______________________________________________________________________ 22 Localization library [lib.localization] ______________________________________________________________________ 1 This clause describes components that C++ programs may use to encapsu late (and therefore be more portable when confronting) cultural dif ferences. The locale facility includes internationalization support for character classification and string collation, numeric, monetary, and date/time formatting and parsing, and message retrieval. 2 The following subclauses describe components for locales themselves, the standard facets, and facilities from the ISO C library, as summa rized in Table 1: Table 1--Localization library summary +---------------------------------------------------------------+ | Subclause Header(s) | +---------------------------------------------------------------+ |_lib.locales_ Locales <locale> | |_lib.locale.categories_ Standard locale Categories | +---------------------------------------------------------------+ |_lib.c.locales_ C library locales <clocale> | +---------------------------------------------------------------+ 22.1 Locales [lib.locales] Header <locale> synopsis namespace std { // subclause _lib.locale_, locale: class locale; template <class Facet> const Facet& use_facet(const locale&); template <class Facet> bool has_facet(const locale&) throw(); // subclause _lib.locale.convenience_, convenience interfaces: template <class charT> bool isspace (charT c, const locale& loc) const; template <class charT> bool isprint (charT c, const locale& loc) const; template <class charT> bool iscntrl (charT c, const locale& loc) const; template <class charT> bool isupper (charT c, const locale& loc) const; template <class charT> bool islower (charT c, const locale& loc) const; template <class charT> bool isalpha (charT c, const locale& loc) const; template <class charT> bool isdigit (charT c, const locale& loc) const; template <class charT> bool ispunct (charT c, const locale& loc) const; template <class charT> bool isxdigit(charT c, const locale& loc) const; template <class charT> bool isalnum (charT c, const locale& loc) const; template <class charT> bool isgraph (charT c, const locale& loc) const; template <class charT> charT toupper(charT c, const locale& loc) const; template <class charT> charT tolower(charT c, const locale& loc) const; // subclauses _lib.category.ctype_ and _lib.facet.ctype.special_, ctype: class ctype_base; template <class charT> class ctype; template <> class ctype<char>; // specialization template <class charT> class ctype_byname; template <> class ctype_byname<char>; // specialization class codecvt_base; template <class internT, class externT, class stateT> class codecvt; template <class internT, class externT, class stateT> class codecvt_byname; // subclauses _lib.category.numeric_ and _lib.facet.numpunct_, numeric: template <class charT, class InputIterator> class num_get; template <class charT, class OutputIterator> class num_put; template <class charT> class numpunct; template <class charT> class numpunct_byname; // subclause _lib.category.collate_, collation: template <class charT> class collate; template <class charT> class collate_byname; // subclause _lib.category.time_, date and time: class time_base; template <class charT, class InputIterator> class time_get; template <class charT, class InputIterator> class time_get_byname; template <class charT, class OutputIterator> class time_put; template <class charT, class OutputIterator> class time_put_byname; // subclauses _lib.category.monetary_, money: class money_base; template <class charT, class InputIterator> class money_get; template <class charT, class OutputIterator> class money_put; template <class charT, bool Intl> class moneypunct; template <class charT, bool Intl> class moneypunct_byname; // subclause _lib.category.messages_, message retrieval: class messages_base; template <class charT> class messages; template <class charT> class messages_byname; } 1 The header <locale> defines classes and declares functions that encap sulate and manipulate the information peculiar to a locale.1) _________________________ 1) In this subclause, the type name struct tm is an incomplete type that is defined in <ctime>. 22.1.1 Class locale [lib.locale] namespace std { class locale { public: // types: class facet; class id; typedef int category; static const category // values assigned here are for exposition only none = 0, collate = 0x010, ctype = 0x020, monetary = 0x040, numeric = 0x080, time = 0x100, messages = 0x200, all = collate | ctype | monetary | numeric | time | messages; // construct/copy/destroy: locale() throw() locale(const locale& other) throw() explicit locale(const char* std_name); locale(const locale& other, const char* std_name, category); template <class Facet> locale(const locale& other, Facet* f); template <class Facet> locale(const locale& other, const locale& one); locale(const locale& other, const locale& one, category); ~locale() throw(); // non-virtual const locale& operator=(const locale& other) throw(); // locale operations: basic_string<char> name() const; bool operator==(const locale& other) const; bool operator!=(const locale& other) const; template <class charT,Traits> bool operator()(const basic_string<charT,Traits>& s1, const basic_string<charT,Traits>& s2) const; // global locale objects: static locale global(const locale&); static const locale& classic(); }; } 1 Class locale implements a type-safe polymorphic set of facets, indexed by facet type. In other words, a facet has a dual role: in one sense, it's just a class interface; at the same time, it's an index into a locale's set of facets. 2 Access to the facets of a locale is via two member function templates, use_facet<> and has_facet<>. 3 [Example: An iostream operator<< might be implemented as:2) _________________________ 2) Notice that, in the call to put, the stream is implicitly converted to an ostreambuf_iterator<charT,traits>. template <class charT, class traits> basic_ostream<charT,traits>& operator<< (basic_ostream<charT,traits>& s, Date d) { typename basic_ostream<charT,traits>::sentry cerberos; if (cerberos) { ios_base::iostate err = 0; tm tmbuf; d.extract(tmbuf); use_facet< time_put<charT,ostreambuf_iterator<charT,traits> > >( s.getloc()).put(s, s, s.fill(), err, &tmbuf, 'x'); s.setstate(err); // might throw } return s; } --end example] 4 In the call to use_facet<Facet>(loc), the type argument chooses a facet, making available all members of the named type. If Facet is not present in a locale (or, failing that, in the global locale), it throws the standard exception bad_cast. A C++ program can check if a locale implements a particular facet with the template function has_facet<Facet>(). User-defined facets may be installed in a locale, and used identically as may standard facets (_lib.facets.examples_). 5 [Note: All locale semantics are accessed via use_facet<> and has_facet<>, except that: --A member operator template operator()(basic_string<C,T>&, basic_string<C,T>&) is provided so that a locale may be used as a predicate argument to the standard collections, to collate strings. --Convenient global interfaces are provided for traditional ctype functions such as isdigit() and isspace(), so that given a locale object loc a C++ program can call isspace(c,loc). (This eases upgrading existing extractors (_lib.istream.formatted_).) --end note] 6 A locale which does not implement a facet delegates to the global locale in effect at the time that instantiation of use_facet<> is first called on that facet (_lib.locale.statics_). 7 An instance of locale is immutable; once a facet reference is obtained from it, that reference remains usable as long as the locale value itself exists. 8 In successive calls to a locale facet member function during a call to an iostream inserter or extractor or a streambuf member function, the returned result shall be identical. [Note: This implies that such results may safely be reused without calling the locale facet member function again, and that member functions of iostream classes cannot safely call imbue() themselves, except as specified elsewhere. --end note] 9 A locale constructed from a name string (such as "POSIX"), or from parts of two named locales, or read from a stream, has a name; all others do not. Named locales may be compared for equality; an unnamed locale is equal only to (copies of) itself. For an unnamed locale, locale::name() returns the string *". 22.1.1.1 locale types [lib.locale.types] 22.1.1.1.1 Type locale::category [lib.locale.category] typedef int category; 1 Valid category values include the locale member bitmask elements none, collate, ctype, monetary, numeric, time, and messages. In addition, locale member all is defined such that the expression (collate | ctype | monetary | numeric | time | messages | all) == all is true. Further, the result of applying operators | and & to any two valid values is valid, and results in the setwise union and intersec tion, respectively, of the argument categories. 2 locale member functions expecting a category argument require either a valid category value or one of the constants LC_CTYPE etc., defined in <cctype>. Such a category value identifies a set of locale cate gories. Each locale category, in turn, identifies a set of locale facets, including at least those shown in Table 2: Table 2--Locale Category Facets +------------------------------------------------------------+ |Category Includes Facets | +------------------------------------------------------------+ |collate collate<char>, collate<wchar_t> | +------------------------------------------------------------+ |ctype ctype<char>, ctype<wchar_t> | | codecvt<char,char,mbstate_t>, | | codecvt<char,wchar_t,mbstate_t>, | | codecvt<wchar_t,char,mbstate_t> | +------------------------------------------------------------+ |monetary moneypunct<char>, moneypunct<wchar_t> | | moneypunct<char,true>, moneypunct<wchar_t,true>, | | money_get<char>, money_get<wchar_t> | | money_put<char>, money_put<wchar_t> | +------------------------------------------------------------+ |numeric numpunct<char>, numpunct<wchar_t>, | | num_get<char>, num_get<wchar_t> | | num_put<char>, num_put<wchar_t> | +------------------------------------------------------------+ |time time_get<char>, time_put<wchar_t>, | | time_put<char>, time_put<wchar_t> | +------------------------------------------------------------+ |messages messages<char>, messages<wchar_t> | +------------------------------------------------------------+ 3 For any locale loc either constructed, or returned by locale::clas sic(), and any facet Facet that is a member of a standard category, has_facet<Facet>(loc) is true. Each locale member function which takes a locale::category argument operates on the corresponding set of facets. 4 An implementation is required to provide those instantiations for facet templates identified as members of a category, and for those shown in Table 3: Table 3--Required Instantiations +---------------------------------------------------------------+ |Category Includes Facets | +---------------------------------------------------------------+ |collate collate_byname<char>, collate_byname<wchar_t> | +---------------------------------------------------------------+ |ctype ctype_byname<char>, ctype_byname<wchar_t> | +---------------------------------------------------------------+ |monetary moneypunct_byname<char,International>, | | moneypunct_byname<wchar_t,International>, | | money_get<char,InputIterator>, | | money_get<wchar_t,InputIterator>, | | money_put<char,OutputIterator>, | | money_put<wchar_t,OutputIterator> | +---------------------------------------------------------------+ |numeric numpunct_byname<char>, numpunct_byname<wchar_t> | | num_get<C,InputIterator>, num_put<C,OutputIterator> | +---------------------------------------------------------------+ |time time_get<char,InputIterator>, | | time_get_byname<char,InputIterator>, | | time_get<wchar_t,OutputIterator>, | | time_get_byname<wchar_t,OutputIterator>, | | time_put<char,OutputIterator>, | | time_put_byname<char,OutputIterator>, | | time_put<wchar_t,OutputIterator> | | time_put_byname<wchar_t,OutputIterator> | +---------------------------------------------------------------+ 5 For the facets num_get<> and num_put<> the implementation provided must depend only on the corresponding facets numpunct<> and ctype<>, instantiated on the same character type. Other facets are allowed to depend on any other facet that is part of a standard category. 