______________________________________________________________________

  24   Iterators library                       [lib.iterators]

  ______________________________________________________________________

1 This clause describes components that C++ programs may use to  perform
  iterations     over     containers     (_lib.containers_),     streams
  (_lib.iostream.format_), and stream buffers (_lib.stream.buffers_).

2 The following subclauses describe iterator  requirements,  and  compo­
  nents for iterator primitives, predefined iterators, and stream itera­
  tors, as summarized in Table 1:

                    Table 1--Iterators library summary

       +-----------------------------------------------------------+
       |                  Subclause                     Header(s)  |
       +-----------------------------------------------------------+
       |_lib.iterator.requirements_ Requirements                   |
       +-----------------------------------------------------------+
       |_lib.iterator.primitives_ Iterator primitives              |
       |_lib.predef.iterators_ Predefined iterators     <iterator> |
       |_lib.stream.iterators_ Stream iterators                    |
       +-----------------------------------------------------------+

  24.1  Iterator requirements                [lib.iterator.requirements]

1 Iterators are a generalization of pointers that allow a C++ program to
  work  with different data structures (containers) in a uniform manner.
  To be able to construct template algorithms that  work  correctly  and
  efficiently on different types of data structures, the library formal­
  izes not just the interfaces but also  the  semantics  and  complexity
  assumptions  of iterators.  All iterators i support the expression *i,
  resulting in a value of some class, enumeration, or built-in  type  T,
  called  the value type of the iterator.  All iterators i for which the
  expression (*i).m is well-defined, support the  expression  i->m  with
  the  same  semantics  as  (*i).m.  For every iterator type X for which
  equality is defined, there is a  corresponding  signed  integral  type
  called the distance type of the iterator.

2 Since  iterators  are an abstraction of pointers, their semantics is a
  generalization of most of the semantics  of  pointers  in  C++.   This
  ensures  that  every  template  function that takes iterators works as
  well with regular pointers.  This Standard defines five categories  of
  iterators,  according  to the operations defined on them: input itera­
  tors, output iterators, forward iterators, bidirectional iterators and

  random access iterators, as shown in Table 2.

               Table 2--Relations among iterator categories

       +----------------------------------------------------------+
       |Random access   -> Bidirectional   -> Forward   -> Input  |
       |                                                -> Output |
       +----------------------------------------------------------+

3 Forward iterators satisfy all the requirements of the input and output
  iterators and can be used whenever either kind is specified;  Bidirec­
  tional  iterators  also  satisfy  all  the requirements of the forward
  iterators and can be used whenever a forward  iterator  is  specified;
  Random  access iterators also satisfy all the requirements of bidirec­
  tional iterators and can be used whenever a bidirectional iterator  is
  specified.

4 Besides its category, a forward, bidirectional, or random access iter­
  ator can also be mutable or constant depending on whether  the  result
  of  the  expression  *i  behaves as a reference or as a reference to a
  constant.  Constant iterators do not satisfy the requirements for out­
  put iterators, and the result of the expression *i (for constant iter­
  ator i) cannot be used in an expression where an lvalue is required.

5 Just as a regular pointer to an  array  guarantees  that  there  is  a
  pointer  value pointing past the last element of the array, so for any
  iterator type there is an iterator value that  points  past  the  last
  element  of  a corresponding container.  These values are called past-
  the-end values.  Values of an iterator i for which the  expression  *i
  is defined are called dereferenceable.  The library never assumes that
  past-the-end values are dereferenceable.  Iterators can also have sin­
  gular values that are not associated with any container.  For example,
  after the declaration of an uninitialized pointer x (as with int* x;),
  x  must  always  be  assumed  to  have  a singular value of a pointer.
  Results of most expressions are undefined  for  singular  values;  the
  only exception is an assignment of a non-singular value to an iterator
  that holds a singular value.  In this case the singular value is over­
  written  the  same  way as any other value.  Dereferenceable and past-
  the-end values are always non-singular.

6 An iterator j is called reachable from an iterator i if  and  only  if
  there  is a finite sequence of applications of the expression ++i that
  makes i == j.  If j is reachable from i, they refer to the  same  con­
  tainer.

7 Most  of  the  library's  algorithmic  templates  that operate on data
  structures have interfaces that use ranges.  A  range  is  a  pair  of
  iterators  that designate the beginning and end of the computation.  A
  range [i, i) is an empty range; in general, a range [i, j)  refers  to
  the elements in the data structure starting with the one pointed to by
  i and up to but not including the one pointed to by j.  Range  [i,  j)

  is  valid  if  and  only  if j is reachable from i.  The result of the
  application of the algorithms in the  library  to  invalid  ranges  is
  undefined.

