undefined. Though the rules of Java concerning side effects are fairly straighrorward, they can

be confusing, such as in:

int i = 2;
int j = (i = 3) * i;
System.out.println(j);

The assignment of “i = 3” will occur first, and then the expression “j = i * i" will be evaluated,

leading to the prin%ng out of “9”.

Side effects, including assignments, in an argument to “&&” can create an issue, for example in the following

“if” statement:

if ((aVar == 10) && (++i < 25)){
// do something

}

Should “aVar” not be equal to “10”, then the “if” statement cannot be “true”, so the second half of the

condi%on (++i < 25) will not be evaluated and thus “i" will not be incremented. Tes%ng can give the false

impression that the code is working, when it could just be that the values provided cause evalua%ons to be

performed in a par%cular order that causes side effects to occur as expected.

Assert statements in Java are used as a diagnos%c tool to test assump%ons about a program. Assert statements

should not contain side effects since although assert statements are enabled by default, the assert statements

can be disabled as part of the build process. This could change the program results since the assert statements

would not be executed if the assert statements are disabled.

6.24.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.24.5.

• Prohibit embedding “++”, “—", etc. in expressions.

• Simplify expressions to reduce or eliminate side effects, to avoid poten%al confusion and to improve

maintainability.

• Prohibit side effects in assert statements.

6.25	Likely	incorrect	expression	[KOA]		

6.25.1	Applicability	to	language	

The vulnerability described in ISO/IEC 24772-1:2024 6.25 exists in Java. Java has several instances of operators

which are similar in structure, but vastly different in meaning, for example confusing the comparison operator

Deleted:

Deleted:
Deleted: i

Deleted:
Deleted: i
Deleted: i
Deleted: i
Deleted: ;

Deleted:

Deleted:

Deleted:

Deleted: i

Deleted: --

™ ISO/IEC TR 24772-11 20xx – All rights reserved 25
-

“==” with assignment “=”. Using an expression that is syntac%cally correct, but which could just be a null

statement can lead to unexpected results. Consider:

int x, y;
/* … */
if (x = y){
 /* … */
}

A fair amount of analysis is likely required to determine whether the programmer intended to do an

assignment as part of the “if” statement (valid in Java) or whether the programmer made the common

mistake of using an “=” instead of a “==”. In order to prevent this confusion, it is suggested that any

assignments in contexts that are easily misunderstood be moved outside of the Boolean expression. This would

change the example code to the seman%cally equivalent:

int x, y;
/* … */
x = y;
if (x != 0) {

 /* … */
}

This would clearly state what the programmer meant and that the assignment of “y” to “x” was intended.

Confusion of “==” and the equals() method can also cause problems. Consider:

int a = 5;
int b = 5;
if (a == b) {

System.out.println(“a == b is TRUE”);
}

In this case, “a == b is TRUE” will be printed since the values contained in “a” and “b” are the same.

However, in the following example:

String obj1 = new String("xyz");
String obj2 = new String("xyz");

if (obj1 == obj2){

System.out.println("obj1 == obj2 is TRUE");
}
else {

System.out.println("obj1 == obj2 is FALSE");
}

Deleted:

Deleted:

Deleted:

Deleted: “
Deleted: ”

Deleted: ¶

Deleted: E
Deleted: ¶

Deleted:

WG 23/N 1495

 - 26 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

“obj1 == obj2 is FALSE” will be printed since the memory loca%ons where “obj1” and “obj2” are

stored are different. “obj1 == obj2 is TRUE” would only be printed if the memory loca%ons of obj1
and obj2 were the same as in the case:

String obj1 = new String("xyz");
String obj2 = obj1;

It is also possible for programmers to insert the “;” statement terminator prematurely. However, inadvertently

doing this can dras%cally alter the meaning of code, even though the code is valid, as in the following example:

 int a, b;
 /* … */
 if (a == b); // the semi-colon will make this a null statement
 {
 /* … */
 }

Because of the misplaced semi-colon, the code block following the “if” will always be executed. In this case,

it is extremely likely that the programmer did not intend to put the semi-colon there and thus will end up with

unexpected results.

Java also uses the “>>>” for the unsigned shiT operator. This can be easily confused with the “>>” (signed

right shiT) which will produce iden%cal results for posi%ve values, but very different values for nega%ve values.

Each of the following would be clearer and have less poten%al for problems if the embedded assignments were

conducted outside of the expressions:

 int a, b, c, d;
 /* … */
 if ((a == b) || (c = (d - 1))){. . .} // the assignment to c will not
 // occur if a is equal to b
or:

int a, b, c;
/* … */
foo (a = b, c);

Each is a valid Java statement, but each can have unintended results. They are beUer formulated as :

int a, b, c, d;
/* … */
c = d - 1;
if ((a == b) || c) {. . .}

or

int a, b, c;

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

™ ISO/IEC TR 24772-11 20xx – All rights reserved 27
-

/* … */
a = b;
foo (a, c);

6.25.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.25.5.

• Explain statements with interspersed comments to clarify programming func%onality and help future

maintainers understand the intent and nuances of the code.

• Prohibit assignments embedded within expressions.

• Give “null” statements a source line of their own to clarify the inten%on that a statement was meant

to be a “null” statement.

6.26	Dead	and	deactivated	code	[XYQ]		

6.26.1	Applicability	to	language	

Java allows the usual sources of dead code described in ISO/IEC 24772-1:2024 6.26 that are common to most

conven%onal programming languages. To avoid dead code, there must be an execu%on path from the beginning

of the constructor, method, instance ini%alizer, or sta%c ini%alizer that contains the statement to the statement

itself. If not, the result will in many cases be a compiler error or warning.

Java will not produce a compiler error or warning in what seems to be obvious cases of dead or deac%vated

code, such as in the following example:

 int num = 10;
while (num > 15) {

val = 5;
}

Even though the statement “val = 5;” can never be reached, this code will not result in a compiler warning

or error. “while” statements, “do” statements and “for” statements are afforded special treatment. Except

in the case where the “while”, “do”, or “for” expressions have the constant value of “true”, the values

of the expressions are not taken into account in determining reachability.

Java permits the use of line-oriented comments "//" or block oriented comments "/* . . . */" which

can be used to remove code from compila%on by the compiler. Block oriented comments make it difficult for

reviewers to dis%nguish ac%ve code from deac%vated code.

Deleted:

Deleted:

Deleted:

Deleted: ¶

Deleted:

Deleted: {¶

Deleted:

Deleted:

Deleted: }¶

Deleted:
Deleted: W

Deleted:

Deleted:

WG 23/N 1495

 - 28 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

6.26.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.26.5.

• Use “//” comment syntax instead of “/*…*/” comment syntax to avoid the inadvertent commen%ng

out of sec%ons of code.

• Use an IDE that adds addi%onal capabili%es to detect dead or unreachable code.

6.27	Switch	statements	and	lack	of	static	analysis	[CLL]		

6.27.1	Applicability	to	language	

The vulnerabili%es documented in ISO/IEC 24772-1:2024 6.27 apply to Java. Java contains both a switch

statement and a switch expression.

Java currently provides mul%ple styles of “switch” alterna%ves:

• The “old-style” switch statement that permits only a single value for each case choice and permits

fall-through between cases using the “:” nota%on.

• The “new-style” switch statements (Java 21 and later) that permit mul%ple cases for each branch and

adds implicit breaks at the end of the branch when the arrow nota%on “->” is used to begin the case.

• The switch expression (Java 14 and later) that returns a single value as a result, prohibits modifica%on

of all variables and uses new style “->” or old-style “:” nota%ons for switching.

• An enhanced switch statement, where either (i) the type of the selector expression is not char,
byte, short, int, Character, Byte, Short, Integer, String, or an enum type,

or (ii) there is a case paUern or null literal associated with the switch block.

Old-style Java switch statements are error-prone as documented in ISO/IEC 24772-1:2024 and are

discouraged for new code. If there is no default case and the selec%ng value does not match any of the cases,

then control shiTs to the next statement aTer the switch statement block, which can cause logic errors. If

such old-style code is present, an update that uses the “->” syntax as part of a switch expression or

switch statement will improve sta%c analysis and prevent unintended fall-throughs.

switch expressions and switch statements that use the “->” syntax do not permit a fall-through from one

case to another and hence do not permit a break in the construct.

Switch expressions and enhanced switch statements check the exhaus%veness of choices during compila%on;

for enum types and some uses of sealed classes, coverage is checked sta%cally; for all other types and

situa%ons with sealed classes, the presence of a default switch label is required by the language. For other

switch statements, no checks for exhaus%veness are performed, making them vulnerable to uninten%onal fall-

throughs. The presence of a default switch rule carries the risk that the accidental omission of cases is not

discovered. This can be corrected by explicitly enumera%ng all cases that are not error or “don’t care” cases.

Deleted: Yyy¶
JDK Enhancement Proposal (JEP)!!! yyy Ktled Switch Expressions [2]
is a feature introduced in Java 14 that enhances
the switch statement, allowing it to be used as an expression. This
JEP aimed to streamline code, improve readability, and reduce errors
associated with tradiKonal switch statements.¶
¶

Deleted: Page Break
¶
¶

Deleted: ,

Deleted: P“” can be used to further constrain a case in “new-style”
switch syntax, as in:¶
¶
case String s when s.length() == 2 -> … ¶
¶

Deleted: t a

Deleted: S

Deleted: “

Deleted: ”

Deleted: , such as int,

Deleted: ¶

™ ISO/IEC TR 24772-11 20xx – All rights reserved 29
-

As an enhancement on switch rules, Java also provides paUern-matching and addi%onal guards, using the

“when” clause that can be used to further constrain a case in “new-style” switch syntax, as in:

case String s when s.length() == 2 -> …

When paUern matching is used in Java switch statements or expressions, it is important to be aware of case

dominance issues where a more-general paUern uninten%onally matches cases that should be handled by a

more-specific paUern. This scenario can result in unexpected behavior if the order of cases is not carefully

implemented and maintained. Java enforces a sequen%al scenario when poten%al overlap exists in two or more

cases; the first matching switch rule is taken.

Another poten%al vulnerability is the lack of a null switch rule in an enhanced switch statement or

switch expression over a value of reference type. When such a construct is invoked with a null value, a

NullPointerException will occur.

6.27.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:202024 6.27.5 for Java switch

statements and expressions.

• Prefer enhanced switch statements and switch expressions to guarantee exhaus%veness.

• Prefer the new style switch statements to the old style for all new code and for updates to old code.

• Prefer enum types with switch expressions to enable sta%c completeness checks for the cases.

• Prefer a coding style that requires explicit switch labels instead of default.

• For switch statements, include a default case to provide exhaus%veness of coverage and to support

error handling.

• When using paUern matching in a switch statement or expression, order the case alterna%ves

sequen%ally from most specific to least specific (enforced by the compiler in class-membership only).

• Include a null case to handle null values gracefully when switching over reference types.

6.28	Non-demarcation	of	control	flow	[EOJ]		

6.28.1	Applicability	to	language	

The vulnerabili%es documented in ISO/IEC 24772-1:2024 6.28 apply to Java. Java lacks a keyword for an explicit

terminator. Therefore, it is oTen not readily apparent which statements are part of a loop construct or an “if”

statement.