6 In declarations of facets, a template formal parameter with name InputIterator or OutputIterator indicates the set of all possible instantiations on parameters that satisfy the requirements of an Input Iterator or an Output Iterator, respectively (_lib.iterator.require ments_). A template formal parameter with name C represents the set of all possible instantiations on a parameter that satisfies the requirements for a character on which any of the iostream components can be instantiated. 22.1.1.1.2 Class locale::facet [lib.locale.facet] namespace std { class locale::facet { protected: explicit facet(size_t refs = 0); virtual ~facet(); private: facet(const facet&); // not defined void operator=(const facet&); // not defined }; } 1 Class facet is the base class for locale feature sets. A class is a facet if it is publicly derived from another facet, or if it is a class derived from locale::facet and containing a declaration as fol lows: static ::std::locale::id id; Template parameters in this Clause which must be facets are those named Facet in declarations. A program that passes a type that is not a facet, as an (explicit or deduced) template parameter to a locale function expecting a facet, is ill-formed. 2 The refs argument to the constructor is used for lifetime management. --If (refs == 0) the facet's lifetime is managed by the locale or locales it is incorporated into; --if (refs == 1) its lifetime is until explicitly deleted. 3 Constructors of all facets defined in this Clause take such an argu ment and pass it along to their facet base class constructor. All one-argument constructors defined in this clause are explicit, pre venting their participation in automatic conversions. 4 For some standard facets a standard _byname" class, derived from it, implements the virtual function semantics equivalent to that facet of the locale constructed by locale(const char*) with the same name. Each such facet provides a constructor that takes a const char* argu ment, which names the locale, and a refs argument, which is passed to the base class constructor. If there is no _byname" version of a facet, the base class implements named locale semantics itself by ref erence to other facets. 22.1.1.1.3 Class locale::id [lib.locale.id] namespace std { class locale::id { public: id(); private: void operator=(const id&); // not defined id(const id&); // not defined }; } 1 The class locale::id provides identification of a locale facet inter faces, used as an index for lookup and to encapsulate initialization. 2 [Note: Because facets are used by iostreams, potentially while static constructors are running, their initialization cannot depend on pro grammed static initialization. One initialization strategy is for locale to initialize each facet's id member the first time an instance of the facet is installed into a locale. This depends only on static storage being zero before constructors run (_basic.start.init_). --end note] 22.1.1.2 locale constructors and destructor [lib.locale.cons] locale() throw(); 1 Default constructor: a snapshot of the current global locale. Effects: Constructs a copy of the argument last passed to locale::global(locale&), if it has been called; else, the resulting facets have virtual function semantics identical to those of locale::classic(). [Note: This constructor is commonly used as the default value for arguments of functions that take a const locale& argument. --end note] locale(const locale& other) throw(); Effects: Constructs a locale which is a copy of other. const locale& operator=(const locale& other) throw(); Effects: Creates a copy of other, replacing the current value. Returns: *this explicit locale(const char* std_name); Effects: Constructs a locale using standard C locale names, e.g. "POSIX". The resulting locale implements semantics defined to be associated with that name. Throws: runtime_error if the argument is not valid, or is null. Notes: The set of valid string argument values is "C", "", and any imple mentation-defined values. locale(const locale& other, const char* std_name, category); Effects: Constructs a locale as a copy of other except for the facets identi fied by the category argument, which instead implement the same semantics as locale(std_name). Throws: runtime_error if the argument is not valid, or is null. Notes: The locale has a name if and only if other has a name. template <class Facet> locale(const locale& other, Facet* f); Effects: Constructs a locale incorporating all facets from the first argument except that of type Facet, and installs the second argument as the remaining facet. If f is null, the resulting object is a copy of other. Notes: The resulting locale has no name. +------- BEGIN BOX 1 -------+ Editorial proposal: What if the pointer parameter is 0? Recommend: Throw runtime_error. +------- END BOX 1 -------+ template <class Facet> locale(const locale& other, const locale& one); Effects: Constructs a locale incorporating all facets from the first argument except that identified by Facet, and that facet from the second argument instead. Throws: runtime_error if has_facet<Facet>(one) is false. Notes: The resulting locale has no name. locale(const locale& other, const locale& one, category cats); Effects: Constructs a locale incorporating all facets from the first argument except those that implement cats, which are instead incorporated from the second argument. Notes: The resulting locale has a name if and only if the first two argu ments have names. ~locale() throw(); 2 A non-virtual destructor that throws no exceptions. 22.1.1.3 locale members [lib.locale.members] basic_string<char> name() const; Returns: The name of *this, if it has one; otherwise, the string "*". 22.1.1.4 locale operators [lib.locale.operators] bool operator==(const locale& other) const; Returns: true if both arguments are the same locale, or one is a copy of the other, or each has a name and the names are identical; false other wise. bool operator!=(const locale& other) const; Returns: The result of the expression: !(*this == other) template <class charT, class Traits> bool operator()(const basic_string<charT,Traits>& s1, const basic_string<charT,Traits>& s2) const; Effects: Compares two strings according to the collate<charT> facet. Notes: This member operator template (and therefore locale itself) satis fies requirements for a comparator predicate template argument (_lib.algorithms_) applied to strings. Returns: The result of the following expression: use_facet< collate<charT> >(*this).compare(s1.data(), s1.data()+s1.size(), s2.data(), s2.data()+s2.size()) < 0; 1 [Example: A vector of strings v can be collated according to collation rules in locale loc simply by (_lib.alg.sort_, _lib.vector_): std::sort(v.begin(), v.end(), loc); --end example] 22.1.1.5 locale static members [lib.locale.statics] static locale global(const locale& loc); 1 Sets the global locale to its argument. Effects: Causes future calls to the constructor locale() to return a copy of the argument. If the argument has a name, does std::setlocale(LC_ALL, loc.name().c_str()); otherwise, the effect on the C locale, if any, is implementation- defined. Returns: The previous value of locale(). static const locale& classic(); 2 The "C" locale. Returns: A locale that implements the classic "C" locale semantics, equiva lent to the value locale("C"). Notes: This locale, its facets, and their member functions, do not change with time. 22.1.2 locale globals [lib.locale.global.templates] template <class Facet> const Facet& use_facet(const locale& loc); 1 Get a reference to a facet of a locale. Returns: a reference to the corresponding facet of loc, if present. Throws: bad_cast if has_facet<Facet>(*this) is false. Notes: The reference returned remains valid at least as long as any copy of loc exists. +------- BEGIN BOX 2 -------+ Is bad_cast the best choice of exceptions to throw? +------- END BOX 2 -------+ template <class Facet> bool has_facet(const locale& loc) throw(); Returns: true if the facet requested is present in loc; otherwise false 22.1.3 Convenience interfaces [lib.locale.convenience] 22.1.3.1 Character classification [lib.classification] template <class charT> bool isspace (charT c, const locale& loc) const; template <class charT> bool isprint (charT c, const locale& loc) const; template <class charT> bool iscntrl (charT c, const locale& loc) const; template <class charT> bool isupper (charT c, const locale& loc) const; template <class charT> bool islower (charT c, const locale& loc) const; template <class charT> bool isalpha (charT c, const locale& loc) const; template <class charT> bool isdigit (charT c, const locale& loc) const; template <class charT> bool ispunct (charT c, const locale& loc) const; template <class charT> bool isxdigit(charT c, const locale& loc) const; template <class charT> bool isalnum (charT c, const locale& loc) const; template <class charT> bool isgraph (charT c, const locale& loc) const; 1 Each of these functions isF returns the result of the expression: use_facet< ctype<charT> >(loc).is(ctype_base::F, c) where F is the ctype_base::mask value corresponding to that function (_lib.category.ctype_).3) 22.1.3.2 Character conversions [lib.conversions] template <class charT> charT toupper(charT c, const locale& loc) const; Returns: use_facet<ctype<charT> >(loc).toupper(c). template <class charT> charT tolower(charT c, const locale& loc) const; Returns: use_facet<ctype<charT> >(loc).tolower(c). 22.2 Standard locale categories [lib.locale.categories] 1 Each of the standard categories includes a family of facets. Some of these implement formatting or parsing of a datum, for use by standard or users' iostream operators << and >>, as members put() and get(), respectively. Each such member function takes an ios_base& argument whose members flags(), precision(), and width(), specify the format of the corresponding datum. (_lib.ios.base_). Those functions which need to use other facets call its member getloc() to retrieve the locale imbued there. Formatting facets use the character argument fill to fill out the specified width where necessary. _________________________ 3) When used in a loop, it is faster to cache the ctype<> facet and use it directly, or use the vector form of ctype<>::is. 2 The put() members make no provision for error reporting. (Any fail ures of the OutputIterator argument must be extracted from the returned iterator.) The get() members take an ios_base::iostate& argument whose value they ignore, but set to ios_base::failbit in case of a parse error. 22.2.1 The ctype category [lib.category.ctype] namespace std { class ctype_base { public: enum mask { // numeric values are for exposition only. space=1<<0, print=1<<1, cntrl=1<<2, upper=1<<3, lower=1<<4, alpha=1<<5, digit=1<<6, punct=1<<7, xdigit=1<<8, alnum=alpha|digit, graph=alnum|punct }; }; } 1 The type mask is a bitmask type. 22.2.1.1 Template class ctype [lib.locale.ctype] template <class charT> class ctype : public locale::facet, public ctype_base { public: typedef charT char_type; explicit ctype(size_t refs = 0); bool is(mask m, charT c) const; const charT* is(const charT* low, const charT* high, mask* vec) const; const charT* scan_is(mask m, const charT* low, const charT* high) const; const charT* scan_not(mask m, const charT* low, const charT* high) const; charT toupper(charT) const; const charT* toupper(charT* low, const charT* high) const; charT tolower(charT c) const; const charT* tolower(charT* low, const charT* high) const; charT widen(char c) const; const char* widen(const char* low, const char* high, charT* to) const; char narrow(charT c, char dfault) const; const charT* narrow(const charT* low, const charT*, char dfault, char* to) const; static locale::id id; protected: ~ctype(); // virtual virtual bool do_is(mask m, charT c) const; virtual const charT* do_is(const charT* low, const charT* high, mask* vec) const; virtual const charT* do_scan_is(mask m, const charT* low, const charT* high) const; virtual const charT* do_scan_not(mask m, const charT* low, const charT* high) const; virtual charT do_toupper(charT) const; virtual const charT* do_toupper(charT* low, const charT* high) const; virtual charT do_tolower(charT) const; virtual const charT* do_tolower(charT* low, const charT* high) const; virtual charT do_widen(char) const; virtual const char* do_widen(const char* low, const char* high, charT* dest) const; virtual char do_narrow(charT, char dfault) const; virtual const charT* do_narrow(const charT* low, const charT* high, char dfault, char* dest) const; }; 1 Class ctype encapsulates the C library <cctype> features. istream members are required to use ctype<> for character classing during input parsing. 