8 All  the categories of iterators require only those functions that are
  realizable for a given category in constant time (amortized).   There­
  fore,  requirement  tables  for the iterators do not have a complexity
  column.

9 In the following sections, a and b denote values of  X,  n  denotes  a
  value of the distance type Distance, u, tmp, and m denote identifiers,
  r denotes a value of X&, t denotes a value of value type T.

  24.1.1  Input iterators                          [lib.input.iterators]

1 A class or a built-in type X satisfies the requirements  of  an  input
  iterator  for the value type T if the following expressions are valid,
  where U is the type of any specified member of type  T,  as  shown  in
  Table 3.

2 In  Table  3, the term the domain of == is used in the ordinary mathe­
  matical sense to denote the set of values over which ==  is  (required
  to be) defined.  This set can change over time.  Each algorithm places
  additional requirements on the domain of == for the iterator values it
  uses.  These requirements can be inferred from the uses that algorithm
  makes of == and !=.  [Example: the call find(a,b,x) is defined only if
  the value of a has the property p defined as follows: b has property p
  and a value i has property p if (*i==x) or if (*i!=x and ++i has prop­
  erty p).  ]

                   Table 3--Input iterator requirements

  +----------------------------------------------------------------------------------------+
  |operation          type                      semantics, pre/post-conditions             |
  +----------------------------------------------------------------------------------------+
  |X u(a);     X                     post: u is a copy of a                                |
  |                                  A destructor is assumed to be present and accessible. |
  +----------------------------------------------------------------------------------------+
  |u = a;      X                     result: u                                             |
  |                                  post: u is a copy of a                                |
  +----------------------------------------------------------------------------------------+
  |a == b      convertible to bool   == is an equivalence relation over its domain.        |
  +----------------------------------------------------------------------------------------+
  |a != b      convertible to bool   bool(a==b) != bool(a!=b) over the domain of ==        |
  +----------------------------------------------------------------------------------------+
  |*a          T                     pre: a is dereferenceable.                            |
  |                                  If a==b and (a,b) is in the domain of ==              |
  |                                  then *a is equivalent to *b.                          |
  +----------------------------------------------------------------------------------------+
  |a->m                              pre: (*a).m is well-defined                           |
  |                                  Equivalent to (*a).m                                  |
  +----------------------------------------------------------------------------------------+
  |++r         X&                    pre: r is dereferenceable.                            |
  |                                  post: r is dereferenceable or r is past-the-end.      |
  |                                  post: any copies of the previous value of r are no    |
  |                                  longer required either to be dereferenceable or to be |
  |                                  in the domain of ==.                                  |
  +----------------------------------------------------------------------------------------+
  |(void)r++                         equivalent to (void)++r                               |
  +----------------------------------------------------------------------------------------+
  |*r++        T                     { T tmp = *r; ++r; return tmp; }                      |
  +----------------------------------------------------------------------------------------+

3 [Note: For input iterators, a == b does not imply ++a == ++b.  (Equal­
  ity does not guarantee the substitution property or referential trans­
  parency.)   Algorithms on input iterators should never attempt to pass
  through the same iterator twice.  They should  be  single  pass  algo­
  rithms.   Value  type  T  is not required to be an lvalue type.  These
  algorithms can be used with istreams as the source of the  input  data
  through the istream_iterator class.  ]

  24.1.2  Output iterators                        [lib.output.iterators]

1 A  class  or a built-in type X satisfies the requirements of an output
  iterator if the following expressions are valid, as shown in Table 4:

                  Table 4--Output iterator requirements

  +---------------------------------------------------------------------------------+
  |expression      return type        operational            assertion/note         |
  |                                    semantics           pre/post-condition       |
  +---------------------------------------------------------------------------------+
  |X(a)                                              a = t is equivalent to X(a) =  |
  |                                                  t.                             |
  |                                                  note: a destructor is assumed. |
  +---------------------------------------------------------------------------------+
  |X u(a);                                                                          |
  |X u = a;                                                                         |
  +---------------------------------------------------------------------------------+
  |*a = t       result is not used                                                  |
  +---------------------------------------------------------------------------------+
  |++r          X&                                   &r == &++r.                    |
  +---------------------------------------------------------------------------------+
  |r++          convertible to       { X tmp = r;                                   |
  |             const X&               ++r;                                         |
  |                                    return tmp;                                  |
  |                                  }                                              |
  +---------------------------------------------------------------------------------+
  |*r++ = t     result is not used                                                  |
  +---------------------------------------------------------------------------------+