Deleted: SwitchRule

Deleted: The presence of default SwitchRules carries the risk
that the accidental omission of cases fails to be discovered, which
can be corrected by explicitly enumeraKng all cases that are not
error or “don’t care” cases.¶
¶

Deleted: SwitchRule

Deleted: <#>Prefer a coding style that requires explicit
SwitchLabels instead of default.¶

WG 23/N 1495

 - 30 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

Consider the following sec%on of code:

void foo(int a, int[] b) {
int i = 0, count = 0;
a = 0;
for (i=0; i < 10; i++)

a += b[i]; // Did the programmer intend to include
// the next statement ‘count++’ in the branch?
// If so, the programmer failed.

count++;
System.out.printf(“a=%d count=%d\n”, a, count);

}

The programmer could have intended both “a += b[i];” and “count++;” to be in the body of the loop,

but as there are no enclosing brackets, the statement “count++;” is only performed once. Similarly, for if

statements, the inclusion of statements on branches is suscep%ble to this error, for example:

int a, b, i;
if (i == 10){

 a = 5; // This is correct
 b = 10;
 }
 else
 a = 10;
 b = 5; // Incorrect since ‘b = 5’ will execute after either branch

If the assignments to “b” were added later and were expected to be part of each if and else clause (they are

indented as such), the above code is incorrect: the assignment to “b” that was intended to be in the else
clause is uncondi%onally executed.

“if” statements in Java are suscep%ble to another control flow problem since there is not a requirement for

there to be an else statement for every if statement. An else statement in Java always belongs to the most

recent if statement without an else. However, the situa%on could occur where it is not readily apparent to

which if statement an else belongs due to the way the code is indented or aligned. For example:

int n1, n2, n3, rating;
rating = 0;
if (n1 >= n2)

if (n1 >= n3)
rating = n1;

else // visually appears to be connected to first ‘if’
rating = n3; // but actually, belongs to the innermost ‘if’

Based on the indenta%on, it would appear that the else belongs to the first if. However, since the else

belongs to the most recent if without an else statement, the else would instead belong to the second if

statement. The intended effect can be achieved through the use of braces as follows:

Deleted:

Deleted:

Deleted: i
Deleted: ¶
//

Deleted:

Deleted:
Deleted: i

Deleted:
Deleted:
Deleted: e

Deleted:
Deleted: the
Deleted: next statement

Deleted:

Deleted:
Deleted: C
Deleted:

Deleted:

Deleted:
Deleted: ¶
//

Deleted:
Deleted:
Deleted:
Deleted:
Deleted: I

Deleted:

Deleted:

Moved (insertion) [1]
Deleted: ¶
 /

Deleted: actually

Moved up [1]: rating = n3;¶

™ ISO/IEC TR 24772-11 20xx – All rights reserved 31
-

int n1, n2, n3, rating;
rating = 0;
if (n1 >= n2) {

if (n1 >= n3) {
rating = n1;

}
}
else { // this ‘else’ belongs to the outermost ‘if’

rating = n3;
}

6.28.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms provided in ISO/IEC 24772-1:2024 6.28.5.

• Enclose the bodies of if, else, while, for, and similar constructs in braces to disambiguate

the control flow.

6.29	Loop	control	variable	abuse	[TEX]		

6.29.1	Applicability	to	language	

The vulnerabili%es documented in ISO/IEC 24772-1:2024 6.29 apply to Java. Java allows the modifica%on of

loop control variables within the loop, which can cause unexpected behaviour and can make the program more

difficult to understand.

Since the modifica%on of a loop control variable within a loop is infrequently encountered and unexpected,

reviewers of Java code might not expect it and hence miss no%cing the modifica%on or not recognize its

significance. Modifying the loop control variable can cause unexpected results. Loops can become infinite if the

loop control variable is assigned a value such that the loop control test is never sa%sfied. Loops can

uninten%onally execute less itera%ons than expected, such as:

int a, i;
for (i=1; i<10; i++){

…
if (a > 7) {

i = 10;
}
…

}

which would cause the for loop to exit once "a" is greater than "7", regardless of the number of itera%ons that

have occurred.

Deleted:
Deleted:

Deleted:
Deleted:

Deleted: ¶

Deleted:

Deleted: Avoidance	mechanisms	for	language	users

Deleted: ¶

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

WG 23/N 1495

 - 32 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

Java does not require the loop control variable to be an integer type. If, for example, it is a floa%ng point type,

the test for comple%on should not use equality or inequality, as floa%ng point rounding can lead to

mathema%cally inexact results, and hence an unterminated loop. The following can loop ten %mes or can loop

indefinitely:

for (float x = 0.0f; x != 10.0f; x += 1.0f){
. . .

}

The following is an improvement:

for (float x = 0.0f; x < 10.0f; x += 1.0f){
. . .

}

Rounding can cause this loop to be performed ten or eleven %mes. To ensure this loop is performed ten %mes,
“x” could be ini%alized to 0.5f.

Enhanced for loops in Java provide for a simplified way of itera%ng through all elements of an array in order,

as in the following:

for (int myIndex : myArray) {
 System.out.println (myIndex);
}

Unlike the conven%onal for statement, modifica%ons to the loop variable do not affect the loop’s itera%on

order over the array. This can cause unexpected results. Thus, it is beUer to declare the loop control variable as

final to prevent this possible confusion, as the following illustrates:

for (final int myIndex : myArray) {
 System.out.println (myIndex);
 }

By declaring myIndex as final, the Java compiler will reject any assignments within the loop.

6.29.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms of ISO/IEC 24772-1:2024 6.29.5.

• Prohibit the modifica%on of a loop control variable within a loop.

• Declare all enhanced for statement loop variables final to cause the Java compiler to flag and

reject any assignments made to the loop variable.

• Prohibit the use of floa%ng point types as a loop control variable.

• Use enhanced for loops to eliminate the need for a loop control variable.

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:
Deleted:

Deleted:

Deleted: <#>	Avoidance	mechanisms	for	language	users¶

™ ISO/IEC TR 24772-11 20xx – All rights reserved 33
-

6.30	Off-by-one	error	[XZH]		

6.30.1	Applicability	to	language	

The vulnerability as documented in ISO/IEC 24772-1:2024 6.30 applies to Java.

Arrays are a common place for off-by-one errors to manifest. In Java, arrays are indexed star%ng at zero, causing

the common mistake of looping from “0” to the size of the array as in:

public class arrayExample {
public static void main (String[] args) {

int interrail = new int[10];
int i;
for (i=0, i<=10, i++){

a[i] = 5;
. . .

}
return (0);

}
}

Java does provide protec%on in this case as any aUempt to access an array with an index less than zero or

greater than or equal to the length of the array will result in an ArrayIndexOutOfBoundsException to be

thrown.

Java provides mechanisms to reduce the places where explicit bounds tests are required, such as:

1. Whole object copying, such as arrays, class objects, and containers;

2. for loops that run the en%re structure without an explicit index count;

3. Java Maps provide a more secure way than arrays to manipulate objects because iterators implicitly

obey bounds.

Programs in Java are suscep%ble to the usual off-by-one errors, such as looping less than the desired amount.

Such errors will usually only be detected by doing thorough tes%ng of the program.

6.30.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.30.5.

• Use careful programming, tes%ng of boundary condi%ons, and sta%c analysis tools to detect off-by-

one errors in Java.

• Use Java facili%es for whole-object copying.

• Use Maps and iterators in lieu of explicitly counted loops for accessing structures.

Deleted: ¶

Deleted:

Deleted:

Deleted:
Deleted: intArray

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

WG 23/N 1495

 - 34 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

6.31	Unstructured	programming	[EWD]		

6.31.1	Applicability	to	language	

The vulnerabili%es documented in ISO/IEC 24772-1:2024 6.31 apply to Java. Since Java is an object-oriented

language, the structure inherent in the language helps to lead to well-structured programs. The Java language

does not contain the goto statement. However, even though Java sets forth this structure and in spite of it,

programmers can create unstructured code. Java does have the continue, break, throw, and return

statements that can create complicated control flows when used in an undisciplined manner. Unstructured

code can be more difficult for Java sta%c analyzers to analyze. It is some%mes used deliberately to obfuscate

the func%onality of soTware. Code that has been modified mul%ple %mes by an assortment of programmers to

add or remove func%onality or to fix problems can be prone to become unstructured.

Many style guides recommend the use of no more than one return statement in a method. This style

originated in assembly code where each return went directly back to the func%on caller, which is not true in

modern languages. In compiled Java code, the return statement always transfers to compiler-generated

wrapper code that checks for excep%ons, finalizes temporary variables and other state, and checks for a legal

value to be returned.

Mul%ple returns are only a problem if various branches within a func%on perform disparate calcula%ons and

some return from within a branch while others take alterna%ve ac%on. Code, where a simple calcula%on such

as a case expression results in a return from each branch with a unique value, is a valid paUern.

6.31.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.31.5.

• Write clear and concise structured code to make code as understandable as possible.

• Restrict or prohibit the use of continue and break in loops to encourage more structured

programming.

6.32	Passing	parameters	and	return	values	[CSJ]		

6.32.1	Applicability	to	language	

The vulnerabili%es documented in ISO/IEC 24772-1:2024 6.32 apply to Java. All Java data types are permiUed as

the type of a method parameter. Method arguments should be validated to ensure that their value falls within

the bounds of the method’s an%cipated values. Java passes any parameter that is of one of the eight primi%ve

types by value. The parameter is evaluated and its value is assigned to the formal parameter of the method or

constructor that is being called. Parameters provide informa%on to the method from outside the scope of the

method.

	

Deleted: ¶

™ ISO/IEC TR 24772-11 20xx – All rights reserved 35
-

Public static int minFunction (int n1, int n2) {
int min;
if (n1 > n2){

min = n2;
}
else {

 min = n1;
}
return min;

}

When the value of an object is passed as a parameter, effec%vely the reference to the object is passed. This

allows the object to be changed in the method.

Public class testObject {
private int value;

public static void main(String[] args) {

testObject p = new testObject();
p.value = 10;
System.out.println(“Before calling: “ + p.value);
increment(p);
System.out.println(“After calling: “ + p.value);

 }

public static void increment(testObject a) {
 a.value++;

 }
}

However, when mul%ple parameters are passed, a vulnerability called “aliasing” can occur. For example:

public static void main(testObject a, testObject b) {
a.value = 7;
b.value = 21;
System.out.println(a.value + b.value); // Normally prints 28

 // Sometimes prints 42
 }

Surprisingly, the value of "42" is printed in cases when main is called with variables deno%ng the same object,

i.e. main(x,y) when “x == y”. Similar problems arise when the current instance is passed as a parameter

to one of its methods.

Java also allows expressions such as the post increment expression “i++” to be passed as parameters. This can

cause confusion and it is safer to perform the increment in a separate, prior statement to the call. The order of

evalua%on of parameters proceeds from leT to right and care should be taken when side effects modify the

same variables such as “testMethod(i++, ++i)”.

Deleted:

Deleted:

Deleted: ¶

Deleted:

Deleted:
Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:
Deleted:

Deleted:
Deleted:

Deleted:

Deleted:

Deleted:

Deleted:
Deleted:
Deleted:

Deleted: .

Deleted:

WG 23/N 1495

 - 36 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

6.32.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.32.5.

• Avoid expressions with side effects as parameters to methods.

• Write code to account for poten%al aliasing among parameters, including the current instance this.

• Avoid the use of expressions with side effects for mul%ple parameters to func%ons, since the order in

which the parameters are evaluated and hence the side effects occur is unspecified.

6.33	Dangling	references	to	stack	frames	[DCM]		

This vulnerability as documented in ISO/IEC 24772-1:2024 6.33 does not apply to Java, because in Java any

reference that does not point to a valid object will be garbage collected. References are also passed by value,

meaning that Java creates a copy of the reference and passes the copy to the method.

6.34	Subprogram	signature	mismatch	[OTR]		

6.34.1	Applicability	to	language	

Except for vulnerabili%es associated with a variable number of arguments, i.e. varargs, the vulnerability as

documented in ISO/IEC 24772-1:2024 6.34 does not apply to Java since the compiler diagnoses mismatches.