2 The base class implementation implements character classing appropri ate to the implementation's native character set. 22.2.1.1.1 ctype members [lib.locale.ctype.members] bool is(mask m, charT c) const; const charT* is(const charT* low, const charT* high, mask* vec) const; Returns: do_is(m,c) or do_is(low,high,vec) const charT* scan_is(mask m, const charT* low, const charT* high) const; Returns: do_scan_is(m,low,high) const charT* scan_not(mask m, const charT* low, const charT* high) const; Returns: do_scan_not(m,low,high) charT toupper(charT) const; const charT* toupper(charT* low, const charT* high) const; Returns: do_toupper(c) or do_toupper(low,high) charT tolower(charT c) const; const charT* tolower(charT* low, const charT* high) const; Returns: do_tolower(c) or do_tolower(low,high) charT widen(char c) const; const char* widen(const char* low, const char* high, charT* to) const; Returns: do_widen(c) or do_widen(low,high,to) char narrow(charT c, char dfault) const; const charT* narrow(const charT* low, const charT*, char dfault, char* to) const; Returns: do_narrow(c,dfault) or do_narrow(low,high,dfault,to) 22.2.1.1.2 ctype virtual functions [lib.locale.ctype.virtuals] bool do_is(mask m, charT c) const; const charT* do_is(const charT* low, const charT* high, mask* vec) const; Effects: Classifies a character or sequence of characters. For each argument character, identifies a value M of type ctype_base::mask. The sec ond form places M for all *p where (low<=p && p<high), into vec[p- low]. Returns: The first form returns the result of the expression (M & m) != 0; i.e., true if the character has the characteristics specified. The second form returns high. const charT* do_scan_is(mask m, const charT* low, const charT* high) const; Effects: Locates a character in a buffer that conforms to a classification m. Returns: The smallest pointer p in the range [low, high) such that is(*p) would return true; otherwise, returns high. const charT* do_scan_not(mask m, const charT* low, const charT* high) const; Effects: Locates a character in a buffer that fails to conform to a classifi cation m. Returns: The smallest pointer p, if any, in the range [low, high) such that is(*p) would return false; otherwise, returns high. charT do_toupper(charT c) const; const charT* do_toupper(charT* low, const charT* high) const; Effects: Converts a character or characters to upper case. The second form replaces each character *p in the range [low, high) for which a cor responding upper-case character exists, with that character. Returns: The first form returns the corresponding upper-case character if it is known to exist, or its argument if not. The second form returns high. charT do_tolower(charT c) const; const charT* do_tolower(charT* low, const charT* high) const; Effects: Converts a character or characters to lower case. The second form replaces each character *p in the range [low, high) and for which a corresponding lower-case character exists, with that character. Returns: The first form returns the corresponding lower-case character if it is known to exist, or its argument if not. The second form returns high. charT do_widen(char c) const; const char* do_widen(const char* low, const char* high, charT* dest) const; Effects: Applies the simplest reasonable transformation from a char value or sequence of char values to the corresponding charT value or values. The only characters for which unique transformations are required are the digits, alphabetic characters, '-', '+', newline, and space. For any named ctype category with a ctype<charT> facet ctw and valid ctype_base::mask value M (is(M, c) || !ctw.is(M, do_widen(c)) ) is true.4) _________________________ The second form transforms each character *p in the range [low, high), placing the result in dest[p-low]. Returns: The first form returns the transformed value. The second form returns high. char do_narrow(charT c, char dfault) const; const charT* do_narrow(const charT* low, const charT* high, char dfault, char* dest) const; Effects: Applies the simplest reasonable transformation from a charT value or sequence of charT values to the corresponding char value or values. The only characters for which unique transformations are required are the digits, alphabetic characters, '-', '+', newline, and space. For any named ctype category with a ctype<char> facet ctc however, and ctype_base::mask value M, (is(M,c) || !ctc.is(M, do_narrow(c),dfault) )" is true (unless do_narrow returns dfault). In addition, for any digit character c, the expression (do_narrow(c,dfault)-'0') evalu ates to the digit value of the character. The second form trans forms each character *p in the range [low, high), placing the result (or dfault if no simple transformation is readly available) in dest[p-low]. Returns: The first form returns the transformed value; or dfault if no map ping is readily available. The second form returns high. 22.2.1.2 Template class ctype_byname [lib.locale.ctype.byname] _________________________ 4) In other words, the transformed character is not a member of any character classification that c is not also a member of. template <class charT> class ctype_byname : public ctype<charT> { public: explicit ctype_byname(const char*, size_t refs = 0); protected: ~ctype_byname(); // virtual virtual bool do_is(mask m, charT c) const; virtual const charT* do_is(const charT* low, const charT* high, mask* vec) const; virtual const char* do_scan_is(mask m, const charT* low, const charT* high) const; virtual const char* do_scan_not(mask m, const charT* low, const charT* high) const; virtual charT do_toupper(charT) const; virtual const charT* do_toupper(charT* low, const charT* high) const; virtual charT do_tolower(charT) const; virtual const charT* do_tolower(charT* low, const charT* high) const; virtual charT do_widen(char) const; virtual const char* do_widen(const char* low, const char* high, charT* dest) const; virtual char do_narrow(charT, char dfault) const; virtual const charT* do_narrow(const charT* low, const charT* high, char dfault, char* dest) const; }; } 22.2.1.3 ctype specializations [lib.facet.ctype.special] namespace std { template <> class ctype<char> : public locale::facet, public ctype_base { public: typedef char char_type; explicit ctype(const mask* tab = 0, bool del = false, size_t refs = 0); bool is(mask m, char c) const; const char* is(const char* low, const char* high, mask* vec) const; const char* scan_is (mask m, const char* low, const char* high) const; const char* scan_not(mask m, const char* low, const char* high) const; char toupper(char c) const; const char* toupper(char* low, const char* high) const; char tolower(char c) const; const char* tolower(char* low, const char* high) const; char widen(char c) const; const char* widen(const char* low, const char* high, char* to) const; char narrow(char c, char dfault) const; const char* narrow(const char* low, const char* high, char dfault, char* to) const; static locale::id id; static const size_t table_size = IMPLEMENTATION_DEFINED; protected: const mask* table() const throw(); static const mask* classic_table() throw(); ~ctype(); // virtual virtual char do_toupper(char) const; virtual const char* do_toupper(char* low, const char* high) const; virtual char do_tolower(char) const; virtual const char* do_tolower(char* low, const char* high) const; }; } 1 A specialization ctype<char> is provided so that the member functions on type char can be implemented inline.5) The implementation-defined value of member table_size is at least 256. 22.2.1.3.1 ctype<char> destructor [lib.facet.ctype.char.dtor] ~ctype(); Effects: If the constructor's first argument was nonzero, and its second argument was true, does delete [] table(). 22.2.1.3.2 ctype<char> members [lib.facet.ctype.char.members] 1 In the following member descriptions, for unsigned char values v where (v >= table_size), table()[v] is assumed to have an implementation- defined value (possibly different for each such value v) without per forming the array lookup. explicit ctype(const mask* tbl = 0, bool del = false, size_t refs = 0); Precondition: tbl either 0 or an array of at least table_size elements. Effects: Passes its refs argument to its base class constructor. bool is(mask m, char c) const; const char* is(const char* low, const char* high, mask* vec) const; Effects: The second form, for all *p in the range [low, high), assigns vec[p- low] to table()[(unsigned char)*p]. Returns: The first form returns table()[(unsigned char)c] & m; the second _________________________ 5) Only the char (not unsigned char and signed char) form is provided. The specialization is specified in the standard, and not left as an implementation detail, because it affects the derivation interface for ctype<char>. form returns high. const char* scan_is(mask m, const char* low, const char* high) const; Returns: The smallest p in the range [low, high) such that table()[(unsigned char) *p] & m is true. const char* scan_not(mask m, const char* low, const char* high) const; Returns: The smallest p in the range [low, high) such that table()[(unsigned char) *p] & m is false. char toupper(char c) const; const char* toupper(char* low, const char* high) const; Returns: do_toupper(c) or do_toupper(low,high) char tolower(char c) const; const char* tolower(char* low, const char* high) const; Returns: do_tolower(c) or do_tolower(low,high) char widen(char c) const; const char* widen(const char* low, const char* high, char* to) const; Effects: ::memcpy(to, low, high-low) Returns: c or hi char narrow(char c, char /*dfault*/) const; const char* narrow(const char* low, const char* high, char /*dfault*/, char* to) const; Effects: ::memcpy(to, low, high-low) Returns: c or high. const mask* table() const throw(); Returns: The first constructor argument, if it was non-zero, otherwise clas sic_table(). 22.2.1.3.3 ctype<char> static [lib.facet.ctype.char.statics] members static const mask* classic_table() throw(); Returns: A pointer the initial element of an array of size table_size which represents the classifications of characters in the "C" locale. 22.2.1.3.4 ctype<char> virtual [lib.facet.ctype.char.virtuals] functions char do_toupper(char) const; const char* do_toupper(char* low, const char* high) const; char do_tolower(char) const; const char* do_tolower(char* low, const char* high) const; These functions are described identically as those members of the same name in the ctype class template (_lib.locale.ctype.members_). 22.2.1.4 Class [lib.locale.ctype.byname.special] ctype_byname<char> template <> class ctype_byname<char> : public ctype<charT> { public: explicit ctype_byname(const char*, size_t refs = 0); protected: ~ctype_byname(); // virtual virtual char do_toupper(char) const; virtual const char* do_toupper(char* low, const char* high) const; virtual char do_tolower(char) const; virtual const char* do_tolower(char* low, const char* high) const; }; } 1 22.2.1.5 Template class codecvt [lib.locale.codecvt] namespace std { class codecvt_base { public: enum result { ok, partial, error, noconv }; }; template <class internT, class externT, class stateT> class codecvt : public locale::facet, public codecvt_base { public: typedef internT intern_type; typedef externT extern_type; typedef stateT state_type; explicit codecvt(size_t refs = 0) result out(stateT& state, const internT* from, const internT* from_end, const internT*& from_next, externT* to, externT* to_limit, externT*& to_next) const; result in(stateT& state, const externT* from, const externT* from_end, const externT*& from_next, internT* to, internT* to_limit, internT*& to_next) const; int encoding() const throw(); bool always_noconv() const throw(); int length(const stateT&, const externT* from, const externT* end, size_t max) const; int max_length() const throw(); static locale::id id; protected: ~codecvt(); // virtual virtual result do_out(stateT& state, const internT* from, const internT* from_end, const internT*& from_next, externT* to, externT* to_limit, externT*& to_next) const; virtual result do_in(stateT& state, const externT* from, const externT* from_end, const externT*& from_next, internT* to, internT* to_limit, internT*& to_next) const; virtual int do_encoding() const throw(); virtual bool do_always_noconv() const throw(); virtual int do_length(const stateT&, const externT* from, const externT* end, size_t max) const; virtual int do_max_length() const throw(); }; } 1 The class codecvt<internT,externT,stateT> is for use when converting from one codeset to another, such as from wide characters to multibyte characters, between wide character encodings such as Unicode and EUC. 2 The stateT argument selects the pair of codesets being mapped between. 