2 [Note:  The  only valid use of an operator* is on the left side of the
  assignment statement.  Assignment through the same value of the itera­
  tor  happens  only  once.  Algorithms on output iterators should never
  attempt to pass through the same iterator twice.  They should be  sin­
  gle  pass  algorithms.   Equality and inequality might not be defined.
  Algorithms that take output iterators can be used with ostreams as the
  destination  for  placing  data  through the ostream_iterator class as
  well as with insert iterators and insert pointers.   --end note]

  24.1.3  Forward iterators                      [lib.forward.iterators]

1 A class or a built-in type X satisfies the requirements of  a  forward
  iterator if the following expressions are valid, as shown in Table 5:

                  Table 5--Forward iterator requirements

  +-------------------------------------------------------------------------------------+
  |expression       return type        operational             assertion/note           |
  |                                     semantics            pre/post-condition         |
  +-------------------------------------------------------------------------------------+
  |X u;                                               note: u might have a singular     |
  |                                                   value.                            |
  |                                                   note: a destructor is assumed.    |
  +-------------------------------------------------------------------------------------+
  |X()                                                note: X() might be singular.      |
  +-------------------------------------------------------------------------------------+
  |X(a)                                               a == X(a).                        |
  +-------------------------------------------------------------------------------------+
  |X u(a);                            X u; u = a;     post: u == a.                     |
  |X u = a;                                                                             |
  +-------------------------------------------------------------------------------------+
  |a == b       convertible to bool                   == is an equivalence relation.    |
  +-------------------------------------------------------------------------------------+
  |a != b       convertible to bool   !(a == b)                                         |
  +-------------------------------------------------------------------------------------+
  |r = a        X&                                    post: r == a.                     |
  +-------------------------------------------------------------------------------------+
  |*a           T&                                    pre: a is dereferenceable.        |
  |                                                   a == b implies *a == *b.          |
  |                                                   If X is mutable, *a = t is valid. |
  +-------------------------------------------------------------------------------------+
  |a->m         U&                    (*a).m          pre: (*a).m is well-defined.      |
  +-------------------------------------------------------------------------------------+
  |++r          X&                                    pre: r is dereferenceable.        |
  |                                                   post: r is dereferenceable or r   |
  |                                                   is past-the-end.                  |
  |                                                   r == s and r is dereferenceable   |
  |                                                   implies ++r == ++s.               |
  |                                                   &r == &++r.                       |
  +-------------------------------------------------------------------------------------+
  |r++          convertible to con­   { X tmp = r;                                      |
  |             st X&                   ++r;                                            |
  |                                     return tmp;                                     |
  |                                   }                                                 |
  +-------------------------------------------------------------------------------------+
  |*r++         T&                                                                      |
  +-------------------------------------------------------------------------------------+

2 [Note: The condition that a == b implies ++a == ++b (which is not true
  for input and output iterators) and the removal of the restrictions on
  the number of the assignments through the iterator (which  applies  to
  output  iterators)  allows the use of multi-pass one-directional algo­
  rithms with forward iterators.   --end note]

  24.1.4  Bidirectional iterators          [lib.bidirectional.iterators]

1 A class or a built-in type X satisfies the requirements of a  bidirec­
  tional  iterator  if,  in  addition to satisfying the requirements for
  forward iterators, the following expressions are  valid  as  shown  in
  Table 6:

  Table 6--Bidirectional iterator requirements (in addition to forward iterator)

  +----------------------------------------------------------------------------+
  |expression     return type       operational          assertion/note        |
  |                                  semantics         pre/post-condition      |
  +----------------------------------------------------------------------------+
  |--r          X&                                 pre: there exists s such    |
  |                                                that r == ++s.              |
  |                                                post: s is dereferenceable. |
  |                                                --(++r) == r.               |
  |                                                --r == --s implies r == s.  |
  |                                                &r == &--r.                 |
  +----------------------------------------------------------------------------+
  |r--          convertible to     { X tmp = r;                                |
  |             const X&             --r;                                      |
  |                                  return tmp;                               |
  |                                }                                           |
  +----------------------------------------------------------------------------+
  |*r--         convertible to T                                               |
  +----------------------------------------------------------------------------+