If there are mul%ple member methods that are poten%ally applicable to a method invoca%on, overload

resolu%on in the compiler determines the actual method to be called or, if mul%ple candidates remain, a

compiler error results.

There are two concerns iden%fied with this vulnerability. The first is if a subprogram is called with a different

number of parameters than it expects. The second is if parameters of different types are passed than are

expected.

Java supports variadic func%ons/methods, termed varargs, as shown in the following example:

public class classSample {
void demoMethod(String… args) {

for (String arg: args) {
System.out.println(arg);

}
}

public static void main(String args[]){

new classSample().demoMethod(“water”, “fire”, “earth”);
new classSample().demoMethod(“wood”, “metal”);

}
}

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

Deleted:

™ ISO/IEC TR 24772-11 20xx – All rights reserved 37
-

A varargs argument must be the last argument in a mul%ple argument list and mul%ple varargs, even if of

different primi%ve types, are not allowed. Though varargs can be useful, their usage can cause performance

issues and possibly memory consump%on issues leading to unexpected results. varargs could also lead to heap

pollu%on, which occurs when a variable of a parameterized type refers to an object that is not of that

parameterized type.

6.34.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can avoid the use of the

variable argument feature except in rare instances and instead use arrays to pass parameters.

6.35	Recursion	[GDL]		

6.35.1	Applicability	to	language	

Java permits recursion, hence is subject to the vulnerabili%es documented in ISO/IEC 24772-1:2024 6.35.

6.35.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the guidance contained in ISO/IEC 24772-1:2024 6.35.5.

• If recursion is used, then catch the java.lang.OutOfMemoryError excep%on to handle

insufficient storage due to recursive execu%on.

6.36	Ignored	error	status	and	unhandled	exceptions	[OYB]		

6.36.1	Applicability	to	language	

The vulnerabili%es documented in ISO/IEC 24772-1:2024 6.36 exists in Java. Java mi%gates the vulnerability by

enforcing the handling of checked excep%ons, but not for unchecked excep%ons.

Java offers a set of predefined excep%ons for error condi%ons that can be detected by checks that are compiled

into a program. In addi%on, the programmer can define excep%ons that are appropriate for their applica%on.

These excep%ons are handled using an excep%on handler. Excep%ons can be handled in the environment where

the excep%on occurs or can be propagated out to an enclosing scope.

Java has two types of excep%ons: checked and unchecked. A checked excep%on requires a response, and the

existence of a response is checked at compile %me. A method must either handle the excep%on or specify the

excep%on using the throws keyword. This reduces the number of excep%ons that are not properly handled.

Unchecked excep%ons are subclasses of RunTimeException and do not require handling since recovery is

likely difficult or impossible, or the addi%on of an excep%on would not add significantly to the program’s

correctness and could be viewed as simply cluUering up the program needlessly.

Deleted: V

WG 23/N 1495

 - 38 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

Lack of handling of checked excep%ons, such as FileNotFoundException, is detected at compile %me.

There must be a try and catch block to handle the excep%on, as in the following example:

public static void main(String[] args){

try{
FileReader file = new FileReader(“datafile.txt”);

}
catch (FileNotFoundException e){

// print the stack trace for this
// throwable object on the standard error output stream
e.printStackTrace();

}
}

Thus, the vulnerability of unhandled excep%ons documented in ISO/IEC 24772-1:2024 6.36 does not apply to

checked excep%ons. The vulnerability does exist for unchecked excep%ons.

Checked excep%ons should not simply be suppressed by catching the excep%ons with an empty or trivial catch

block. The catch block must either recover from the excep%onal condi%on, rethrow the excep%on by

propaga%ng it to an enclosing scope or throw an excep%on that is appropriate to the context of the catch block.

Unchecked excep%ons, such as ArithmeticException, can be ignored in the program and the program

will s%ll compile. However, should an excep%on occur, how the excep%on should be handled might not be

specified. Unchecked errors are mainly due to programming errors that should be fixed to prevent the

unchecked excep%on from occurring again.

Variables defined in a try block are only local, so if they are needed in the catch block, define and ini%alize

the variables outside of the try block.

6.36.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.36.5.

• Use try-with-resources, which extends the behaviour of the try/catch construct to allow access to

resources without having to close them aTerwards, as the resource closures are done automa%cally.

• Use unchecked excep%ons in case an unan%cipated excep%on occurs.

• Use try-with-resources for automa%c resource management.

6.37	Type-breaking	reinterpretation	of	data	[AMV]		

6.37.1	Applicability	to	language	

Except for methods in sun.misc.Unsafe, Java is not subject to the vulnerabili%es documented in ISO/IEC

24772-1:2024 6.37.

Deleted: ¶

Deleted:
Deleted: ¶

Deleted:

Deleted:

Deleted:
Deleted: ¶

Deleted:

Deleted:

Deleted:

Deleted:

™ ISO/IEC TR 24772-11 20xx – All rights reserved 39
-

sun.misc.Unsafe provides some low level programming features, such as reinterpreta%on of data, but, as

its name implies, is considered unsafe for general use. Documenta%on is not widely available, and its use

usually relies on miscellaneous web pos%ngs, leading to even more unsafe use. Many of the features have been

deprecated but equivalent capabili%es are available via other classes that provide unsafe programming.

6.37.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Prohibit the use of sun.misc.Unsafe.

• Consider segrega%ng intended reinterpreta%on opera%ons into dis%nct subprograms, as the presence

of reinterpreta%on greatly complicates program understanding and sta%c analysis.

6.38	Deep	vs.	shallow	copying	[YAN]		

6.38.1	Applicability	to	language	

The vulnerability described in ISO/IEC 24772-1:2024 6.38 applies to Java.

The usual way of performing a copy of an object in Java is through the use of the clone() method. Using the

default implementa%on of the clone() method will result in a shallow copy with all of the resul%ng issues

associated with a shallow copy. Unexpected results can occur if the elements of values are changed via some

other reference. Using a deep copy that makes the original and cloned object totally disjoint comes at the cost

of efficiency and performance. To create a deep copy of an object, the clone method has to be overridden.

Since a deep copy is the exact duplicate of the original object, extensive use of deep copies can cause

considerable dynamic memory use.

Another way of copying objects is to serialize them through the Serializable interface. An object can be

serialized and then be deserialized to a new object. Since the constructor is not used for objects copied with

clone or serializa%on, this can lead to improperly ini%alized data and prevents the use of the final member

fields.

The constructor is not used for objects copied with clone() or serializa%on. This can lead to improperly

ini%alized data and prevents making member fields final.

6.38.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.38.5.

• Ensure that deep-copied objects are ini%alized properly.

• Be careful of excessive memory use when using deep copying.

Deleted: Use

Deleted: only when absolutely necessary to reinterpret data
and carefully document its use.

WG 23/N 1495

 - 40 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

6.39	Memory	leaks	and	heap	fragmentation	[XYL]		

6.39.1	Applicability	to	language	

The vulnerabili%es as documented in ISO IEC 24772-1 6.39 apply to Java but are mi%gated by Java’s built-in

garbage collectors.

Java has automa%c memory management along with several built-in Garbage Collectors (GC), including Serial,

Parallel, G1, Concurrent Mark Sweek (CMS), Shenandoah, and the newest Z Garbage Collector (ZGC). Java

selects the best garbage collector based on the plarorm, Java version, and JVM implementa%on, but the

developer can override this selec%on and pick another GC. Nevertheless, memory leaks can occur in Java

applica%ons. Although objects are no longer being used by an applica%on, the Garbage Collector cannot

remove them from working memory if the objects are s%ll being referenced. LeT unchecked, this can result in

the applica%on increasingly consuming resources un%l a fatal OutOfMemoryError occurs.

Many scenarios can lead to a memory leak:

• Referencing a memory intensive object with a sta%c field %es its lifecycle to the lifecycle of the JVM

itself.

• Unclosed resources, such as database connec%ons, input streams, and session objects.

• An instance of a non-sta%c inner class (anonymous class) always requires an instance of the enclosing

class and has, by default, an implicit reference to its containing instance. If this instance of the inner

class object is used in an applica%on, then even aTer the instance of the containing class goes out of

scope, the instance of the containing class will not be garbage collected as long as the instance of the

inner class exists.

• Overriding a class’ finalize() method and then the objects of that class are not instantly garbage

collected since the garbage collector queues them for finaliza%on, which occurs at a later point in %me.

• Reading a large String object and then calling intern() on that object will result in it being stored

in the string pool, which is located in PermGen (permanent memory), where it will stay as long as the

applica%on runs.

• Using the ThreadLocal construct to isolate state to a par%cular thread and thus achieve thread

safety so that each thread will hold an implicit reference to its copy of a ThreadLocal variable and

will maintain its own copy instead of sharing the resource across mul%ple threads, as long as the

thread is alive. This can introduce memory leaks if not used carefully.

• Calling applica%ons wriUen in programming languages that are prone to memory leaks.

6.39.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.39.5.

• Use a heap-analyzer tool to assist in detec%ng memory leaks.

• Enable verbose garbage collec%on to document and understand detailed traces of the garbage

collector's ac%ons.

™ ISO/IEC TR 24772-11 20xx – All rights reserved 41
-

• Use Java profiler tools that monitor and diagnose memory leaks.

• Set references to null once they are no longer needed so that the garbage collector can collect the

designated object.

• Use reference objects from the java.lang.ref package instead of directly referencing objects to

allow them to be easily garbage collected.

6.40	Templates	and	generics	[SYM]		

6.40.1	Applicability	to	language	

The vulnerability as described in 24772-1:2024 6.40 exists in Java.

Generics allow programmers to specify, with a single method declara%on, a set of related methods or, with a

single class, a set of related types. At the heart of Java generics is type safety, which allows invalid types to be

caught at compile %me. The emphasis on type safety causes many problems to be averted.

Generics in Java are implemented with type erasure. That is, the generic type informa%on is only available at

compile %me and not in the bytecode or at run%me. Thus, generics do not affect the signature of a method,

resul%ng in the same signature for methods that have the same name and the same arguments. This can result

in signature collision. In addi%on, this does not allow one to determine parameterized types using reflec%on.

Java allows the use of upper bounded, lower bounded and unbounded wildcards “?” in a generic. The use of a

wildcard in generic programming can be useful but can also introduce uncertainty as to the inten%on during

the maintenance cycle. Generic wildcards also add a level of complexity that might not be fully understood or

comprehended by Java programmers who know the basics of generics, but not more sophis%cated techniques

like wildcard.

6.40.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.40.5.

• Use generic wildcards carefully and only when needed.

• Use different names for methods to get different signatures.

6.41	Inheritance	[RIP]		

6.41.1	Applicability	to	language	

The vulnerabili%es as described in 24772-1:2024 6.41 exist in Java. Java supports inheritance but does not

support mul%ple inheritance or cyclic inheritance for classes. This allows Java to avoid problems associated

with mul%ple inheritance. Interfaces support mul%ple inheritance, but the vulnerabili%es are centered on the

inheritance of the implementa%on, which is missing from interfaces.

Deleted: (

Deleted:)

Commented [SM5]: Stephen - codify the discussions in the
email chain of late March and early April about use of courier,
quotes and capital single le[ers in an N document.

Commented [SM6R5]: Done. Document 1480.

WG 23/N 1495

 - 42 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

Java allows subclasses to override inherited methods, poten%ally causing difficulty in determining where in the

hierarchy an invoked method is actually defined. An overriding method must specify the same name,

parameter list, and return type as the method being overridden. The use of the keyword final in a method

header will prevent the method from being overridden. For example, final String getDate will prevent

getDate from being overridden in a subclass as the compiler will report an error if the method is overridden

in a subclass.

The issues arising from inheritance are absent when composi%on is used, especially when using library classes.