3 Implementations are required to provide instantiations for <wchar_t,char,mbstate_t> and <char,char,mbstate_t>. The base class instance of the latter implements a degenerate conversion: its member always_noconv() returns true and max_length() returns 1. Instantia tions on mbstate_t perform conversion between encodings known to the library implementor. Other encodings can be converted by specializing on a user-defined stateT type. The stateT object can contain any state that is useful to communicate to or from the specialized do_convert member. The base class implementations convert the imple mentation-defined native execution codeset. 22.2.1.5.1 codecvt members [lib.locale.codecvt.members] result out(stateT& state, const internT* from, const internT* from_end, const internT*& from_next, externT* to, externT* to_limit, externT*& to_next) const; Returns: do_out(state, from,from_end,from_next, to,to_limit,to_next) result in(stateT& state, const externT* from, const externT* from_end, const externT*& from_next, internT* to, internT* to_limit, internT*& to_next) const; Returns: do_in(state, from,from_end,from_next, to,to_limit,to_next) int encoding() const throw(); Returns: do_encoding() bool always_noconv() const throw(); Returns: do_always_noconv() int length(stateT& state, const externT* from, const externT* from_end, size_t max) const; Returns: do_length(state, from,from_end,max) int max_length() const throw(); Returns: do_max_length() 22.2.1.5.2 codecvt virtual [lib.locale.codecvt.virtuals] functions result do_out(stateT& state, const internT* from, const internT* from_end, const internT*& from_next, externT* to, externT* to_limit, externT*& to_next) const; result do_in(stateT& state, const externT* from, const externT* from_end, const externT*& from_next, internT* to, internT* to_limit, internT*& to_next) const; Preconditions: (from<=from_end && to<=to_end) well-defined and true; state initial ized, if at the beginning of a sequence, or else equal to the result of converting the preceding characters in the sequence. Effects: Translates characters in the source range [from,from_end), placing the results in sequential positions starting at destination to. Converts no more than (from_end-from) source elements, and stores no more than (to_limit-to) destination elements. Stops if it encounters a character it cannot convert. It always leaves the from_next and to_next pointers pointing one beyond the last element successfully converted. [Note: If no translation is needed (returns noconv), sets to_next equal to argument to, and from_next equal to argument from. --end note] Notes: Its operations on state are unspecified. [Note: This argument can be used, for example, to maintain shift state, to specify conversion options (such as count only), or to identify a cache of seek offsets. --end note] Returns: An enumeration value, as summarized in Table 4: Table 4--convert result values +-----------------------------------------------------------------+ | Value Meaning | +-----------------------------------------------------------------+ |ok completed the conversion | |partial not all source characters converted | |error encountered a from_type character it could not convert | |noconv no conversion was needed | +-----------------------------------------------------------------+ A return value of partial, if (from_next==from_end), indicates that either the destination sequence has not absorbed all the available destination elements, or that additional source elements are needed before another destination element can be produced. int do_encoding() const throw(); Returns: -1 if the encoding of the externT sequence is state-dependent; else the constant number of externT characters needed to produce an internal character; or 0 if this number is not a constant6). bool do_always_noconv() const throw(); Returns: true if do_convert() returns noconv for all valid argument values. The base class implementation for the instantiation <char,char,mbstate_t> returns true; others return false. int do_length(stateT& state, const externT* from, const externT* from_end, size_t max) const; Preconditions: (from<=from_end) well-defined and true; state initialized, if at the beginning of a sequence, or else equal to the result of converting the preceding characters in the sequence. Returns: (from_next-from) where from_next is the largest value in the range [from,from_end] such that the sequence of values in the range [from,from_next) represents max or fewer valid complete characters of type internT. The base class implementation returns the lesser of max and (from_end-from). int do_max_length() const throw(); Returns: The maximum value that do_length(state,from,from_end,1) can return for any valid range [from,from_end) and stateT value state. 22.2.1.6 Template class [lib.locale.codecvt.byname] codecvt_byname _________________________ 6) If encoding() yields -1, then more than max_length() externT ele ments may be consumed when producing a single internT character, and additional externT elements may appear at the end of a sequence after those that yield the final internT character. namespace std { template <class internT, class externT, class stateT> class codecvt_byname : public codecvt<internT, externT, stateT> { public: explicit codecvt_byname(const char*, size_t refs = 0); protected: ~codecvt_byname(); // virtual virtual result do_out(stateT& state, const internT* from, const internT* from_end, const internT*& from_next, externT* to, externT* to_limit, externT*& to_next) const; virtual result do_in(stateT& state, const externT* from, const externT* from_end, const externT*& from_next, internT* to, internT* to_limit, internT*& to_next) const; virtual int do_encoding() const throw(); virtual bool do_always_noconv() const throw(); virtual int do_length(const stateT&, const externT* from, const externT* end, size_t max) const; virtual int do_max_length() const throw(); }; } 22.2.2 The numeric category [lib.category.numeric] 1 The classes num_get<> and num_put<> handle numeric formatting and parsing. Virtual functions are provided for several numeric types. Implementations may (but are not required to) delegate extraction of smaller types to extractors for larger types.7) 2 The base class implementation refers to the ios_base& argument for formatting specifications (_lib.locale.categories_), and to its imbued locale for the numpunct<> facet to identify all numeric punctuation preferences, and also for the ctype<> facet to perform character clas sification. 3 Extractor and inserter members of the standard iostreams use num_get<> and num_put<> member functions for formatting and parsing numeric val ues (_lib.istream.formatted.reqmts_, _lib.ostream.formatted.reqmts_). 22.2.2.1 Template class num_get [lib.locale.num.get] namespace std { template <class charT, class InputIterator = istreambuf_iterator<charT> > class num_get : public locale::facet { public: typedef charT char_type; typedef InputIterator iter_type; explicit num_get(size_t refs = 0); _________________________ 7) Parsing "-1" correctly into (e.g.) an unsigned short requires that the corresponding member get() at least extract the sign before dele gating. iter_type get(iter_type in, iter_type end, ios_base&, ios_base::iostate& err, bool& v) const; iter_type get(iter_type in, iter_type end, ios_base& , ios_base::iostate& err, long& v) const; iter_type get(iter_type in, iter_type end, ios_base&, ios_base::iostate& err, unsigned short& v) const; iter_type get(iter_type in, iter_type end, ios_base&, ios_base::iostate& err, unsigned int& v) const; iter_type get(iter_type in, iter_type end, ios_base&, ios_base::iostate& err, unsigned long& v) const; iter_type get(iter_type in, iter_type end, ios_base&, ios_base::iostate& err, float& v) const; iter_type get(iter_type in, iter_type end, ios_base&, ios_base::iostate& err, double& v) const; iter_type get(iter_type in, iter_type end, ios_base&, ios_base::iostate& err, long double& v) const; iter_type get(iter_type in, iter_type end, ios_base&, ios_base::iostate& err, void*& v) const; static locale::id id; protected: ~num_get(); // virtual virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& err, bool& v) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& err, long& v) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& err, unsigned short& v) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& err, unsigned int& v) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& err, unsigned long& v) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& err, float& v) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& err, double& v) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& err, long double& v) const; virtual iter_type do_get(iter_type, iter_type, ios_base&, ios_base::iostate& err, void*& v) const; }; } 1 The facet num_get is used to parse numeric values from an input sequence such as an istream. 22.2.2.1.1 num_get members [lib.facet.num.get.members] iter_type get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, long& val) const; iter_type get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, unsigned short& val) const; iter_type get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, unsigned int& val) const; iter_type get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, unsigned long& val) const; iter_type get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, short& val) const; iter_type get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, double& val) const; iter_type get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, long double& val) const; iter_type get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, void*& val) const; Returns: do_get(in, end, str, err, val). 22.2.2.1.2 num_get virtual [lib.facet.num.get.virtuals] functions iter_type do_get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, long& val) const; iter_type do_get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, unsigned short& val) const; iter_type do_get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, unsigned int& val) const; iter_type do_get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, unsigned long& val) const; iter_type do_get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, float& val) const; iter_type do_get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, double& val) const; iter_type do_get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, long double& val) const; iter_type do_get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, void*& val) const; Effects: Reads characters from in, interpreting them according to str.flags(), use_facet< ctype<charT> >(loc), and use_facet< numpunct<charT> >(loc). If an error occurs, val is unchanged; oth erwise it is set to the resulting value. 