2 [Note:  Bidirectional  iterators  allow  algorithms  to move iterators
  backward as well as forward.   --end note]

  24.1.5  Random access iterators          [lib.random.access.iterators]

1 A class or a built-in type X satisfies the requirements  of  a  random
  access  iterator  if,  in  addition to satisfying the requirements for
  bidirectional iterators, the following expressions are valid as  shown
  in Table 7:

  Table 7--Random access iterator requirements (in addition to bidirectional iterator)

  +------------------------------------------------------------------------------------+
  |expression       return type         operational             assertion/note         |
  |                                      semantics            pre/post-condition       |
  +------------------------------------------------------------------------------------+
  |r += n       X&                    { Distance m =                                   |
  |                                   n;                                               |
  |                                     if (m >= 0)                                    |
  |                                       while (m--)                                  |
  |                                   ++r;                                             |
  |                                     else                                           |
  |                                       while (m++)                                  |
  |                                   --r;                                             |
  |                                     return r; }                                    |
  +------------------------------------------------------------------------------------+
  |a + n                              { X tmp = a;                                     |
  |             X                       return tmp +=   a + n == n + a.                |
  |                                   n; }                                             |
  |n + a                                                                               |
  +------------------------------------------------------------------------------------+
  |r -= n       X&                    return r += -n;                                  |
  +------------------------------------------------------------------------------------+
  |a - n        X                     { X tmp = a;                                     |
  |                                     return tmp -=                                  |
  |                                   n; }                                             |
  +------------------------------------------------------------------------------------+
  |b - a        Distance              { TBS }           pre: there exists a value n of |
  |                                                     Distance such that a + n == b. |
  |                                                     b == a + (b - a).              |
  +------------------------------------------------------------------------------------+
  |a[n]         convertible to T      *(a + n)                                         |
  +------------------------------------------------------------------------------------+
  |a < b        convertible to bool   b - a > 0         < is a total ordering relation |
  +------------------------------------------------------------------------------------+
  |a > b        convertible to bool   b < a             > is a total ordering relation |
  |                                                     opposite to <.                 |
  +------------------------------------------------------------------------------------+
  |a >= b       convertible to bool   !(a < b)                                         |
  +------------------------------------------------------------------------------------+
  |a <= b       convertible to bool   !(a > b)                                         |
  +------------------------------------------------------------------------------------+

  24.1.6  Iterator tags                              [lib.iterator.tags]

1 To implement algorithms only in terms of iterators, it is often neces­
  sary to infer both of the value type and the distance  type  from  the
  iterator.   To enable this task it is required that for an iterator of
  type Iterator the types iterator_trait<Iterator>::distance_type, iter­
  ator_trait<Iterator>::value_type,                                  and

  iterator_trait<Iterator>::iterator_category be defined as  the  itera­
  tor's distance type, value type and iterator category.  In the case of
  an output iterator, iterator_trait<Iterator>::distance_type, and iter­
  ator_trait<Iterator>::iterator_category are defined as void.

2 [Example:  To  implement a generic reverse function, a C++ program can
  do the following:
  template <class BidirectionalIterator>
  void reverse(BidirectionalIterator first, BidirectionalIterator last) {
     iterator_trait<BidirectionalIterator>::distance_type n =
           distance(first, last);
     --n;
     while(n > 0) {
         iterator_trait<BidirectionalIterator>::value_type tmp = *first;
         *first++ = * --last;
         *last = tmp;
         n -= 2;
     }
  }

3  --end example]

4 The template iteraror_trait<Iterator> is defined as
    template<class Iterator> struct iterator_trait {
      typedef Iterator::distance_type distance_type;
      typedef Iterator::value_type value_type;
      typedef Iterator::iterator_category iterator_category;
    };
  It is specialized for pointers as
    template<class T> struct iterator_trait<T*> {
      typedef ptrdiff_t distance_type;
      typedef T value_type;
      typedef random_access_iterator_tag iterator_category;
    }; [Note: If there is an additional popinter type  __far  such  that
  the  difference  of  two  __far is of type long, an implementation may
  define
    template<class T> struct iterator_trait<T __far*> {
      typedef ptrdiff_t distance_type;
      typedef T value_type;
      typedef random_access_iterator_tag iterator_category;
    };
   --end note]

5 It is often desirable for a template function to find out what is  the
  most  specific category of its iterator argument, so that the function
  can select the most efficient algorithm at compile time.   To  facili­
  tate  this, the library introduces category tag classes which are used
  as  compile  time   tags   for   algorithm   selection.    They   are:
  input_iterator_tag,  output_iterator_tag,  forward_iterator_tag, bidi­
  rectional_iterator_tag  and  random_access_iterator_tag.   For   every
  iterator of type Iterator, iterator_trait<Iterator>::iterator_category
  must be defined to be the most specific category  tag  that  describes
  the iterator's behavior.