Apart from this mi%ga%on to accidental or malicious overriding, all other vulnerabili%es described in ISO/IEC

24772-1:2024 6.41 for single inheritance apply.

Version 17 of Java officially included sealed classes that restrict the extension of a sealed class to subclasses

defined in the same module or explicitly permiUed to do so. This restric%on brought some order to the Java

deriva%on hierarchies but introduced the vulnerability caused by late addi%ons of subclasses in the same

module not intended to be so permiUed. In addi%on, non-sealed subclasses are permiUed, breaking the

promise made by their sealed parent class. Obviously, this can be a surprise for the user and can be a vehicle

for introducing unwanted extensions.

For vulnerabili%es associated with classes used as case selectors in switch statements/expressions, see 6.27

Switch statements and lack of sta%c analysis [CLL] .

6.41.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.41.5.

• Use composi%on as an alterna%ve to inheritance.

• Use interfaces when mul%ple inheritance is required.

• Keep the inheritance graph as shallow as possible to simplify the review of inheritance rela%onships

and method overridings.

• Explicitly list all allowed subclasses in the permits clause of a sealed class to ensure the compiler can

check for exhaus%ve subclass coverage.

• Prohibit the use of non-sealed on subclasses derived from sealed classes.

• Evaluate the desirability of a sealed class and design the permiUed subclasses carefully to balance

flexibility and control.

6.42	Violations	of	the	Liskov	substitution	principle	or	the	contract	model	[BLP]		

6.42.1	Applicability	to	language	

The vulnerabili%es documented in ISO/IEC 24772-1:2024 6.42 apply to Java. Since Java supports inheritance, it

is important that developers abide by the Liskov subs%tu%on principle. In par%cular, no restric%on on

parameters to an overridden method can be permiUed unless it weakens a restric%on on the parameter in the

Deleted: Error!	Bookmark	not	defined.

Deleted: s

™ ISO/IEC TR 24772-11 20xx – All rights reserved 43
-

base class. Similarly, no restric%on on the result of an overridden method can be permiUed unless in

strengthens the restric%on of the result in the base class.

Precondi%on and postcondi%on checks are not supported in Java, but asser%ons can be used to implement

them at run%me.

6.42.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.42.5.

• Use asser%ons to implement precondi%on and postcondi%on checks.

• Use sta%c analysis tools to verify asser%ons.

6.43	Redispatching	[PPH]		

6.43.1	Applicability	to	language	

The vulnerability as documented in ISO/IEC 24772-1:2024 6.43 exists in Java. Dynamic method dispatch is the

mechanism by which a call to an overridden method is resolved at run %me rather than compile %me. When an

overridden method is called through a superclass reference, Java determines which version

(superclass/subclasses) of that method is to be executed based upon the type of the object being referred to at

the %me the call occurs. Thus, this determina%on is made dynamically at run %me. For methods that are

overridden in subclasses in the object being ini%alized, the overriding methods are used and thus the

redispatching problem of infinite recursion could manifest.

6.43.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.43.5.

• Prevent redispatching where it is not necessary and document the behaviour if redispatching is

required.

6.44	Polymorphic	variables	[BKK]		

6.44.1	Applicability	to	language	

The vulnerabili%es related to upcasts in ISO/IEC 24772-1:2024 6.44 exist in Java.

The vulnerabili%es related to unsafe casts do not exist in Java since unsafe casts are not permiUed in Java.

Downcasts from a superclass to a subclass in the same type hierarchy are legal and will not be flagged by the

compiler. In the following example:

Deleted: , if that restricKon does not exist in the base class

Deleted: Error!	Bookmark	not	defined.

WG 23/N 1495

 - 44 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

• Subclass extends Superclass and declares method().

• BadDowncast declares a main() method that instan%ates Superclass. BadDowncast then

downcasts this object to Subclass, which raises the excep%on ClassCastException because

the instance currently designated by subclass is not an instance of Subclass.

• If, however, the value of Superclass were an instance of Subclass, the downcast will succeed

and subclass.method()will be called.

class Superclass {
}

class Subclass extends Superclass {

void method() {
}

}

public class BadDowncast {

public static void main(String[] args) {
Superclass superclass = new Superclass();
Subclass subclass = (Subclass) superclass; // raises an
exception
subclass.method();

}
}

6.44.2 Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can apply the avoidance

mechanisms contained in ISO/IEC 24772-1:2024.

6.45	Extra	intrinsics	[LRM]		

The vulnerability as documented in ISO/IEC 24772-1:2024 6.45 does not exist in Java, since Java does not

provide any intrinsic that can conflict with a user-defined name. All language-provided capabili%es outside the

standard operators reside in named library classes, and the usual name resolu%on rules apply.

6.46	Argument	passing	to	library	functions	[TRJ]		

6.46.1	Applicability	to	language	

The vulnerability as documented in ISO/IEC 24772-1:2024 6.46 applies to Java.

Parameter valida%on should always be performed in public methods since the caller is out of scope of its

implementa%on. In public methods or other instances where such valida%on is not performed or it is unsure

whether it is performed, the calling rou%ne should perform parameter valida%on.

Deleted:

Deleted: ¶

Deleted: ¶
Deleted: ¶

Deleted: ¶

Deleted: ¶
Deleted: ¶

Deleted: ¶

™ ISO/IEC TR 24772-11 20xx – All rights reserved 45
-

There are open source libraries that provide for precondi%ons to be placed on parameters. For instance, the

open source library Guava provides u%li%es such as checkArgument, as illustrated in this example:

public static double sqrt (double value) {
Preconditions.checkArgument(value >= 0.“, "negative value:”%s",
value);
// … perform calculation of the square root

}

6.46.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.46.5.

• Avoid assump%ons about the values of parameters.

• Implement precondi%on checks to validate parameters and establish a strategy for each interface to

check parameters in either the calling or receiving rou%nes.

6.47	Inter-language	calling	[DJS]		

6.47.1	Applicability	to	language	

The vulnerabili%es in ISO/IEC 24772-1:2024 6.47 exist in Java when working with components developed in

other languages. Interfacing with other languages can be difficult. Though Java aUempts to make interfacing

with other languages easier, it can s%ll be rather complicated. Foreign Func%on Interfaces (FFI) are one way to

provide a clean API for communica%ng between the languages. The Java Na%ve Interface (JNI) is a typical FFI

designed to make a foreign func%on interface easier and safer. JNI can be used to interface with C/C++,

assembly, and other languages. The piralls of using JNI or other FFI are generally that of impacted performance

and, because of the many issues related to interfacing between languages, correctness poten%ally causing

issues where the code some%mes works, but not reliably because of the complexi%es of the interface. FFIs can

introduce issues that are difficult to debug because of the complexi%es and lack of transparency within the

interface.

6.47.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.47.5.

• Use a foreign func%on interface such as JNI to provide a clear separa%on between Java and the other

language, but be aware that foreign func%on interfaces can be error prone and lack transparency,

making debugging harder.

• Be aware that na%ve code can lack many of the protec%ons afforded by Java, such as bounds checks on

structures not being performed on na%ve methods, and explicitly perform the necessary checks.

• Minimize the use of those issues known to be error-prone when interfacing between languages, such

as:

Deleted: ¶

Deleted:
Deleted: …p

WG 23/N 1495

 - 46 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

1. passing character strings

2. dimension, bounds, and layout issues of arrays

3. interfacing with other parameter mechanisms such as call by reference, value, or name

4. handling faults, excep%ons, and errors, and

5. bit representa%on.

6.48	Dynamically-linked	code	and	self-modifying	code	[NYY]		

6.48.1	Applicability	to	language	

The vulnerability documented in ISO/IEC 24772-1:2024 6.48 exists in Java as explained below.

The Java Virtual Machine (JVM) does not allow access to random loca%ons in memory, so modifying an already

loaded byte code for self-modifying code is not possible from a Java program. However, new classes and

methods that have not been loaded can be wriUen or modified as a Java program is execu%ng and then loaded.

In addi%on, the mechanisms of reflec%on allow the modifica%on of exis%ng classes as the program is running.

Class loaders are responsible for loading Java classes during run%me dynamically to the JVM. When the

run%me environment needs to load a new class for an applica%on, the class is located and loaded by one of

three types of class loaders in the following order: bootstrap class loader, extension class loader, and system

class loader. The bootstrap class loader is responsible for loading all core Java classes. The extension class

loader is a child of the bootstrap class loader and loads classes from the extension directories. The system class

loader is responsible for loading code from the path specified by the CLASSPATH environment variable or,

alterna%vely, by the –classpath op%on. The –classpath op%on will take precedence over the CLASSPATH

environment variable. Altering either of these could lead to execu%ng code that is different from what was

tested.

The Java plarorm allows for JAR files to be digitally signed, thus providing a mechanism for verifica%on of the

origin of the file.

Java classes are not loaded into memory all at once, but when required by an applica%on. Thus, if a class is

changed while a program is running and before it has been loaded into memory, the new version will be used.

Java also allows for class reloading. Thus, a program employing class reloading makes it possible for an aUacker

to modify a class while a program runs.

Since Java version 21, warnings are issued when agents are dynamically loaded into a running JVM and future

releases will prohibit dynamic loading by default. The dynamic loading of the agents can be disabled aTer

startup with the -XX:-EnableDynamicAgentLoading op%on.

The reflec%on mechanism java.lang.reflect permits the modifica%on of execu%ng code. By reflec%on,

exis%ng classes can not only be examined, but also modified. These capabili%es do not respect any limita%ons

of visibility or the constant property.

™ ISO/IEC TR 24772-11 20xx – All rights reserved 47
-

6.48.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.48.5.

• Prohibit dynamic modifica%on of classes, including modifica%on via java.lang.reflect.

• Verify through the use of signatures that dynamically linked or shared code being used is the same as

that which was tested.

• Retest when dynamically linked or shared code has changed before using the applica%on.

• Review all warnings related to dynamic loading that are presented.

6.49	Library	signature	[NSQ]		

6.49.1	Applicability	to	language	

The vulnerabili%es documented in ISO/IEC 24772-1:2024 6.49 exist in Java as explained below.

Integra%ng Java and another language into a single executable relies on knowledge of how to interface the

method/func%on calls, argument lists, and data structures so that symbols match in the object code during

linking.

Arrays and other data structures are oTen interpreted by another language differently than the way that Java

interprets or stores them in memory. This can cause issues with transferring data between Java and the

receiving language. For instance, it is common to use one-dimensional arrays to pass array data to and from

programs in another language since the way that Java stores mul%dimensional arrays is significantly different

than that of C, C++, and other languages.

Issues can arise when Java interfaces with a language that does not support garbage collec%on. Java can

perform garbage collec%on and delete objects before the other non-garbage collec%on language being called is

finished with them. Issues can also arise with the integra%on of non-Java excep%on handling or other error

handling mechanisms, e.g. exit codes.

To alleviate some of these issues, wrappers can be used. Though wrappers can make the interfacing easier,

wrappers can be error-prone and impact performance through the overhead of the wrapper.

6.49.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.49.5.

• Use a tool, if possible, to automa%cally create interface wrappers.

• Be wary of making assump%ons about argument lists, data structures and error handling mechanisms,

as other languages are likely to have differences in these areas.

WG 23/N 1495

 - 48 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

6.50	Unanticipated	exceptions	from	library	routines	[HJW]		

6.50.1	Applicability	to	language

If the library rou%ne is a Java rou%ne, the vulnerabili%es described in ISO/IEC 24772-1:2024 6.50 do not apply

to Java with the minor excep%on of unhandled unchecked excep%ons since all checked excep%ons are part of

the specifica%on of the library rou%nes and handling them is enforced by the compiler and run%me system.

For foreign libraries, see 6.49 Library signature [NSQ].