1 The details of this operation occur in two stages --Stage 1: Determine a conversion specifier --Stage 2: Extract characters from in and transform them into char's, converting the value transformed characters according to the conversion specification determined in stage 1. --Stage 3: Store results The details of the stages are presented below Returns Stage 1: The function initializes local variables via fmtflags flags = str.flags(); fmtflags basefield = (flags & ios_base::basefield) fmtflags uppercase = (flags & ios_base::uppercase); fmtflags basefield = (flags & ios_base::basefield); fmtflags boolalpha = (flags & ios_base::boolalpha); For conversion to an integral type, the function determines the integral conversion specifier as indicated in Table 5: Table 5--Integer conversions +--------------------------------------------------+ | State stdio equivalent | +--------------------------------------------------+ |basefield == oct %o | +--------------------------------------------------+ |basefield == hex && !uppercase %x | +--------------------------------------------------+ |basefield == hex %X | +--------------------------------------------------+ |basefield == 0 %i | +--------------------------------------------------+ |signed integral type %d | +--------------------------------------------------+ |unsigned integral type %u | +--------------------------------------------------+ For conversions to a floating type the specifier is %g. For conversions to void* the specifier is %p. A length specifier is added to the conversion specification as indi cated in Table 6. Table 6--Length Modifier +---------------------------------+ | type length modifier | +---------------------------------+ |short h | +---------------------------------+ |unsigned short h | +---------------------------------+ |long l | +---------------------------------+ |unsigned long l | +---------------------------------+ |long double L | +---------------------------------+ | none | +---------------------------------+ Stage 2: If in==end then stage 2 terminates. Otherwise a charT is taken from in and local variables are initialized as if by char_type ct = *in ; char c = use_facet<ctype<charT> >(loc).do_narrow(ct,' '); if ( ct == use_facet<numpunct<charT> >(loc).do_decimal_point() ) c = '.'; bool discard = ( ct == use_facet<numpunct<charT> >(loc).do_thousands_sep() && use_facet<numpunct<charT> >(loc).do_grouping().length != 0 ); If discard is true then the position of the character is remembered, but the character is otherwise ignored. If it is not discarded, then a check is made to determine if c is allowed as the next char acter of an input field of the conversion specifier returned by stage 1. If so is accumulated. If the character is neither discarded nor accumulated then in is advanced by ++in and processing returns to the beginning of stage 2. Stage 3: The result of stage 2 processing can be one of --A sequence of chars has been accumulated in stage 2 that is con verted (according to the rules of std::scanf) to a value of the type of val. This value is stored in val and ios_base::goodbit is stored in --The sequence of chars accumulated in stage 2 would have caused scanf to report an input failure. ios_base::failbit is assigned to Digit grouping is checked. That is, the positions of discarded sep arators is examined for consistency with use_facet<numpunct<charT>>(loc).do_grouping() +------- BEGIN BOX 3 -------+ Is the treatment of separators here clear? +------- END BOX 3 -------+ If they are not consistent then ios_base::failbit is assigned to 2 In any case, if stage 2 processing was terminated by the test for in==end then err|=ios_base::eofbit is performed. iter_type do_get(iter_type in, iter_type end, ios_base& str, ios_base::iostate& err, bool& val) const; Effects: If (str.flags()&&ios_base::boolalpha)==0 then input proceeds as it would for an int except that if a value is stored being stored into val. If the value to be store is 0 then false is stored. If the value is 1 then true is stored. Otherwise err|=ios_base::failbit is performed and no value is stored. 3 Otherwise a target string to be matched is determined by calling either use_facet<ctype<charT> >(f6loc).truename() or use_facet<ctype<charT> >(f6loc).falsename() depending on whether val is true or false (respectively). 4 As long as in!=end and characters continue to match the target string charT's are obtained by doing *in++. A value is assigned to err as follows --If the target string was matched completely, then goodbit. --If input was terminated because in!=end, then eofbit --Otherwise, failbit. Returns: 22.2.2.2 Template class num_put [lib.locale.num.put] namespace std { template <class charT, class OutputIterator = ostreambuf_iterator<charT> > class num_put : public locale::facet { public: typedef charT char_type; typedef OutputIterator iter_type; explicit num_put(size_t refs = 0); iter_type put(iter_type s, ios_base& f, char_type fill, bool v) const; iter_type put(iter_type s, ios_base& f, char_type fill, long v) const; iter_type put(iter_type s, ios_base& f, char_type fill, unsigned long v) const; iter_type put(iter_type s, ios_base& f, char_type fill, double v) const; iter_type put(iter_type s, ios_base& f, char_type fill, long double v) const; iter_type put(iter_type s, ios_base& f, char_type fill, void* v) const; static locale::id id; protected: ~num_put(); // virtual virtual iter_type do_put(iter_type, ios_base&, char_type fill, bool v) const; virtual iter_type do_put(iter_type, ios_base&, char_type fill, long v) const; virtual iter_type do_put(iter_type, ios_base&, char_type fill, unsigned long) const; virtual iter_type do_put(iter_type, ios_base&, char_type fill, double v) const; virtual iter_type do_put(iter_type, ios_base&, char_type fill, long double v) const; virtual iter_type do_put(iter_type, ios_base&, char_type fill, void* v) const; }; } 1 The facet num_put is used to format numeric values to a character sequence such as an ostream. 22.2.2.2.1 num_put members [lib.facet.num.put.members] iter_type put(iter_type out, ios_base& str, char_type fill, long val) const; iter_type put(iter_type out, ios_base& str, char_type fill, unsigned long val) const; iter_type put(iter_type out, ios_base& str, char_type fill, double val) const; iter_type put(iter_type out, ios_base& str, char_type fill, long double val) const; iter_type put(iter_type out, ios_base& str, char_type fill, void* val) const; Returns: do_put(out, str, fill, val). 22.2.2.2.2 num_put virtual [lib.facet.num.put.virtuals] functions iter_type do_put(iter_type out, ios_base& str, char_type fill, bool val) const; iter_type do_put(iter_type out, ios_base& str, char_type fill, long val) const; iter_type do_put(iter_type out, ios_base& str, char_type fill, unsigned long val) const; iter_type do_put(iter_type out, ios_base& str, char_type fill, double val) const; iter_type do_put(iter_type out, ios_base& str, char_type fill, long double val) const; iter_type do_put(iter_type out, ios_base& str, char_type fill, void* val) const; Effects: Writes characters to the sequence out, formatting val as desired. In the following description, a local variable initialized with locale loc = str.getloc(); +------- BEGIN BOX 4 -------+ The original text mentioned loc without saying where it came from. This seems the only place. +------- END BOX 4 -------+ The base class implementation is described in several stages --Stage 1: Determine a printf conversion specifier spec and determin ing the characters that would be printed by printf(_lib.c.files_) given this conversion specifier for std::printf(spec, val) assuming that the current locale is the "C" locale. --Stage 2: Adjust the representation by converting each char deter mined by stage 1 to a charT using a conversion and values returned by members of use_facet< numpunct<charT> >(str.getloc()) --Stage 3: Determine where padding is required. +------- BEGIN BOX 5 -------+ This used to be done by the print formatting, but because fill isn't a char and because the transformation of Stage 2 needs to be done before padding, I have made this a separate stage. +------- END BOX 5 -------+ --Stage 4: Insert the sequence into the out. Detailed descriptions of each stage follow Returns: out. Stage 1: The first action of stage 1 is to determine a conversion specifier. The tables that describe this determination use the following local variables fmtflags flags = this->flags() ; fmtflags basefield = (flags & (ios_base::basefield)); fmtflags uppercase = (flags & (ios_base::uppercase)); fmtflags floatfield = (flags & (ios_base::floatfield)); fmtflags showpos = (flags & (ios_base::showpos)); fmtflags showbase = (flags & (ios_base::showbase)); All tables used in describing stage 1 are ordered. That is. the first line whose condition is true applies. A line without a condi tion is the default behavior when none of the earlier lines apply. For conversion from an integral type other than a character type, the function determines the integral conversion specifier as indi cated in Table 7. Table 7--Integer conversions +---------------------------------------------------------------+ | State stdio equivalent | +---------------------------------------------------------------+ |basefield == ios_base::oct %o | +---------------------------------------------------------------+ |(basefield == ios_base::hex) && !uppercase %x | +---------------------------------------------------------------+ |(basefield == ios_base::hex) %X | +---------------------------------------------------------------+ |for a signed integral type %d | +---------------------------------------------------------------+ |for an unsigned integral type %u | +---------------------------------------------------------------+ For conversion from a floating-point type, the function determines the floating-point conversion specifier as indicated in Table 8: Table 8--Floating-point conversions +--------------------------------------------------------------------+ | State stdio equivalent | +--------------------------------------------------------------------+ |floatfield == ios_base::fixed %f | +--------------------------------------------------------------------+ |floatfield == ios_base::scientific && !uppercase %e | +--------------------------------------------------------------------+ |floatfield == ios_base::scientific %E | +--------------------------------------------------------------------+ |!uppercase %g | +--------------------------------------------------------------------+ |otherwise %G | +--------------------------------------------------------------------+ For conversions from an integral or floating type a length modifier is added to the conversion specifier as indicated in Table 9. Table 9--Length modifier +---------------------------------+ | type length modifier | +---------------------------------+ |short h | +---------------------------------+ |unsigned short h | +---------------------------------+ |long l | +---------------------------------+ |unsigned long l | +---------------------------------+ |long double L | +---------------------------------+ |otherwise none | +---------------------------------+ The conversion specifier has the following optional additional qual ifiers prepended as indicated in Table 10: Table 10--Numeric conversions +--------------------------------------------------------------+ | Type(s) State stdio equivalent | +--------------------------------------------------------------+ |an integral type oth flags & showpos + | |er than a character flags & showbase # | |type | +--------------------------------------------------------------+ |a floating-point type flags & showpos + | | flags & showpoint # | +--------------------------------------------------------------+ For conversion from a floating-point type, if (flags() & fixed) != 0 or if precision() > 0, then precision() is specified in the conver sion specification. For conversion from void* the specifier is %p. The representations at the end of stage 1 consists of the char's that would be printed by a call of printf(s, val) where s is the conversion specifier determined above. Stage 2: Any character c other than a decimal point(.) is converted to a charT via charT(c) 1 A local variable punct is initialized via numpunct<charT> punct = use_facet< numpunct<charT> >(str.getloc()) For integral types, punct.thousands_sep() characters are inserted into the sequence as determined by the value returned by punct.do_grouping() using the method described in _lib.facet.numpunct.virtuals_ Decimal point characters(.) are replaced by punct.decimal_point() Stage 3: A local variable is initialized as fmtflags adjustfield= (flags & (ios_base::adjustfield)); The location of any padding is determined according to Table 11: Table 11--Fill padding +-------------------------------------------------------------+ | State Location | +-------------------------------------------------------------+ |adjustfield == ios_base::left pad after | +-------------------------------------------------------------+ |adjustfield == ios_base::right pad before | +-------------------------------------------------------------+ |adjustfield==internal and a pad after the sign | |sign occurs in the representa | |tion | +-------------------------------------------------------------+ |adjustfield==internal and rep pad after x or X | |resentation after stage 1 be | |gan with 0x 1or 0X | +-------------------------------------------------------------+ |otherwise pad before stage 2 sequence | +-------------------------------------------------------------+ +------- BEGIN BOX 6 -------+ The