6 [Example:  For a program-defined iterator BinaryTreeIterator, it could
  be included into the biderectional iterator category  by  specializing
  the iterator_traittemplate:
    template<class T> struct iterator_trait<BinaryTreeIterator<T> > {
      typedef ptrdiff_t distance_type;
      typedef T value_type;
      typedef bidirectional_iterator_tag iterator_category;
    };
  Typically, however, it would be easier to derive BinaryTreeIterator<T>
  from iterator<biderectional_iteraror_tag,T,ptrdiff_t>.    --end  exam­
  ple]

7 [Example: If evolve() is well defined for bidirectional iterators, but
  can be implemented more efficiently for random access iterators,  then
  the implementation is as follows:
    template <class BidirectionalIterator>
    inline void evolve(BidirectionalIterator first, BidirectionalIterator last) {
      evolve(first, last,
        iterator_trait<BidirectionalIterator>::iterator_category());
    }
    template <class BidirectionalIterator>
    void evolve(BidirectionalIterator first, BidirectionalIterator last,
                bidirectional_iterator_tag) {
    // ... more generic, but less efficient algorithm
    }
    template <class RandomAccessIterator>
    void evolve(RandomAccessIterator first, RandomAccessIterator last,
      random_access_iterator_tag) {
    // ... more efficient, but less generic algorithm
    }
   --end example]

8 [Example:  If  a  C++ program wants to define a bidirectional iterator
  for some data structure containing double and such that it works on  a
  large memory model of the implementation, it can do so with:
    class MyIterator : public iterator<bidirectional_iterator_tag, double, long> {
    // code implementing ++, etc.
    };

9 Then  there  is  no need to specialize the iterator_trait, template.
  --end example]

  24.2  Header <iterator> synopsis               [lib.iterator.synopsis]

  #include <cstddef>      // for ptrdiff_t
  #include <iosfwd>       // for istream, ostream
  #include <ios>          // for ios_traits
  #include <streambuf>    // for streambuf

  namespace std {
  // subclause _lib.library.primitives_, primitives:
    struct input_iterator_tag {};
    struct output_iterator_tag {};
    struct forward_iterator_tag : public output_iterator_tag,
                                  public input_iterator_tag {};
    struct bidirectional_iterator_tag {};
    struct random_access_iterator_tag {};
    template<class Category, class T, class Distance=ptrdiff_t> struct iterator

    template<class Iterator> struct iterator_trait;
    template<class T> struct iterator_trait<T*>;
  // subclause _lib.iterator.operations_, iterator operations:
    template <class InputIterator, class Distance>
      void advance(InputIterator& i, Distance n);
    template <class InputIterator>
      iterator_trait<InputIterator>::iterator_trait
      distance(InputIterator first, InputIterator last);
  // subclause _lib.predef.iterators_, predefined iterators:
    template <class BidirectionalIterator, class T, class Reference = T&,
        class Pointer = T*, class Distance = ptrdiff_t>
      class reverse_bidirectional_iterator :
        public iterator<bidirectional_iterator_tag,T,Distance>;

    template <class BidirectionalIterator, class T,
        class Reference, class Pointer, class Distance>
      bool operator==(
        const reverse_bidirectional_iterator
          <BidirectionalIterator,T,Reference,Pointer,Distance>& x,
        const reverse_bidirectional_iterator
          <BidirectionalIterator,T,Reference,Pointer,Distance>& y);

    template <class RandomAccessIterator, class T, class Reference = T&,
        class Pointer = T*, class Distance = ptrdiff_t>
      class reverse_iterator : public
         iterator<random_access_iterator_tag,T,Distance>;