Though a response to a checked excep%on is required, it is unfortunately too common for a programmer to

assume that a checked excep%on could not possibly happen and instead of puwng appropriate code in to

handle the unexpected event, the programmer does just enough to get a clean compile by inser%ng an empty

catch block as in the following example:

public void whatCouldPossiblyGoWrong() {
 try {
 // do something
 } catch(NumberFormatException e) {
 // this will never happen
 }
}

6.50.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Follow the mi%ga%on mechanisms of ISO/IEC 24772-1:2024 6.50.5.

• Always have an appropriate response for checked excep%ons since even things that should never

happen do happen occasionally.

6.51	Pre-processor	directives	[NMP]		

The vulnerability as described in ISO IEC 24772-1 6.51 does not apply to Java, as Java does not have a

preprocessor.

6.52	Suppression	of	language-defined	run-time	checking	[MXB]		

The vulnerability as described in ISO IEC 24772-1 6.52 does not apply to Java since run%me checks cannot be

suppressed. 	

6.53	Provision	of	inherently	unsafe	operations	[SKL]		

6.53.1	Applicability	to	language	

The vulnerabili%es documented in ISO/IEC 24772-1:2024 6.53 apply to Java.

Formatted: Underline

Deleted: 6.49 Library signature [NSQ]

Deleted: 6.49 Library signature

Deleted:

™ ISO/IEC TR 24772-11 20xx – All rights reserved 49
-

The Java compiler generates the “uses unsafe or unchecked operations” warning for code

considered to be unsafe. However, as it is a warning, it can be ignored.

Although Java is inherently a safe language, it does allow some opera%ons that are inherently unsafe. For

example, one undocumented class, sun.misc.Unsafe, contains code that is recognized to be inherently

unsafe but can be required for low-level programming. For instance, it allows the crea%on of an instance of a

class without invoking its constructor code, ini%aliza%on code, and various other JVM security checks. The

allocateMemory() method in sun.misc.Unsafe also allows the crea%on of huge objects, larger than

Integer.MAX_VALUE, that are invisible to the garbage collector and the JVM.

Java 24 has deprecated most of sun.misc.Unsafe, although some implementa%ons can s%ll provide the

calls.

Another unsafe opera%on is the deserializa%on of data from external sources. Java provides packages, such as

java.io.ObjectInputFilter, with capabili%es to read external data in a more controlled manner.

6.53.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.53.5.

• Analyze the Java warnings “uses unsafe or unchecked opera%ons” to determine whether ac%on is

needed or whether it is appropriate to leave the code as is.

• Prohibit the use of sun.misc.Unsafe, use only in specialized instances where the capabili%es it

provides can be shown to be essen%al, and include “Unsafe” in the naming of any extensions.

• Document all uses of unsafe code with in-place comments and provide evidence that all such uses

func%on safely.

• Consider using Java’s input stream filter capability for deserializa%on of external data.

6.54	Obscure	language	features	[BRS]		

6.54.1	Applicability	of	language		

The vulnerabili%es documented in ISO/IEC 24772-1:2024 6.54 apply to Java. There are ways that a feature of

the language can be easily misused, and as such, restric%ons on the feature are commonly expressed in coding

standards in soTware development organiza%ons. For instance, the inclusion of statements other than loop

control statements should not be included in a for() statement. For instance:

for(i = 0; total=0; i < 50; i++) {
total += value[i];

}

Commented [SJM7]: Ref : JEP 471
h[ps://openjdk.org/jeps/471

“A1er depreca5ng the 79 memory-access methods for removal,
sun.misc.Unsafe will contain only three methods that are not
deprecated:

pageSize, which will be deprecated and removed separately. Library
developers are encouraged to obtain the memory page size directly
from the OS via a downcall.

throwExcep6on, which will be deprecated and removed separately.
This method was historically used by methods in the JDK to wrap
checked excep5ons in unchecked excep5ons, but those methods, e.g.,
Class::newInstance, are now deprecated.

allocateInstance, which will remain as the only method in
sun.misc.Unsafe in the medium term. It is used by some serializa5on
libraries for deserializa5on. Providing a standard replacement is a
long-term project.”

WG 23/N 1495

 - 50 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

Though the above code is legal, the inclusion of the non-loop control statement “total=0;” reduces the

maintainability and readability of the code.

Other features are unique to Java, and programmers schooled in other languages might not use these features

since they are not as familiar with them as they would be with a feature that is common to both their na%ve

language(s) and Java. Finally, some features, such as the logical right shiT “>>>” operator, are only applicable

under rare circumstances, and there are alterna%ve ways of achieving the same result and thus programmers

could forget that the feature exists in the language.

Problems can also arise from the use of a combina%on of features that are rarely used together or fraught with

issues if not used correctly. This can cause unexpected results and poten%al vulnerabili%es.

6.54.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.54.5.

• Specify coding standards that restrict or ban the use of features or combina%ons of features that have

been observed to lead to vulnerabili%es in the opera%onal environment for which the soTware is

intended.

6.55	Unspecified	behaviour	[BQF]		

6.55.1	Applicability	of	language		

The vulnerabili%es documented in ISO/IEC 24772-1:2024 6.55 apply to Java.

The Java specifica%on is fairly complete and leaves very liUle unspecified. Two areas that lack full specifica%on

are:

• The garbage-collec%on algorithm used and any internal op%miza%on that is performed. Since when

garbage collec%on happens can be unpredictable, %ming issues can be introduced. Garbage collec%on

behaviour can be influenced by changing the heap size since the default garbage collector is scheduled

to execute when free space on the heap goes below implementa%on-defined limits.

• Op%miza%on of Java virtual machine instruc%ons can cause por%ons of instruc%ons to be skipped or

reordered. Among others, this can influence %ming behaviours, stack usage or heap usage.

6.55.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.55.5.

• Prohibit reliance on unspecified behaviour because the behaviour can change at each instance. Any

code that makes assump%ons about the behaviour of something that is unspecified should be

replaced.

• Reduce the number of temporary objects to minimize the impact and need for garbage collec%on.

™ ISO/IEC TR 24772-11 20xx – All rights reserved 51
-

• Increase the Java heap size to reduce the frequency and amount of %me spent doing garbage

collec%on.

• Enable verbose garbage collec%on and profiling to locate and fix memory leaks to reduce the need for

garbage collec%on.

6.56	Undefined	behaviour	[EWF]	

6.56.1	Applicability	of	language		

The vulnerabili%es documented in ISO/IEC 24772-1:2024 6.56 apply to Java. Java is a well-defined language but

has some areas of undefined behaviour. Areas of undefined behaviour are:

• The exact %ming and scheduling of mul%ple threads. This is the primary area where undefined

behaviour is experienced in Java.

• Calling a non-final method of the same class in the constructor. The undefined behaviour occurs if this

method is overridden in a subclass. No%ce that construc%on occurs from the superclass to the subclass.

In some virtual machines, the local aUributes will be constructed, the superclass constructor will finish

its execu%on then, when the constructor of subclass is reached the aUributes will be constructed again,

overriding previously defined values.

• Interpre%ng a byte array as characters using the default encoding instead of the encoding used to

produce the byte array and lacking a valid character representa%on for some of the bytes in the default

encoding.

• How soon a finalizer will be invoked, which thread will invoke the finalizer for any given object, and the

ordering of finalize method calls are all unspecified.

• Details of how and when garbage collec%on will occur, even when the garbage collec%on is explicitly

invoked.

• If circularly declared classes are detected at run%me, then a ClassCircularityError is thrown.

Otherwise, the behaviour is undefined and could lead to a StackOverflowError being thrown.

6.56.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can apply the avoidance

mechanisms contained in ISO/IEC 24772-1:2024 6.56.5.

6.57	Implementation–defined	behaviour	[FAB]		

6.57.1	Applicability	to	language	

The vulnerabili%es documented in ISO/IEC 24772-1:2024 6.57 apply to Java, rela%ng generally to the

connec%on between the JVM and the underlying opera%on system. Java has very liUle implementa%on-defined

behaviour as Java is a Write Once Run Anywhere (WORA) language. The Java opera%ng model is that the Java

source code is compiled and converted into byte code. The byte code is designed to be plarorm independent.

WG 23/N 1495

 - 52 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

The main areas of implementa%on-defined behaviour relate to the connec%on between the JVM and the

underlying opera%on systems, such as Windows and Unix. File name conven%ons, use of file path separators,

thread behaviours, and network access mechanisms can have different observable behaviours.

For the instance of file path separators, an example of an area that is implementa%on defined are the two sta%c

variables in the java.io.File class, which will be used to make file path separa%on Java code plarorm

independent. File.separator is the String value that an opera%ng system uses to separate file paths. For

instance, on Unix based systems, the “/” is used, whereas on a Windows based system, the “\” is used. In

order to make code plarorm independent, when crea%ng a file path, use:

 String filePath = “temp” + File.separator + “abcd.txt”

instead of the plarorm dependent

 String filePath = “temp/abcd.txt”.

6.57.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can apply the avoidance

mechanisms contained in ISO/IEC 24772-1:2024 6.57.5.

6.58	Deprecated	language	features	[MEM]		

6.58.1	Applicability	to	language	

The vulnerabili%es documented in ISO/IEC 24772-1:2024 6.58 apply to Java. As with other languages, it is

recommended that deprecated classes, methods, and fields not be used. Java provides a way to express

depreca%on because as a class evolves, its API inevitably changes. Methods are renamed for consistency,

improved methods are added, and fields change. To facilitate the transi%on to the new APIs, Java supports two

mechanisms for the depreca%on of a class, method, or field: an annota%on and the Javadoc tag, which is the

old method. Java annota%ons were introduced in Java 5 and are the preferred method. For either mechanism,

exis%ng calls to the old API con%nue to work, but the annota%on causes the compiler to issue a warning when

it finds references to deprecated program elements. Comments are inserted in the code prior to the

@Deprecated annota%on to warn users against using the deprecated item and provide informa%on on what

should be used instead. However, in some instances where there is not a suitable replacement, users should

simply not use the method.

Public class AdeprecatedExmp {
/**
* @Deprecated
* reason(s) why it was deprecated
*/
@Deprecated
public void showDeprecatedMessage(){

™ ISO/IEC TR 24772-11 20xx – All rights reserved 53
-

System.out.println(“This method is marked as deprecated”);
}

public static void main(String a[]){

AdeprecatedExmp mde = new AdeprecatedExmp();
mde.showDeprecatedMessage();

}
}

6.58.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.58.5.

• Use the Java annota%on and a Javadoc tag to indicate depreca%on of classes, methods, or member

fields.

• Rewrite code that uses deprecated language features to remove such use whenever possible.

6.59	Concurrency	–	Activation	[CGA]		

6.59.1	Applicability	to	language		

The vulnerability as specified in ISO/IEC 24772-1:2024 6.59 applies to Java. Java supplies two concurrency

mechanisms, threads and tasks. A third concurrency mechanism is the use of mul%ple processes, which are

mapped to opera%ng system processes. See 24772-1 6.59 for vulnerabili%es associated with processes.

Threads in Java are modelled akin to threads in common opera%ng systems. The Java language also provides

many useful interfaces to manage threads (or tasks, or sync/asynch en%%es) safely. For situa%ons where the

overhead of crea%ng and managing threads, Java provides two kinds of threads:

• Plarorm threads that map directly to opera%ng system threads;

• Virtual threads that are handled by the JVM and are run together with other virtual threads within a

single OS thread.

Where the crea%on of threads for the execu%on of concurrent code units is deemed too expensive, Java

provides executors that assign these code units to pre-allocated threads in a thread pool. The code units are

then termed tasks.