above table has been rewritten to make internal padding explicit rather than depend on the conversion specifier. Since the C standard had +------- END BOX 6 -------+ width() is nonzero and the number of charT's in the sequence after stage 3 is less than width(), then enough fill characters are added to the sequence at the position indicated for padding to bring the length of the sequence to width(). width(0) is called. Stage 4: The sequence of charT's at the end of stage 3 are output via *out++ = c If at any point out.failed() becomes true, then output is termi nated. _________________________ 8) The conversion specification #o generates a leading 0 which is not a padding character. iter_type put(iter_type out, ios_base& str, char_type fill, bool val) const; Effects: If (str.flags()&ios_base::boolalpha)==0 then do outP = put(out, str, fill, (int)val) Otherwise do string_type s = val ? use_facet<ctype<charT> >(f6loc).truename() : use_facet<ctype<charT> >(f6loc).falsename() ; and then insert the characters of s into out. 22.2.3 The numeric punctuation facet [lib.facet.numpunct] 22.2.3.1 Template class numpunct [lib.locale.numpunct] namespace std { template <class charT> class numpunct : public locale::facet { public: typedef charT char_type; typedef basic_string<charT> string_type; explicit numpunct(size_t refs = 0); char_type decimal_point() const; char_type thousands_sep() const; string grouping() const; string_type truename() const; string_type falsename() const; static locale::id id; protected: ~numpunct(); // virtual virtual char_type do_decimal_point() const; virtual char_type do_thousands_sep() const; virtual string do_grouping() const; virtual string_type do_truename() const; // for bool virtual string_type do_falsename() const; // for bool }; } 1 numpunct<> specifies numeric punctuation. The base class provides classic C" numeric formats, while the _byname" version supports named locale (e.g. POSIX, X/Open) numeric formatting semantics. 2 The syntax for number formats is as follows, where digit represents the radix set specified by the fmtflags argument value, whitespace is as determined by the facet ctype<charT> (_lib.locale.ctype_), and thousands-sep and decimal-point are the results of corresponding numpunct<charT> members. Integer values have the format: integer ::= [sign] units sign ::= plusminus [whitespace] plusminus ::= '+' | '-' units ::= digits [thousands-sep units] digits ::= digit [digits] and floating-point values have: floatval ::= [sign] units [decimal-point [digits]] [e [sign] digits] | [sign] decimal-point digits [e [sign] digits] e ::= 'e' | 'E' where the number of digits between thousands-seps is as specified by do_grouping(). For parsing, if the digits portion contains no thou sands-separators, no grouping constraint is applied. +------- BEGIN BOX 7 -------+ Note: The WG agreed that sequences such as "0xFF" are valid numbers, and (editorially) need to be represented in the syntax spec above. +------- END BOX 7 -------+ 22.2.3.1.1 numpunct members [lib.facet.numpunct.members] char_type decimal_point() const; Returns: do_decimal_point() char_type thousands_sep() const; Returns: do_thousands_sep() string grouping() const; Returns: do_grouping() string_type truename() const; string_type falsename() const; Returns: do_truename() or do_falsename(), respectively. 22.2.3.1.2 numpunct virtual [lib.facet.numpunct.virtuals] functions char_type do_decimal_point() const; Returns: A character for use as the decimal radix separator. The base class implementation returns '.'. string_type do_thousands_sep() const; Returns: A character for use as the digit group separator. The base class implementation returns ','. string do_grouping() const; Returns: A basic_string<char> vec used as a vector of integer values, in which each element vec[i] represents the number of digits9) in the group at position i, starting with position 0 as the rightmost group. If vec.size() <= i, the number is the same as group (i-1); if (i<0 || vec[i]<=0 || vec[i]==CHAR_MAX), the size of the digit group is unlimited. The base class implementation returns the empty string, indicating no grouping. string_type do_truename() const; string_type do_falsename() const; Returns: A string representing the name of the boolean value true or false, respectively. In the base class implementation these names are "true" and "false". 22.2.3.2 Template class [lib.locale.numpunct.byname] numpunct_byname namespace std { template <class charT> class numpunct_byname : public numpunct<charT> { // this class is specialized for char and wchar_t. public: explicit numpunct_byname(const char*, size_t refs = 0); protected: ~numpunct_byname(); // virtual virtual char_type do_decimal_point() const; virtual char_type do_thousands_sep() const; virtual string do_grouping() const; virtual string_type do_truename() const; // for bool virtual string_type do_falsename() const; // for bool }; } 22.2.4 The collate category [lib.category.collate] _________________________ 9) Thus, the string " 03" specifies groups of 3 digits each, and "3" probably indicates groups of 51 (!) digits each. 22.2.4.1 Template class collate [lib.locale.collate] namespace std { template <class charT> class collate : public locale::facet { public: typedef charT char_type; typedef basic_string<charT> string_type; explicit collate(size_t refs = 0); int compare(const charT* low1, const charT* high1, const charT* low2, const charT* high2) const; string_type transform(const charT* low, const charT* high) const; long hash(const charT* low, const charT* high) const; static locale::id id; protected: ~collate(); // virtual virtual int do_compare(const charT* low1, const charT* high1, const charT* low2, const charT* high2) const; virtual string_type do_transform(const charT* low, const charT* high) const; virtual long do_hash (const charT* low, const charT* high) const; }; } 1 The class collate<charT> provides features for use in the collation (comparison) and hashing of strings. A locale member function tem plate, operator(), uses the collate facet to allow a locale to act directly as the predicate argument for standard algorithms (_lib.algo rithms_) and containers operating on strings. The base class imple mentation applies lexicographic ordering (_lib.alg.lex.comparison_). 2 Each function compares a string of characters *p in the range [low,high). 22.2.4.1.1 collate members [lib.locale.collate.members] int compare(const charT* low1, const charT* high1, const charT* low2, const charT* high2) const; Returns: do_compare(low1, high1, low2, high2) string_type transform(const charT* low, const charT* high) const; Returns: do_transform(low, high) long hash(const charT* low, const charT* high) const; Returns: do_hash(low, high) 22.2.4.1.2 collate virtual [lib.locale.collate.virtuals] functions int do_compare(const charT* low1, const charT* high1, const charT* low2, const charT* high2) const; Returns: 1 if the first string is greater than the second, -1 if less, zero otherwise. The base class implementation implements a lexicographi cal comparison (_lib.alg.lex.comparison_). string_type do_transform(const charT* low, const charT* high) const; Returns: A basic_string<charT> value that, compared lexicographically with the result of calling transform() on another string, yields the same result as calling do_compare() on the same two strings.10) long do_hash(const charT* low, const charT* high) const; Returns: An integer value equal to the result of calling hash() on any other string for which do_compare() returns 0 (equal) when passed the two strings. [Note: The probability that the result equals that for another string which does not compare equal should be very small, approaching (1.0/numeric_limits<unsigned long>::max()). --end note] 22.2.4.2 Template class [lib.locale.collate.byname] collate_byname namespace std { template <class charT> class collate_byname : public collate<charT> { public: explicit collate_byname(const char*, size_t refs = 0); protected: ~collate_byname(); // virtual virtual int do_compare(const charT* low1, const charT* high1, const charT* low2, const charT* high2) const; virtual string_type do_transform(const charT* low, const charT* high) const; virtual long do_hash( const charT* low, const charT* high) const; }; _________________________ 10) This function is useful when one string is being compared to many other strings. 22.2.5 The time category [lib.category.time] 1 Templates time_get<charT,InputIterator> and time_put<charT,OutputIter ator> provide date and time formatting and parsing. Their members use their ios_base&, ios_base::iostate&, and fill arguments as described in (_lib.locale.categories_), and the ctype<> facet, to determine for matting details. 22.2.5.1 Template class time_get [lib.locale.time.get] namespace std { class time_base { public: enum dateorder { no_order, dmy, mdy, ymd, ydm }; }; template <class charT, class InputIterator = istreambuf_iterator<charT> > class time_get : public locale::facet, public time_base { public: typedef charT char_type; typedef InputIterator iter_type; explicit time_get(size_t refs = 0); dateorder date_order() const { return do_date_order(); } iter_type get_time(iter_type s, iter_type end, ios_base& f, ios_base::iostate& err, tm* t) const; iter_type get_date(iter_type s, iter_type end, ios_base& f, ios_base::iostate& err, tm* t) const; iter_type get_weekday(iter_type s, iter_type end, ios_base& f, ios_base::iostate& err, tm* t) const; iter_type get_monthname(iter_type s, iter_type end, ios_base& f, ios_base::iostate& err, tm* t) const; iter_type get_year(iter_type s, iter_type end, ios_base& f, ios_base::iostate& err, tm* t\fP) const; static locale::id id; protected: ~time_get(); // virtual virtual dateorder do_date_order() const; virtual iter_type do_get_time(iter_type s, iter_type end, ios_base&, ios_base::iostate& err, tm* t) const; virtual iter_type do_get_date(iter_type s, iter_type end, ios_base&, ios_base::iostate& err, tm* t) const; virtual iter_type do_get_weekday(iter_type s, iter_type end, ios_base&, ios_base::iostate& err, tm* t) const; virtual iter_type do_get_monthname(iter_type s, ios_base&, ios_base::iostate& err, tm* t) const; virtual iter_type do_get_year(iter_type s, iter_type end, ios_base&, ios_base::iostate& err, tm* t) const; }; } 1 time_get is used to parse a character sequence, extracting components of a time or date into a struct tm record. Each get member parses a format as produced by a corresponding format specifier to time_put<>::put. If the sequence being parsed matches the correct format, the corresponding members of the struct tm argument are set to the values used to produce the sequence; otherwise either an error is reported or unspecified values are assigned.11) 22.2.5.1.1 time_get members [lib.locale.time.get.members] dateorder date_order() const; Returns: do_date_order() iter_type get_time(iter_type s, iter_type end, ios_base& str, ios_base::iostate& err, tm* t) const; Returns: do_get_time(s, end, str, err, t) iter_type get_date(iter_type s, iter_type end, ios_base& str, ios_base::iostate& err, tm* t) const; Returns: do_get_date(s, end, str, err, t) iter_type get_weekday(iter_type s, iter_type end, ios_base& str, ios_base::iostate& err, tm* t) const; iter_type get_monthname(iter_type s, iter_type end, ios_base& str, ios_base::iostate& err, tm* t) const; Returns: do_get_weekday(s, end, str, err, t) or do_get_monthname(s, end, str, err, t iter_type get_year(iter_type s, iter_type end, ios_base& str, ios_base::iostate& err, tm* t) const; Returns: do_get_year(s, end, str, err, t) 22.2.5.1.2 time_get virtual [lib.locale.time.get.virtuals] functions dateorder do_date_order() const; _________________________ 11) In other words, user confirmation is required for reliable parsing of user-entered dates and times, but machine-generated formats can be parsed reliably. This allows parsers to be aggressive about inter preting user variations on standard formats. Returns: An enumeration value indicating the preferred order of components for those date formats that are composed of day, month, and year.12) Returns no_order if the date format specified by 'x' contains other variable components (e.g. Julian day, week number, week day). iter_type do_get_time(iter_type s, iter_type end, ios_base& str, ios_base::iostate& err, tm* t) const; Effects: Reads characters starting at s until it has extracted those struct tm members, and remaining format characters, used by time_put<>::put to produce