    template <class RandomAccessIterator, class T, class Reference,
        class Pointer, class Distance>
      bool operator==(
        const reverse_iterator
              <RandomAccessIterator,T,Reference,Pointer,Distance>& x,
        const reverse_iterator
              <RandomAccessIterator,T,Reference,Pointer,Distance>& y);
    template <class RandomAccessIterator, class T, class Reference,
        class Pointer, class Distance>
      bool operator<(
        const reverse_iterator
              <RandomAccessIterator,T,Reference,Pointer,Distance>& x,
        const reverse_iterator
              <RandomAccessIterator,T,Reference,Pointer,Distance>& y);
    template <class RandomAccessIterator, class T, class Reference,
        class Pointer, class Distance>
      Distance operator-(
        const reverse_iterator
              <RandomAccessIterator,T,Reference,Pointer,Distance>& x,
        const reverse_iterator
              <RandomAccessIterator,T,Reference,Pointer,Distance>& y);
    template <class RandomAccessIterator, class T, class Reference,
        class Pointer, class Distance>
      reverse_iterator<RandomAccessIterator,T,Reference,Pointer,Distance>
        operator+(
          Distance n,
          const reverse_iterator
                <RandomAccessIterator,T,Reference,Pointer,Distance>& x);
    template <class Container> class back_insert_iterator;
    template <class Container>
      back_insert_iterator<Container> back_inserter(Container& x);
    template <class Container> class front_insert_iterator;
    template <class Container>
      front_insert_iterator<Container> front_inserter(Container& x);
    template <class Container> class insert_iterator;
    template <class Container, class Iterator>
      insert_iterator<Container> inserter(Container& x, Iterator i);
  // subclauses _lib.stream.iterators_, stream iterators:
    template <class T, class charT, class traits = ios_traits<charT>,
        class Distance = ptrdiff_t> class istream_iterator;
    template <class T, class Distance>
      bool operator==(const istream_iterator<T,Distance>& x,
                      const istream_iterator<T,Distance>& y);
    template <class T, class charT, class traits = ios_traits<charT> >
        class ostream_iterator;

    template<class charT, class traits = ios_traits<charT> >
      class istreambuf_iterator;
    template <class charT, class traits = ios_traits<charT> >
      bool operator==(istreambuf_iterator<charT,traits>& a,
                      istreambuf_iterator<charT,traits>& b);
    template <class charT, class traits = ios_traits<charT> >
      bool operator!=(istreambuf_iterator<charT,traits>& a,
                      istreambuf_iterator<charT,traits>& b);
    input_iterator iterator_category(const istreambuf_iterator& s);
    template <class charT, class traits = ios_char_traits<charT> >
      class ostreambuf_iterator;
    output_iterator iterator_category (const ostreambuf_iterator&);
  }

  +-------                 BEGIN BOX 1                -------+
  Change: Added an  overloaded  iterator_category  applied  to  istream­
  buf_iterator  to  match  the description in [lib.iterator.category.i].
  (But see below.)
  +-------                  END BOX 1                 -------+

  +-------                 BEGIN BOX 2                -------+
  Editorial  Proposal  The  overloaded   functions   iterator_category()
  applied  to  ostreambuf_iterator  and istreambuf_iterator are not tem­
  plates, but must be:
    template <class charT, class Traits>
      input_iterator iterator_category(
        const istreambuf_iterator<charT,Traits>&);
    template <class charT, class Traits>
      output_iterator iterator_category(
        const ostreambuf_iterator<charT,Traits>&);
  +-------                  END BOX 2                 -------+

  24.3  Iterator primitives                    [lib.iterator.primitives]

1 To simplify the task of defining the iterator_category, value_type and
  distance_type  for  user definable iterators, the library provides the
  following predefined classes and functions:

  24.3.1  Standard iterator tags                 [lib.std.iterator.tags]
  namespace std {
    struct input_iterator_tag {};
    struct output_iterator_tag {};
    struct forward_iterator_tag : public output_iterator_tag,
                                  public input_iterator_tag {};
    struct bidirectional_iterator_tag {};
    struct random_access_iterator_tag {};
  }

  24.3.2  Basic iterators                          [lib.basic.iterators]
  namespace std {
    template <class T, class Distance = ptrdiff_t>
       struct input_iterator {};
    struct output_iterator{};
    template <class T, class Distance = ptrdiff_t>
       struct forward_iterator {};
    template <class T, class Distance = ptrdiff_t>
       struct bidirectional_iterator {};
    template <class T, class Distance = ptrdiff_t>
       struct random_access_iterator {};
  }