Java will throw an excep%on if a thread or task or other concurrent en%ty cannot be created. For example, the

java.lang.OutOfMemoryError excep%on occurs when the system lacks the resources to create a new

thread. A try/catch block can be used to ensure that if such an excep%on is encountered, then threads can

be gracefully shut down and resources cleanly released. It is generally not recommended that any other

recovery be aUempted.

In contrast, the submission of a new task to a thread pool is unlikely to raise a resource-related excep%on.

Formatted: List Paragraph, Bulleted + Level: 1 + Aligned at:
0.71 cm + Indent at: 1.35 cm

Formatted: Font: Italic

Deleted: ¶
¶

Deleted: J

Deleted: an OutOfMemoryError

Commented [SM8]: The reference manual released in fall 2019
does not say that an excepKon is thrown if a thread creaKon fails,
but it does say that any terminaKon of a thread because of an
excepKon raises an excepKon in the head of the task group for that
thread, which is likely the same issue. This then becomes an issue of
creaKng threads inside of a try-catch block but then we must resolve
whether or not the creaKng thread must remain in the block unKl
the created threads complete.

yyy Larry, we cannot find any menKon that thread groups are
deprecated

Commented [l9R8]: allowThreadSuspension, resume, stop,
and suspend have all been deprecated from the ThreadGroup class.
See h[ps://stackoverflow.com/quesKons/18897621/why-is-not-safe-
to-use-java-lang-threadgroup,
h[ps://rules.sonarsource.com/java/RSPEC-3014,
h[ps://wiki.sei.cmu.edu/confluence/display/java/THI01-
J.+Do+not+invoke+ThreadGroup+methods , etc.

Commented [SM10R8]: Resolved.

Commented [SM11]: Sean
We need to address concurrency in terms of threads and tasks
(executor services), as we did for Python. Please copy the relevant
thread/tasks material from the Python document (clauses 6.59-6.63)
into Java for us to modify.

WG 23/N 1495

 - 54 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

A task submission creates a future from which the results of the task can be collected.

A thread that has visibility to another thread object t1 can test t1.isAlive() to determine if the thread

has been started and has not terminated yet. Similarly, queries are provided to determine the state of futures

and tasks respec%vely.

Java provides a ThreadGroup class that contains a mechanism for mul%ple threads to be treated as a

hierarchy of threads rather than as individual threads. In this model a single method call apply to the en%re

hierarchy of threads. However, many of these methods have been deprecated, are flawed, or are insecure and

it is recommended that these deprecated methods be avoided.

The Java ExecutorService is a framework provided by the JDK that simplifies the execu%on of tasks in

asynchronous mode. The abstrac%on through the use of the framework relieves the developer from doing

direct thread management by separa%ng thread management and crea%on from the rest of the applica%on. It

allows the developer to create tasks and allows the framework to decide how, when, and where to execute the

task on a thread.

Extensions of the executor framework are the classes FutureTask, Futures, and

CompletableFutures, which provide a framework for composing, combining, and execu%ng

asynchronous computa%on steps and handling errors. These use the concept of “tasks” that have less

overhead than threads, but they can use the threading model to implement them as described above in the

executor framework.

6.59.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.59.5.

• Be aware of the different execu%on models for plarorm threads, virtual threads and tasks.

• Avoid using the ThreadGroup class due to its inherent issues with memory leaks, deadlocks, race

condi%ons, and synchroniza%on.

• Prefer preallocated threads to dynamically created threads, if possible, to avoid resource exhaus%on.

• Be aware of limita%ons that tasks put on synchroniza%on and prefer alloca%ng tasks for independent

parallel execu%ons.

• Use frameworks such as java.util.concurrent.Executor,

java.util.concurrent.FutureTask, java.util.concurrent.Future and

java.util.concurrent.CompletableFuture to provide for more efficient management of

concurrency.

• Be very careful when performing asynchronous processing of data.

Deleted: created

Deleted:

Deleted: one object

Deleted: objects (note that adding a thread to a group is a one-at-
a-Kme acKvity)

Deleted: Thus,

Deleted: can be used to

Deleted: interrupt, suspend, or resume all of the threads within a
group.

Deleted: thus

Deleted:

Commented [SM12]: For reference; no acKon required unless
we wish to list the deprecated methods. The deprecated methods
are:
h[ps://docs.oracle.com/javase/8/docs/api/java/lang/ThreadGroup.
html
 ... [1]

Deleted: ¶ ... [2]
Deleted: AlternaKvely

Deleted: AlternaKvely,, the

Commented [LW14R13]: That text was not in the version that ... [3]

Deleted: EffecKvely, executors execute potenKally concurrent code ... [4]
Deleted: ¶ ... [5]
Deleted: ¶ ... [6]
Moved (insertion) [2]

Deleted: If running out of memory to create threads, Increase the ... [7]

Moved up [2]: Avoid using the ThreadGroup class due to its

Deleted: a

Deleted: the Java Executor Framework

Deleted: (

Deleted:)

Deleted: FutureTask

Deleted: (
Deleted:)

Deleted: Future

Deleted: (
Deleted:)

Deleted: CompletableFuture

Deleted: (
Deleted:)

Deleted: Use

Deleted: ¶ ... [8]

™ ISO/IEC TR 24772-11 20xx – All rights reserved 55
-

6.60	Concurrency	–	Directed	termination	[CGT]		

6.60.1	Applicability	to	language	

The vulnerability as described in ISO/IEC 24772-1:2024 6.60 applies to Java.

Termina%ng a thread in Java used to be done by calling the java.lang.Thread.stop() method.

Java.lang.Thread.stop() has been deprecated as it is inherently unsafe, leading to an inconsistent

state of opera%on, such as monitored objects being corrupted.

Another way of direc%ng the termina%on of a thread is through the use of the

java.lang.Thread.interrupt() method. Both the ini%a%ng thread, which generates the interrupt,

and the receiving thread, which should handle the interrupt, must cooperate in this process. For the interrupt

mechanism to work correctly, the receiving thread must support its own interrup%on. In order to catch and

process interrupts, each thread needs to occasionally check to see if the interrupt has been generated, for if it

does not, then the interrupt will be effec%vely ignored. However, interrup%ng a thread in a sleeping or wai%ng

state causes that state to be terminated with an InterruptedException excep%on. This excep%on needs

to be handled by the interrupted thread, or else the thread will terminate.

The recommended way to stop a thread is by using a status variable whose changes must be synchronized. The

thread periodically checks the variable and uses the value to determine whether it should gracefully terminate.

This method avoids the use of interrupts or excep%ons.

Either method of termina%ng a thread in Java depends on the programmer to decide exactly how to respond to

the sent interrupt or to a synchronized status variable being set to indicate the need for termina%on.

Since the crea%on of a thread is expensive, Executor frameworks maintain a thread pool that contains a

collec%on of pre-ini%alized threads that can be assigned tasks as needed. When a task is complete, the thread

is not terminated, but simply returned to the thread pool so it can be assigned as needed to another task. This

avoids the need to explicitly terminate a thread.

Tasks are directed to terminate via the Future.Cancel method. The issues arising are the analogous to the

issues of cancelling a thread.

A future is the mechanism for collec%ng results from a scheduled task or for reques%ng its termina%on. If a task

has not yet been assigned to a thread for execu%on, then the Future.Cancel will immediately terminate it,

but if the Task is already scheduled for execu%on, then it can refuse to receive a termina%on direc%ve, or may

have already delivered its result to the future. Queries about the state of a task are available.

6.60.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.58.5.

• Prefer a synchronized status variable to indicate that a thread should exit in preference to

Thread.interrupt().

Commented [SM15]: yyy – Erhard says this is wrong. Steve –
reread Java document. Consider the situaKons.

Commented [WLD17]: Yyy From the Java specificaKon: 17.2.3
InterrupKons
InterrupKon acKons occur upon invocaKon of Thread.interrupt, as
well as methods defined to invoke it in turn, such as
ThreadGroup.interrupt.
Let t be the thread invoking u.interrupt, for some thread u, where t
and u may be the same. This acKon causes u's interrupKon status to
be set to true. AddiKonally, if there exists some object m whose wait
set contains u, then u is removed from m's wait set. This enables u to
resume in a wait acKon, in which case this wait will, aGer re-locking
m's monitor, throw InterruptedExcepKon.
InvocaKons of Thread.isInterrupted can determine a thread's
interrupKon status. The staKc method Thread.interrupted may be
invoked by a thread to observe and clear its own interrupKon status.

Commented [SM16R15]: Resolved. Wording is correct.

Formatted: CODE Char

Formatted: CODE Char

Deleted: Use

WG 23/N 1495

 - 56 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

• If using Thread.interrupt(), ensure that all cases are handled and that all responses of an

interrupted thread are safe.

• If using tasks, avoid the need for invoking future.cancel.

• Be aware of the issues raised by termina%ng tasks via future.cancel.

6.61	Concurrent	data	access	[CGX]		

6.61.1	Applicability	to	language		

The vulnerability as described in ISO/IEC 24772-1:2024 6.61 applies to Java.

Some data elements of Java can be shared between concurrent objects, while other data elements cannot.

Data elements that can be shared between concurrent objects are termed shared memory or heap memory. All

instance fields, sta%c fields, and array elements are stored in heap memory and thus can be shared. Other data

elements, such as local variables, formal method parameters, and excep%on handler parameters, are not

shared between concurrent objects. The obvious issue is that data elements shared between concurrent

objects must be synchronized to be accessed safely.

Data elements that are shared between threads or executors without the use of synchronized can have

their new values cached and can experience delays in the wri%ng of their value to the shared memory. Other

threads reading the current shared memory will get the old value un%l the cache value is wriUen. Java provides

the primi%ve volatile to ensure that all changes to a variable are atomic and the result is visible to all other

concurrent objects that can also be accessing the variable. Alterna%vely, cache-coherence protocols on

mul%processor architectures can serve the same purpose. For example, 64-bit opera%ons can be problema%c

since the opera%on could be performed as two separate 32-bit opera%ons to a non-vola%le long or double in

many computers. Because other threads can read the value aTer the first write of 32 bits and before the

second write, the value could be incorrect. By declaring the long or double variable as volatile, the

writes and reads of the long or double variables are always atomic. Note, however, that many types or

classes cannot be declared volatile.

Concurrent access to an object needs to be synchronized to prevent data races and unforeseen results. To avoid

unsynchronized access among threads, Java provides the synchronized keyword. Java provides

synchronized methods to ensure non-interleaved access to an object of a class. The synchronized

keyword indicates that a mutual-exclusion lock is implicitly acquired for the execu%ng thread. For example:

public synchronized void tallyTotal (int newValue){
this.total += newValue;

}

Once the method is executed, the lock is released. While the execu%ng thread owns the lock, no other thread

can acquire the lock, thus preven%ng an interleaving of two invoca%ons of any synchronized method on

the same object. In addi%on, single statements can be synchronized on an object, such as

synchronized(x), x.notify(), calls on x.notify(), x.notifyAll(), and x.wait()

outside of synchroniza%on on object "x" yield an excep%on.

Deleted: the

Formatted: Font: (Default) Calibri

Formatted: CODE Char, Font: (Default) +Body (Calibri)

Formatted: Font: (Default) Calibri

Deleted: threads

Deleted: threads

Deleted: never

Deleted: threads

Deleted: threads

Deleted:

Deleted:

Deleted:);
Deleted: ;

Deleted: C

™ ISO/IEC TR 24772-11 20xx – All rights reserved 57
-

Furthermore, Java provides private components to disallow direct access to components by users of the class.

When these capabili%es are combined, the func%onality of simple monitors can be achieved, provided that all

modifying accesses to private data components are performed via synchronized methods (as opposed to access

by direct access, e.g., x.data. For condi%onal wai%ng to be achieved, Java provides the wait() and

notify()/notifyAll() primi%ves.