the format specified by 'X', or until it encounters an error or end of sequence. Returns: An iterator pointing immediately beyond the last character recog nized as possibly part of a valid time. iter_type do_get_date(iter_type s, iter_type end, ios_base& str, ios_base::iostate& err, tm* t) const; Effects: Reads characters starting at s until it has extracted those struct tm members, and remaining format characters, used by time_put<>::put to produce the format specified by 'x', or until it encounters an error. Returns: An iterator pointing immediately beyond the last character recog nized as possibly part of a valid date. iter_type do_get_weekday(iter_type s, iter_type end, ios_base& str, ios_base::iostate& err, tm* t) const; iter_type do_get_monthname(iter_type s, iter_type end, ios_base& str, ios_base::iostate& err, tm* t) const; Effects: Reads characters starting at s until it has extracted the (perhaps abbreviated) name of a weekday or month. If it finds an abbrevia tion that is followed by characters that could match a full name, it continues reading until it matches the full name or fails. It sets the appropriate struct tm member accordingly. Returns: An iterator pointing immediately beyond the last character recog nized as part of a valid name. _________________________ 12) This function is intended as a convenience only, for common for mats, and may return no_order in valid locales. iter_type do_get_year(iter_type s, iter_type end, ios_base& str, ios_base::iostate& err, tm* t) const; Effects: Reads characters starting at s until it has extracted an unambiguous year identifier. It is implementation-defined whether two-digit year numbers are accepted, and (if so) what century they are assumed to lie in. Sets the t->tm_year member accordingly. Returns: An iterator pointing immediately beyond the last character recog nized as part of a valid year identifier. 22.2.5.2 Template class [lib.locale.time.get.byname] time_get_byname namespace std { template <class charT, class InputIterator = istreambuf_iterator<charT> > class time_get_byname : public time_get<charT, InputIterator> { public: explicit time_get_byname(const char*, size_t refs = 0); protected: ~time_get_byname(); // virtual virtual dateorder do_date_order() const; virtual iter_type do_get_time(iter_type s, iter_type end, ios_base&, ios_base::iostate& err, tm* t) const; virtual iter_type do_get_date(iter_type s, iter_type end, ios_base&, ios_base::iostate& err, tm* t) const; virtual iter_type do_get_weekday(iter_type s, iter_type end, ios_base&, ios_base::iostate& err, tm* t) const; virtual iter_type do_get_monthname(iter_type s, iter_type end, ios_base&, ios_base::iostate& err, tm* t) const; virtual iter_type do_get_year(iter_type s, iter_type end, ios_base&, ios_base::iostate& err, tm* t) const; }; } 22.2.5.3 Template class time_put [lib.locale.time.put] namespace std { template <class charT, class OutputIterator = ostreambuf_iterator<charT> > class time_put : public locale::facet { public: typedef charT char_type; typedef OutputIterator iter_type; explicit time_put(size_t refs = 0); // the following is implemented in terms of other member functions. iter_type put(iter_type s, ios_base& f, char_type fill, const tm* tmb, const charT* pattern, const charT* pat_end) const; iter_type put(iter_type s, ios_base& f, char_type fill, const tm* tmb, char format, char modifier = 0) const; static locale::id id; protected: ~time_put(); // virtual virtual iter_type do_put(iter_type s, ios_base&, char_type, const tm* t, char format, char modifier) const; }; } 22.2.5.3.1 time_put members [lib.locale.time.put.members] iter_type put(iter_type s, ios_base&, char_type fill, const tm* t, const charT* pattern, const charT* pat_end) const; iter_type put(iter_type s, ios_base&, char_type fill, const tm* t, char format, char modifier = 0) const; Effects: The first form interprets the characters immediately following a % in the sequence between pattern and pat_end as format specifiers, according to the mapping used by the function strftime() Characters are converted using ctype<>::narrow() to identify format specifiers. [Note: This implies that if narrow() has no mapping for the charac ter %, no format specifiers are identified. --end note] The second form calls do_put() once, simply passing along its argu ments. Returns: An iterator pointing immediately after the last character produced. 22.2.5.3.2 time_put virtual [lib.locale.time.put.virtuals] functions iter_type do_put(iter_type s, ios_base&, char_type fill, const tm* t, char format, char modifier) const; Effects: Formats the contents of the parameter t into characters placed on the output sequence s. Formatting is controlled by the parameters format and modifier, interpreted identically as the format speci fiers in the string argument to the standard library function strftime().13) Returns: An iterator pointing immediately after the last character produced. 22.2.5.4 Template class [lib.locale.time.put.byname] time_put_byname _________________________ 13) Interpretation of the modifier argument is implementation-defined, but should follow POSIX conventions. namespace std { template <class charT, class OutputIterator = ostreambuf_iterator<charT> > class time_put_byname : public time_put<charT, OutputIterator> { public: explicit time_put_byname(const char*, size_t refs = 0); protected: ~time_put_byname(); // virtual virtual iter_type do_put(iter_type s, ios_base&, char_type, const tm* t, char format, char modifier) const; }; } 22.2.6 The monetary category [lib.category.monetary] 1 These templates handle monetary formats. A template parameter indi cates whether local or international monetary formats are to be used. 2 money_get<> and money_put<> members use their ios_base&, ios_base::iostate&, and fill arguments as described in (_lib.locale.categories_), and the moneypunct<> and ctype<> facets, to determine formatting details. 22.2.6.1 Template class money_get [lib.locale.money.get] namespace std { template <class charT, class InputIterator = istreambuf_iterator<charT> > class money_get : public locale::facet { public: typedef charT char_type; typedef InputIterator iter_type; typedef basic_string<charT> string_type; explicit money_get(size_t refs = 0); iter_type get(iter_type s, iter_type end, bool intl, ios_base& f, ios_base::iostate& err, long double& units) const; iter_type get(iter_type s, iter_type end, bool intl, ios_base& f, ios_base::iostate& err, string_type& digits) const; static const bool intl = Intl; static locale::id id; protected: ~money_get(); // virtual virtual iter_type do_get(iter_type, bool, iter_type, ios_base&, ios_base::iostate& err, long double& units) const; virtual iter_type do_get(iter_type, bool, iter_type, ios_base&, ios_base::iostate& err, string_type& digits) const; }; } 22.2.6.1.1 money_get members [lib.locale.money.get.members] iter_type get(iter_type s, iter_type end, bool intl, ios_base& f, ios_base::iostate& err, long double& quant) const; iter_type get(s, iter_type end, bool intl, ios_base&f, ios_base::iostate& err, string_type& quant) const; Returns: do_get(s, end, intl, f, err, quant) 22.2.6.1.2 money_get virtual [lib.locale.money.get.virtuals] functions iter_type do_get(iter_type s, iter_type end, bool intl, ios_base& str, ios_base::iostate& err, long double& units) const; iter_type do_get(iter_type s, iter_type end, bool intl, ios_base& strfP, ios_base::iostate& err, string_type& digits) const; Effects: Reads characters from s until it has constructed a monetary value, as specified in str.flags() and the moneypunct<charT,true> or money punct<charT,false> facet of str.getloc(), (depending on whether intl is true or false respectively) or until it encounters an error or runs out of characters. It parses the format sequence specified by moneypunct<>::neg_format() for all monetary values. The result is a pure sequence of digits, representing a count of the smallest unit of currency representable.14) Digit group separators are optional; if present, digit grouping is checked after all syntactic elements have been read. If no grouping is specified, any thousands separator characters encountered in the input sequence are not considered part of the numeric format. Where space or none appear in the format pattern, except at the end, optional whitespace is consumed. If (str.flags() & ios_base::show base) is false, the currency symbol is optional, and if it appears after all other required syntactic elements it is not consumed. If the expression above is true, the currency symbol is required, and is always consumed. If the first character of the a sign appears in its correct position, any remaining sign characters are required, and consumed. [Example: If showbase is off, then when the sign is "()" and the currency symbol is "L", in "(100 L)" the "L" is con sumed; but in "-100 L" it is not. --end example] Sets the argument units or digits from the sequence of digits found. units is negated, or digits is preceded by '-', for a negative value. On error, the units or digits argument is unchanged. _________________________ 14) For example, the sequence $1,056.23 in a common U.S. locale would yield, for units, 105623, or for digits, 105623". Returns: An iterator pointing immediately beyond the last character recog nized as part of a valid monetary quantity. +------- BEGIN BOX 8 -------+ The description above needs further review. +------- END BOX 8 -------+ 22.2.6.2 Template class money_put [lib.locale.money.put] namespace std { template <class charT, bool Intl = false, class OutputIterator = ostreambuf_iterator<charT> > class money_put : public locale::facet { public: typedef charT char_type; typedef OutputIterator iter_type; typedef basic_string<charT> string_type; explicit money_put(size_t refs = 0); iter_type put(iter_type s, bool intl, ios_base& f, char_type fill, long double units) const; iter_type put(iter_type s, bool intl, ios_base& f, char_type fill, const string_type& digits) const; static locale::id id; protected: ~money_put(); // virtual virtual iter_type do_put(iter_type, bool, ios_base&, char_type fill, long double units) const; virtual iter_type do_put(iter_type, bool, ios_base&, char_type fill, const string_type& digits) const; }; } 22.2.6.2.1 money_put members [lib.locale.money.put.members] iter_type put(iter_type s, bool intl, ios_base& f, char_type fill, long double quant) const; iter_type put(iter_type s, bool intl, ios_base& f, char_type fill, const string_type& quant) const; Returns: do_put(s, intl, f, loc, quant) 22.2.6.2.2 money_put virtual [lib.locale.money.put.virtuals] functions iter_type do_put(iter_type s, bool intl, ios_base& str, char_type fill, long double units) const; iter_type do_put(iter_type s, bool intl, ios_base& str, char_type fill, const string_type& digits) const; Effects: Writes characters to s, according to the format specified by the moneypunct<charT,true> or moneypunch<charT,false> facet of loc (depending on whether intl is true or false respectively), and str.flags(). Ignores any fractional part of units, or any charac ters in digits beyond the (optional) leading '-' and immediately subsequent digits. Notes: The currency symbol is generated only if (str.flags() & ios_type::showbase) is true. If ((str.flags() & ios_type::adjust field) == ios_type::internal) the fill characters are placed where none or space appears in the formatting pattern (_lib.money.get.vir tuals_). Returns: An iterator pointing immediately after the last character produced. 22.2.6.3 Template class moneypunct [lib.locale.moneypunct] namespace std { class money_base { public: enum part { none, space, symbol, sign, value }; struct pattern { char field[4]; }; }; template <class charT, bool International = false> class moneypunct : public locale::facet, public money_base { public: typedef charT char_type; typedef basic_string<charT> string_type; explicit moneypunct(size_t refs = 0); charT decimal_point() const; charT thousands_sep() const; string grouping() const; string_type curr_symbol() const; string_type positive_sign() const; string_type negative_sign() const; int frac_digits() const; pattern pos_format() const; pattern neg_format() const; static locale::id id; static const bool intl = International; protected: ~moneypunct(); // virtual virtual charT do_decimal_point() const; virtual charT do_thousands_sep() const; virtual string do_grouping() const; virtual string_type do_curr_symbol() const; virtual string_type do_positive_sign() const; virtual string_type do_negative_sign() const; virtual int do_frac_digits() const; virtual pattern do_pos_format() const; virtual pattern do_neg_format() const; }; } 1 This provides money punctuation, similar to numpunct<> above (_lib.locale.numpunct_). In particular, the value portion of the for mat is: value ::= units [decimal-point [digits]] | decimal-point digits if frac_digits returns a positive value, or just value ::= units otherwise. In these forms, the decimal-point and thousands-separator are as determined below and the number of digits after the decimal point is exactly the value returned by frac_digits. 22.2.6.3.1 moneypunct members [lib.locale.moneypunct.members] charT decimal_point() const; charT thousands_sep() const; string grouping() const; string_type curr_symbol() const; string_type positive_sign() const; string_type negative_sign() const; int frac_digits() const; pattern pos_format() const; pattern neg_format() const; 1 Each of these functions F returns the result of calling the corre sponding virtual member function do_F(). 22.2.6.3.2 moneypunct virtual [lib.locale.moneypunct.virtuals] functions charT do_decimal_point() const; Returns: The radix separator to use in case do_frac_digits() is greater than zero.15) _________________________ 15) In common U.S. locales this is '.'. charT do_thousands_sep() const; Returns: The digit group separator to use in case do_grouping() specifies a digit grouping pattern.16) string do_grouping() const; Returns: A pattern defined identically as the result of numpunct<charT>::do_grouping().17) string_type do_curr_symbol() const; Returns: A string to use as the currency identifier symbol.18) string_type do_positive_sign() const; string_type do_negative_sign() const; Returns: do_positive_sign() returns the string to use to indicate a positive monetary value;19) do_negative_sign() returns the string to use to indicate a negative value. The first character of the string (if any) is placed in the position indicated for the sign in the format pattern, and any remaining characters are placed after all other format elements. int do_frac_digits() const; Returns: The number of digits after the decimal radix separator, if any.20) pattern do_pos_format() const; pattern do_neg_format() const; Returns: A pattern, a four-element array specifying the order in which _________________________ 16) In common U.S. locales this is ','. 17) This is most commonly the value " 03" not "3"). 18) For international instantiations (second template parameter true) this is always four characters long, usually three letters and a space. 19) This is usually the empty string. 20) In common U.S. locales, this is 2. syntactic elements appear in the monetary format. In this array each enumeration value symbol, sign, value, and either space or none appears exactly once. none, if present, is not first; space, if present, is neither first nor last. Otherwise, the elements may appear in any order. The base class implementation returns an object of type pattern initialized to { symbol, sign, none, value }; this value is also returned for all international instantiations.21) 22.2.6.4 Template class [lib.locale.moneypunct.byname] moneypunct_byname namespace std { template <class charT, bool Intl = false> class moneypunct_byname : public moneypunct<charT, Intl> { public: explicit moneypunct_byname(const char*, size_t refs = 0); protected: ~moneypunct_byname(); // virtual virtual charT do_decimal_point() const; virtual charT do_thousands_sep() const; virtual string do_grouping() const; virtual string_type do_curr_symbol() const; virtual string_type do_positive_sign() const; virtual string_type do_negative_sign() const; virtual int do_frac_digits() const; virtual pattern do_pos_format() const; virtual pattern do_neg_format() const; }; } 22.2.7 The message retrieval category [lib.category.messages] 1 Class messages<charT> implements retrieval of strings from message catalogs. 22.2.7.1 Template class messages [lib.locale.messages] namespace std { class messages_base { public: typedef int catalog; }; template <class charT> class messages : public locale::facet, public messages_base { public: typedef charT char_type; typedef basic_string<charT> string_type; explicit messages(size_t refs = 0); _________________________ 21) Note that the international symbol returned by do_curr_sym() usu ally contains a space, itself; for example, "USD ". catalog open(const basic_string<char>& fn, const locale&) const; string_type get(catalog c, int set, int msgid, const string_type& dfault) const; void close(catalog c) const; static locale::id id; protected: ~messages(); // virtual virtual catalog do_open(const basic_string<char>&, const locale&) const; virtual string_type do_get(catalog, int set, int msgid, const string_type& dfault) const; virtual void do_close(catalog) const; }; } 1 Values of type messages_base::catalog usable as arguments to members get and close can be obtained only by calling member open. 22.2.7.1.1 messages members [lib.locale.messages.members] catalog open(const basic_string<char>& name, const locale& loc) const; Returns: do_open(name, loc). string_type get(catalog cat, int set, int msgid, const string_type& dfault) const; Returns: do_get(cat, set, msgid, dfault). void close(catalog cat) const; Effects: Calls do_close(cat). 22.2.7.1.2 messages virtual [lib.locale.messages.virtuals] functions catalog do_open(const basic_string<char>& name, const locale& loc) const; Returns: A value that may be passed to get() to retrieve a message, from the message catalog identified by the string name according to an imple mentation-defined mapping. The result can be used until it is passed to close(). Returns a value less than 0 if no such catalog can be opened. Notes: The locale argument loc is used for character set code conversion when retrieving messages, if needed. string_type do_get(catalog cat, int set, int msgid, const string_type& dfault) const; Requires: A catalog cat obtained from open() and not yet closed. Returns: A message identified by arguments set, msgid, and dfault, according to an implementation-defined mapping. If no such message can be found, returns dfault. void do_close(catalog cat) const; Requires: A catalog cat obtained from open() and not yet closed. Effects: Releases unspecified resources associated with cat. Notes: The limit on such resources, if any, is implementation-defined. 22.2.7.2 Template class [lib.locale.messages.byname] messages_byname namespace std { template <class charT> class messages_byname : public messages<charT> { public: explicit messages_byname(const char*, size_t refs = 0); protected: ~messages_byname(); // virtual virtual catalog do_open(const basic_string<char>&, const locale&) const; virtual string_type do_get(catalog, int set, int msgid, const string_type& dfault) const; virtual void do_close(catalog) const; }; } 22.2.8 Program-defined facets [lib.facets.examples] 1 A C++ program may define facets to be added to a locale and used iden tically as the built-in facets. To create a new facet interface, C++ programs simply derive from locale::facet a class containing a static member: static locale::id id. 2 [Note: The locale member function templates verify its type and stor age class. --end note] 3 This initialization/identification system depends only on the initial ization to 0 of static objects, before static constructors are called. When an instance of a facet is installed in a locale, the locale checks whether an id has been assigned, and if not, assigns one. Before this occurs, any attempted use of its interface causes the bad_cast exception to be thrown. 4 [Example: Here is a program that just calls C functions: #include <locale> extern "C" void c_function(); int main() { using namespace std; locale::global(locale("")); // same as setlocale(LC_ALL, ""); c_function(); return 0; } In other words, C library localization is unaffected. --end example] 5 [Example: Traditional global localization is still easy: #include <iostream> #include <locale> int main(int argc, char** argv) { using namespace std; locale::global(locale("")); // set the global locale cin.imbue(locale()); // imbue it on the std streams cout.imbue(locale()); cerr.imbue(locale()); return MyObject(argc, argv).doit(); } --end example] 6 [Example: Greater flexibility is possible: #include <iostream> #include <locale> int main() { using namespace std; cin.imbue(locale("")); // the user's preferred locale cout.imbue(locale::classic()); double f; while (cin >> f) cout << f << endl; return (cin.fail() != 0); } In a European locale, with input 3.456,78, output is 3456.78. --end example] 7 This can be important even for simple programs, which may need to write a data file in a fixed format, regardless of a user's prefer ence. 8 [Example: Here is an example of the use of locales in a library inter face. // file: Date.h #include <iosfwd> #include <string> #include <locale> ... class Date { ... public: Date(unsigned day, unsigned month, unsigned year); std::string asString(const std::locale& = std::locale()); }; istream& operator>>(istream& s, Date& d); ostream& operator<<(ostream& s, Date d); ... This example illustrates two architectural uses of class locale. 9 The first is as a default argument in Date::asString(), where the default is the global (presumably user-preferred) locale. 10The second is in the operators << and >>, where a locale "hitchhikes" on another object, in this case a stream, to the point where it is needed. // file: Date.C #include "Date" // includes <ctime> #include <sstream> std::string Date::asString(const std::locale& l) { using namespace std; ostringstream s; s.imbue(l); s << *this; return s.str(); } std::istream& operator>>(std::istream& s, Date& d) { using namespace std; istream::sentry cerberos; if (cerberos) { ios_base::iostate err = goodbit; struct tm t; use_facet< time_get<char> >(s.getloc()).get_date(s, 0, s, err, &t); if (!err) d = Date(t.tm_day, t.tm_mon + 1, t.tm_year + 1900); s.setstate(err); } return s; } --end example] 11A locale object may be extended with a new facet simply by construct ing it with an instance of a class derived from locale::facet. The only member a C++ program must define is the static member id, which identifies your class interface as a new facet. 12[Example: Classifying Japanese characters: // file: <jctype> #include <locale> namespace My { using namespace std; class JCtype : public locale::facet { public: static locale::id id; // required for use as a new locale facet bool is_kanji(wchar_t c); JCtype() {} protected: ~JCtype() {} }; } // file: filt.C #include <iostream> #include <locale> #include "jctype" // above std::locale::id JCtype::id; // the static JCtype member declared above. int main() { using namespace std; typedef ctype<wchar_t> wctype; locale loc(locale(""), // the user's preferred locale ... new My::JCType); // and a new feature ... wchar_t c = use_facet<wctype>(loc).widen('!'); if (use_facet<My::JCType>(loc).is_kanji(c)) cout << "no it isn't!" << endl; return 0; } 13The new facet is used exactly like the built-in facets. --end exam ple] 14[Example: Replacing an existing facet is even easier. Here we do not define a member id because we are reusing the numpunct<charT> facet interface: // my_bool.C #include <iostream> #include <locale> #include <string> namespace My { using namespace std; typedef numpunct_byname<char> cnumpunct; class BoolNames : public cnumpunct { protected: string do_truename() { return "Oui Oui!"; } string do_falsename() { return "Mais Non!"; } ~BoolNames() {} public: BoolNames(const char* name) : cnumpunct(name) {} }; } int main(int argc, char** argv) { using namespace std; // make the user's preferred locale, except for... locale loc(locale(""), new My::BoolNames("")); cout.imbue(loc); cout << boolalpha << "Any arguments today? " << (argc > 1) << endl; return 0; } --end example] 22.3 C Library Locales [lib.c.locales] 1 Header <clocale> (Table 12): Table 12--Header <clocale> synopsis +-------------------------------------------------+ | Type Name(s) | +-------------------------------------------------+ |Macros: | | LC_ALL LC_COLLATE LC_CTYPE | | LC_MONETARY LC_NUMERIC LC_TIME | | NULL | +-------------------------------------------------+ |Struct: lconv | +-------------------------------------------------+ |Functions: localeconv setlocale | +-------------------------------------------------+ 2 The contents are the same as the Standard C library header <locale.h>. SEE ALSO: ISO C clause 7.4.