Since concurrent execu%on of threads is unavoidable with mul%core processors, the order of execu%on can be

very important. Examina%on of the source code will be misleading since compilers or firmware/hardware oTen

reorder statements to op%mize performance within each thread, but this reordering could affect the resul%ng

execu%on order, leading to different results than expected. In addi%on, the sequencing of events between

thread execu%ons is unpredictable unless synchroniza%on takes place between the threads in ques%on.

Likewise the order of execu%on among tasks is unpredictable.

6.61.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.61.5.

• Form "happens-before" rela%onships through the use of the java.util.concurrent package.

• Use the volatile keyword to force a data element to always go to main memory for its reads and

writes.

• Mark as private all data components that are accessed by mul%ple threads to force access by

(synchronized) method calls only.
• Apply the synchronized keyword to methods that access the same data components of an object to

prevent multiple invocations of methods on the same object from interleaving.
• Access all data components, including private components, only through synchronized geUer and

seUer methods.
• When a synchronous call includes logical calls on wait on internal state of the synchronized object, call

no%fyAll() as the last statement in all opera%ons on the synchronized object so that all other wai%ng

concurrent objects can proceed.

6.62	Concurrency	–	Premature	termination	[CGS]	

6.62.1	Applicability	to	language	

Java is suscep%ble to premature termina%on of threads, as documented in ISO/IEC 24772-1:2024 6.62.

Threads that exit unexpectedly are vulnerable to the issues raised in ISO/IEC 24772-1:2024 6.62.3. Premature

termina%on as a result of an unexpected excep%on can be handled either by a per-thread sta%c method set by

Thread.setUncaughtExceptionHandler(), or by a sta%c ThreadGroup method op%onally set by

ThreadGroup.setDefaultUncaughtExceptionHandler(). In either case, no no%fica%ons to other

threads occur unless explicitly programmed. As a remedy, the thread that is termina%ng can have the relevant

excep%on handler installed and can use normal thread no%fica%ons.

Deleted: ¶
Data elements that are shared between threads or executors
without the use of synchronized can have their new values
cached and can experience delays in the wriKng of their value to the
shared memory. Other threads reading the current shared memory
will get the old value unKl the cache value is wri[en. Java provides
the primiKve volatile to ensure that all changes to a variable are
atomic and the result is visible to all other threads that can also be
accessing the variable. AlternaKvely, cache-coherence protocols on
mulKprocessor architectures can serve the same purpose. For
example, 64-bit operaKons can be problemaKc since the operaKon
could be performed as two separate 32-bit operaKons to a non-
volaKle long or double in many computers. Because other threads
can read the value aGer the first write of 32 bits and before the
second write, the value could be incorrect. By declaring the long or
double variable as volatile, the writes and reads of the long
or double variables are always atomic. Note, however, that many
types or classes cannot be declared volatile.

Deleted: more common now

Deleted:

Deleted: ‘

Deleted: ’

Formatted: Font: (Default) Courier New, 10 pt

Commented [SM18]: The Java standard says that an excepKon
is raised in the head of a thread group if a thread terminates due to
an excepKon. This needs to be documented here and a
recommendaKon that thread group heads handle such excepKons
and deal with threads that terminate because of an excepKon.

Commented [WLD19]: This is documented in the last
paragraph.

Deleted: ¶
¶

Moved down [3]: Java provides the
java.lang.Thread.isAlive() method to test if a thread is
alive. The method will return true if the thread is alive and false
otherwise. This allows the thread to be monitored to see if it is sKll
funcKoning. Note that a call to ThreadIsAlive is asynchronous
with the execuKon of the thread being queried, so it is subject to a
race condiKon with the terminaKon of the queried thread.

WG 23/N 1495

 - 58 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

Java has a thread group feature as documented in 6.59 Concurrency – Ac%va%on [CGA]. Some methods in the

class, such as activeCount() and enumerate(), do not synchronize with each thread of the group.

These can be useful when used with care and awareness of the asynchronous nature of the calls.

ThreadGroup.uncaughtException() is called by the Java virtual machine when a thread terminates

with an uncaught excep%on. This provides an opportunity to no%fy other threads about the demise of the

terminated thread.

The CompletableFuture class contains methods for composing, combining, and execu%ng asynchronous

computa%on. A task that is terminated by an excep%on reraises the excep%on when the result of its future is

retrieved. To avoid being caught by such an excep%on the CompletableFuture class contains the method

isCompletedExceptionally() that can be used to determine whether the CompletableFuture

completed in any excep%onal fashion.

Java provides the java.lang.Thread.isAlive() method to test if a thread is alive. The method will

return true if the thread is alive and false otherwise. This allows the thread to be monitored to see if it is

s%ll func%oning. Note that a call to Thread.isAlive() is asynchronous with the execu%on of the thread

being queried, and is subject to a race condi%on with the termina%on of the queried thread.

6.62.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.62.5.

• Use the java.lang.Thread.isAlive() method to determine if a thread is already terminated.

• When appropriate, use the Java ExecutorService framework for concurrency management using

tasks.

• Use java.util.concurrent.CompletableFuture.IsCompletedExceptionally() to

determine whether a future completed normally or excep%onally.

• Ensure that each thread or task handles all excep%ons that can arise during its ac%va%on and execu%on

and provide appropriate no%fica%on upon termina%on to interested other threads.

• Use the Thread.setDefaultUncaughtExceptionHandler() method to handle unexpected

excep%ons in threads that are instances of the restricted class.

• If using the class ThreadGroup, use the

ThreadGroup.setDefaultUncaughtExceptionHandler() method to handle unexpected

excep%ons raised in threads of a group.

Deleted: A thread group forms a tree of threads and other thread
groups in which every thread group except the iniKal thread group
has a parent. A Java thread group is implemented by the
java.lang.ThreadGroup class. However, many of the methods
of the ThreadGroup class, such as resume(), stop(), and
suspend(), have been deprecated and should not be used. Other

Deleted: are not thread safe

Deleted: .

Commented [WLD21]: Yyy This is covered in 6.59. Suggest
deleKng this.

Formatted ... [9]

Commented [SM22R21]: EffecKvely changed to a reference,
but a review of the non-deprecated parts sKll needed.

Commented [SJM23R21]: Document ThreadGroup
Guidance.docx submi[ed separately addressing this topic.

Deleted: ¶
Threads that exit unexpectedly are vulnerable to the issues raised in
ISO/IEC 24772-1:2024 6.62.3. Premature terminaKon as a result of
an unexpected excepKon can be handled either by a per-thread
staKc method (set by ... [10]

Deleted: ¶

Deleted: n

Deleted: ”

Deleted: Among the methods in t

Deleted: is

Deleted: ,

Deleted: which

Deleted: if

Deleted: ¶

Deleted: 6.15 ArithmeKc

Moved (insertion) [3]

Commented [SM24]: InvesKgate how adding a thread to a ... [11]
Commented [SJM25R24]: If the thread has its own uncaught ... [12]
Deleted: I

Deleted: so it

Deleted: ¶ ... [13]
Deleted: check

Deleted: as needed

Deleted: to see

Deleted: sKll acKve

Deleted: the

Deleted: s

Deleted: in thread groups

Deleted: .

™ ISO/IEC TR 24772-11 20xx – All rights reserved 59
-

6.63	Lock	protocol	errors	[CGM]	

6.63.1	Applicability	to	language	

Java has an issue that condi%onal cri%cal regions do not work the same as almost any other language (Modula

2, Ada, C++, etc. Moving code or programmers from other languages to Java can result in serious errors.

Document.

In Java, a failing check on a condi%on object while inside the region con%nues to wait on the object without

releasing the guard on the cri%cal region. This will result in deadlocks. This vulnerability is especially cri%cal for

those trying to replicate in Java concurrency seman%cs drawn from other language systems.

Java is suscep%ble to lock protocol errors, as documented in ISO/IEC 24772-1:2024 6.63. Java allows a

synchroniza%on mechanism for communica%ng between threads, which is implemented using monitors. Each

object in Java is associated with a monitor, which a thread locks by accessing a synchronized method and

unlocks upon leaving the outermost synchronized method. Every object has an intrinsic lock associated with it.

A thread that needs exclusive and consistent access to an object’s fields acquires the object’s intrinsic lock by

accessing a synchronized method, accessing the object’s fields, and then releasing the intrinsic lock when

it is finished with them.

The Java.lang.Thread class has six poten%al states for a thread: NEW, RUNNABLE, BLOCKED, WAITING,

TIMED_WAITING, and TERMINATED. Three of these are states that indicate that the thread is wai%ng are

BLOCKED, WAITING and TIMED_WAITING.

• BLOCKED indicates that the thread is wai%ng for a monitor lock.

• WAITING indicates that the thread is wai%ng on another thread to perform a par%cular ac%on. Future

objects can be used to indicate when a thread has an object ready for the main thread to use. This

allows the main thread to keep track of the progress and result from another thread.

• TIMED_WAITING indicates that the thread is wai%ng for another thread to perform an ac%on for up to

a specified wai%ng %me.

Each of these states provide an indica%on of ways that a thread can be wai%ng on another thread’s ac%ons so

as to aUempt to alleviate lock protocol errors. Though Java has intrinsic language features for managing lock

protocol errors, per the Java specifica%on, “The Java programming language neither prevents nor requires

detec%on of deadlock condi%ons.” It is recommended in the Java specifica%on that conven%onal techniques for

deadlock avoidance be used since Java does not inherently have preven%ons.

The BlockingQueue Interface, java.util.concurrent.BlockingQueue, is a thread safe queue

that permits mul%ple threads to insert or extract elements without concurrency issues. If the queue is empty, a

thread will be blocked from taking an element un%l one is added to the queue. Similarly, if the queue is full, a

thread will be blocked from adding addi%onal elements.

For example, in a producer/consumer scenario, both kinds of threads need to synchronize over a buffer; in

addi%on, producers need to wait when the buffer is full and consumers need to wait when the buffer is empty.

It is the responsibility of each thread to inform the other kind when an element is taken off the buffer, which

then is no longer full, or an element is added to the buffer, which then is no longer empty. However, Java waits

Deleted: '

Deleted: '

Deleted: i

WG 23/N 1495

 - 60 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

on the synchronized object, not a signal of a specific condi%on. notify() no%fies the object, which releases

the top element on the wait queue. In the unlikely but possible event that a producer no%fies, but the top

element on the queue happens to be another producer, the wrong kind of thread is awakened. If the buffer is

full at this %me, the awakened producer waits and so do all threads, including consumers, forever, unless

another consumer arrives and gets the queue going again. Response %mes of the threads become

unpredictable and possibly reach infinity. Therefore, to be on the safe side, notifyAll() is to be used to

awaken all queued entries. As only one consumer can win, all others will have to wait again; this creates

performance issues.

Java also provides a mechanism to schedule and release threads explicitly via the wait() and signal()

func%ons. A thread can wait(E) on a %med event or on an arbitrary event. All threads wai%ng on a non-

%med event are wai%ng un%l a notify(E) or notifyAll(E) is called. The first releases only the first

thread to wait, while notifyAll(E) releases all wai%ng threads. Interrupt will also release a thread from a

wait queue, but with an excep%on state set. The vulnerabili%es that can result from the use of this mechanism

are: A nasty vulnerability is the existence of only a single wai%ng queue for each synchronized object since:

1. Two or more threads can execute a notify() almost simultaneously and the wai%ng thread will have

no knowledge as to which no%fy event it was connected.

2. A thread can be interrupted and no%fied almost simultaneously, and there is no specifica%on as to

which condi%on the released thread will respond, either a normal con%nua%on or the pos%ng of an

excep%on.

It is fundamentally important that, within synchronized methods, wait calls are only placed to the object that is

the synchroniza%on object. Wai%ng on other objects is highly likely to result in an immediate deadlock since

the lock on the synchronized object is not freed by the wait().

6.63.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.63.5.

• Use the intrinsic monitor features coupled with conven%onal techniques to avoid lock protocol errors.

• Use java.util.concurrent.BlockingQueue when sharing queues among threads.

• Use java.lang.Object.wait to cause the current thread to wait un%l another thread invokes

the notify() or notifyAll() method or a specified amount of %me has elapsed.

• When using wait() and notify(), make the wait/release set as granular as possible so that

precise control can be exercised over the concurrency paradigm and the locking paradigms. Prefer

using wait and notify and synchronized data to model mailboxes between pairs of threads in

preference to broad-based monitors.

6.64	Reliance	on	external	format	strings		[SHL]	

6.64.1	Applicability	to	language	

Java provides string classes to interpret the data read or format the output. These strings include all of the

Deleted: N

™ ISO/IEC TR 24772-11 20xx – All rights reserved 61
-

features described in ISO/IEC 24772-1:2024 6.64.1. The java.util.Scanner class allows for the parsing of

strings using regular expressions. The java.lang.String allows for the crea%on and manipula%on of

strings. In Java, strings are immutable. Once a string object is created its data or state cannot be changed,

instead a new string object is created. Though Java has classes that can help avoid external format strings,

strings origina%ng outside of the trust boundary always need verifica%on to ensure trust and before use. The

standard Java library implementa%on will throw an excep%on if a string does not match the corresponding

format specifica%on.

Checking strings without normalizing them first can cause valida%on logic, and in par%cular, blacklis%ng

comparisons, to be inaccurate. Similarly, if path names and other such strings with more than one possible

representa%on are not canonicalized before comparing, inaccurate results can occur.

6.64.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Apply the avoidance mechanisms contained in ISO/IEC 24772-1:2024 6.64.5.

• Normalize strings before valida%ng them.

• Canonicalize path names and other strings that have more than one possible representa%on.

• Use Java classes for impor%ng, expor%ng, and manipula%ng strings.

6.65	Modifying	constants	[UJO]	

6.65.1	Applicability	to	language	

The vulnerability document in ISO IEC 24772-1:2024 6.65 applies to Java under special circumstances. Java

provides java.lang.reflect that permits the modifica%on of constants that are declared final. To

use it the programmer must inten%onally perform a series of steps to implement such a change. In the interest

of security, it is not uncommon that the use of the methods needed to do this is forbidden by a security

manager in many enterprise server environments.

6.65.2	Avoidance	mechanisms	for	language	users	

To avoid the vulnerabili%es or mi%gate their ill effects, Java soTware developers can:

• Prohibit the use of sun.reflect.

• Prohibit modifica%on of final constants.

7.	Language	specific	vulnerabilities	for	Java	

(inten%onally blank)

Deleted: s

Deleted: a capability called reflection

Deleted: allows

Deleted: to be changed. Much like the use of
sun.misc.Unsafe, a

Deleted: to alter the value of an object marked final

Deleted: Apply the avoidance mechanisms contained in ISO/IEC
24772-1:2024 6.65.5.¶

Deleted: <#>Avoid declaring an object public final if it
needs to be changed over the lifeKme of a program.¶

Deleted: [IntenKonally blank]¶
¶

WG 23/N 1495

 - 62 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

Bibliography	

[1] J. Gosling, B. Joy, G. Steele, G. Bracha, A. Buckley, D. Smith and G. Bierman, "The Java®
Language Specification, Java SE 24 Edition," 7 February 2025. [Online]. Available:
https://docs.oracle.com/javase/specs/jls/se24/jls24.pdf.

[2] G. Bierman, "JEP 361: Switch Expressions," 11 March 2022. [Online]. Available:
https://openjdk.org/jeps/361.

[3] F. Long, D. Mohindra, R. C. Seacord, D. F. Sutherland and D. Svoboda, The CERT® Oracle®
Secure Coding Standard for Java™, Addison-Wesley Professional, September 2011.

 Meeting chat from 25 June 2025

14:39:48 From smcdonagh to Everyone:
 Double-checked locking is a software design pattern used in Java, primarily
for implementing the Singleton pattern with lazy initialization in a thread-
safe manner while optimizing performance.

14:40:16 From smcdonagh to Everyone:
 Intent:
 The core idea is to reduce the overhead associated with frequent
synchronization by minimizing the use of locks. It achieves this by first
checking if an instance already exists without acquiring a lock. Only if the
instance is null does it then acquire a lock and perform a second check and,
if necessary, the actual initialization.

14:41:16 From smcdonagh to Everyone:
 Second Check (Synchronized):
 Inside the synchronized block, the instance variable is checked again. This
"double-check" is crucial because another thread might have initialized the
instance between the first check and the acquisition of the lock. If the
instance is no longer null, the method returns the existing instance.

15:08:22 From smcdonagh to Everyone:

Deleted: ¶
Bibliography¶
[1] Gosling, James, et al., The Java Language Specifica5on, Java SE
10 EdiKon, 2018-02-20.¶
[2] Long, Fred, et al., The CERT Oracle Secure Coding Standard for
Java, Upper Saddle River, NJ, Addison Wesley, 2012.

Commented [SJM27]: Need to find this reference

Commented [SJM28R27]: All bibliographies are now
referenced

Deleted: ¶

™ ISO/IEC TR 24772-11 20xx – All rights reserved 63
-

 Java, threads can be categorized into platform threads (also known as
traditional threads) and virtual threads. Platform threads are thin wrappers
around operating system threads and are managed by the OS scheduler. Virtual
threads, on the other hand, are lightweight threads managed by the Java
Virtual Machine (JVM) and are often used for high-throughput concurrent
applications.

15:08:39 From smcdonagh to Everyone:
 Platform Threads:
 These are the traditional threads in Java, directly mapped to operating
system threads.
 They are heavyweight, meaning they consume more resources (memory, CPU).
 The OS scheduler manages their execution.
 Example: Thread class in Java.

15:08:56 From smcdonagh to Everyone:
 Virtual Threads:
 Lightweight threads managed by the JVM, not directly mapped to OS threads.
 They are more abundant and cheaper to create than platform threads.
 The JVM schedules virtual threads and can mount/unmount them onto platform
threads as needed.
 When a virtual thread performs a blocking operation (like I/O), it can be
unmounted from its platform thread, freeing it for other tasks.
 Example: Using Thread.startVirtualThread() or
Executors.newVirtualThreadPerTaskExecutor().

15:09:29 From smcdonagh to Everyone:
 In summary, virtual threads provide a way to achieve high concurrency with
a smaller number of platform threads by allowing the JVM to manage thread
scheduling and context switching more efficiently.

16:42:39 From Erhard Ploedereder to Everyone:

 public synchronized void put(Item x) throws InterruptedException
{
 while (count >= bufferSize)
 {
 wait();} // buffer is currently full
 data[inIndex] = x;
 inIndex = (inIndex + 1) % bufferSize;
 count++;
 notifyAll();
 // a broadcast notifying all threads ‚Äûwait‚Äúing on this buffer object
 }
 public synchronized Item get() throws InterruptedException
 {
 Item x;
 while (count == 0)
 {wait();} // buffer is currently empty
 x = data[outIndex];
 outIndex = (outIndex+1) % bufferSize;
 count--;
 notifyAll();

WG 23/N 1495

 - 64 - ™ ISO/IEC TR 24772-11 20xx – All rights reserved

Deleted: 0835

Formatted: No bullets or numbering

// a simple ‚Äûnotify‚Äú here and above can/will cause occasional deadlock !!!
 return X; } 7-50

Page 54: [1] Commented [SM12] Stephen Michell 6/4/25 4:40:00 PM

For reference; no ac+on required unless we wish to list the deprecated methods. The deprecated
methods are: h:ps://docs.oracle.com/javase/8/docs/api/java/lang/ThreadGroup.html

allowThreadSuspension(boolean b) - The defini+on of this call depends on suspend(), which is
deprecated. Further, the behavior of this call was never specified.

resume() - This method is used solely in conjunc+on with Thread.suspend and ThreadGroup.suspend,
both of which have been deprecated, as they are inherently deadlock-prone. See Thread.suspend() for
details.

stop() - This method is inherently unsafe. See Thread.stop() for details.

suspend() - This method is inherently deadlock-prone. See Thread.suspend() for details

Page 54: [2] Deleted Stephen Michell 6/4/25 4:17:00 PM

Page 54: [3] Commented [LW14R13] Larry Wagoner 3/4/25 7:26:00 PM

That text was not in the version that Stephen mailed out aKer the mee+ng, so I don’t know where it
came from. In just a visual compare between this version and the aKer the mee+ng version Stephen sent
out, it doesn’t look like I did much in this sec+on (probably should have since the comments were from
2021). However, I agree that there should be some men+on of java.u+l.concurrent.Executor in sec+on 1
since it is in sec+on 2.

Page 54: [4] Deleted Stephen Michell 6/4/25 4:21:00 PM

Page 54: [5] Deleted Stephen Michell 6/4/25 4:41:00 PM

Page 54: [6] Deleted McDonagh, Sean 4/23/25 10:36:00 AM

Page 54: [7] Deleted Stephen Michell 4/23/25 4:18:00 PM

Page 54: [8] Deleted Stephen Michell 6/25/25 3:48:00 PM

Formatted

... [18]

Formatted

... [19]
Formatted

... [20]

Formatted

... [21]

Formatted

... [22]

Formatted

... [23]

Formatted

... [24]

•

Page 58: [9] Formatted McDonagh, Sean 4/18/25 3:33:00 AM

Space AKer: 10 pt, Add space between paragraphs of the same style, Widow/Orphan control, Don't
suppress line numbers, Allow hanging punctua+on

Page 58: [10] Deleted Stephen Michell 6/25/25 5:06:00 PM

Page 58: [11] Commented [SM24] Stephen Michell 9/28/19 2:34:00 PM

Inves+gate how adding a thread to a thread group -- Inves&gate how adding a thread to a thread group
mi&gates premature termina&on of that thread. We believe that an excep&on is raised to the owner of
the thread group but which thread catches it.

Page 58: [12] Commented [SJM25R24] McDonagh, Sean 5/14/25 5:49:00 AM

If the thread has its own uncaught excep+on handler, that handler will be triggered. If the thread does
not have a handler, or if the handler fails to catch the excep+on, it will be propagated to the thread
group's handler. For example:

class CustomExcep;onHandler implements Thread.UncaughtExcep+onHandler {

 public void uncaughtExcep+on(Thread t,

 Throwable e) {

 System.err.println("Uncaught excep+on in

 thread: " + t.getName());

 e.printStackTrace();

 }

}

public class Main {

 public sta+c void main(String[] args) {

 Thread.setDefaultUncaughtExcep+onHandler(new CustomExcep;onHandler());

 ThreadGroup myGroup = new ThreadGroup("MyThreadGroup");

Formatted

... [25]
Formatted

... [26]
Formatted

... [27]

Formatted

... [28]
Formatted

... [29]

 Thread thread1 = new Thread(myGroup, () -> {

 throw new Run+meExcep+on("Excep+on in thread 1");

 }, "Thread-1");

 Thread thread2 = new Thread(myGroup, () -> {

 throw new NullPointerExcep+on("Excep+on in thread 2");

 }, "Thread-2");

 thread1.start();

 thread2.start();

 }

}

Output:

Uncaught excep+on in thread: Thread-2

Uncaught excep+on in thread: Thread-1

java.lang.NullPointerExcep+on: Excep+on in thread 2

Page 58: [13] Deleted Stephen Michell 6/25/25 5:04:00 PM

Formatted

... [30]

Formatted

... [31]