1 [Note: output_iterator is not a template because output  iterators  do
  not have either value type or distance type defined.   --end note]

  24.3.3  Iterator operations                  [lib.iterator.operations]

1 Since  only  random  access  iterators  provide + and - operators, the
  library provides two template functions advance and  distance.   These
  functions use + and - for random access iterators (and are, therefore,
  constant time for them); for input, forward and  bidirectional  itera­
  tors they use ++ to provide linear time implementations.

  template <class InputIterator, class Distance>
    void advance(InputIterator& i, Distance n);

  Requires:
    n  may  be  negative only for random access and bidirectional itera­
    tors.
  Effects:
    Increments (or decrements for negative n) iterator reference i by n.

    template<class InputIterator>
        iterator_trait<InputIterator>::distance_type
           distance(InputIterator first, InputIterator last);

  Effects:
    Returns the number of times it takes to get from first to last.
  Requires:
    last must be reachable from first.

  24.4  Predefined iterators                      [lib.predef.iterators]

  24.4.1  Reverse iterators                      [lib.reverse.iterators]

1 Bidirectional  and  random access iterators have corresponding reverse
  iterator adaptors that iterate through the data structure in the oppo­
  site  direction.   They  have the same signatures as the corresponding
  iterators.  The fundamental relation between a  reverse  iterator  and
  its   corresponding   iterator  i  is  established  by  the  identity:

  &*(reverse_iterator(i)) == &*(i - 1).

2 This mapping is dictated by the fact that  while  there  is  always  a
  pointer  past  the end of an array, there might not be a valid pointer
  before the beginning of an array.

3 The formal class parameter T of reverse iterators should be  instanti­
  ated  with the type that Iterator::operator* returns, which is usually
  a reference type.  For example, to obtain a reverse iterator for int*,
  one  should declare reverse_iterator<int*, int>.  To obtain a constant
  reverse iterator for int*, one should  declare  reverse_iterator<const
  int*, const int>.  The interface thus allows one to use reverse itera­
  tors with those iterator types for which operator*  returns  something
  other than a reference type.

  24.4.1.1  Template class                      [lib.reverse.bidir.iter]
       reverse_bidirectional_iterator
  namespace std {
    template <class BidirectionalIterator,
              class T = iterator_trait<BidirectionalIterator>::value_type&,
              class Reference = T&, class Pointer = T*,
              class Distance = ptrdiff_t>
    class reverse_bidirectional_iterator
      : public iterator<bidirectional_iterator_tag,T,Distance> {
    protected:
      BidirectionalIterator current;
    public:
      reverse_bidirectional_iterator();
      explicit reverse_bidirectional_iterator(BidirectionalIterator x);
      BidirectionalIterator base() const;       // explicit
      Reference operator*() const;
      Pointer   operator->() const;
      reverse_bidirectional_iterator& operator++();
      reverse_bidirectional_iterator  operator++(int);
      reverse_bidirectional_iterator& operator--();
      reverse_bidirectional_iterator  operator--(int);
    };
    template <class BidirectionalIterator, class T,
        class Reference, class Pointer, class Distance>
      bool operator==(
        const reverse_bidirectional_iterator
          <BidirectionalIterator,T,Reference,Pointer,Distance>& x,
        const reverse_bidirectional_iterator
          <BidirectionalIterator,T,Reference,Pointer,Distance>& y);
  }

1
  24.4.1.2                                  [lib.reverse.bidir.iter.ops]
       reverse_bidirectional_iterator
       operations

  24.4.1.2.1                               [lib.reverse.bidir.iter.cons]
       reverse_bidirectional_iterator
       constructor

  explicit reverse_bidirectional_iterator(BidirectionalIterator x);

  Effects:
    Initializes current with x.

  24.4.1.2.2  Conversion                   [lib.reverse.bidir.iter.conv]

  BidirectionalIterator base() const;   // explicit

  Returns:
    current

  24.4.1.2.3  operator*                 [lib.reverse.bidir.iter.op.star]

  Reference operator*() const;

  Effects:
      BidirectionalIterator tmp = current;
      return *--tmp;

  24.4.1.2.4  operator->                  [lib.reverse.bidir.iter.opref]

  Pointer operator->() const;

  Effects:
      return &(operator*());

  24.4.1.2.5  operator++                   [lib.reverse.bidir.iter.op++]

  reverse_bidirectional_iterator& operator++();

  Effects:
    --current;
  Returns:
    *this

  reverse_bidirectional_iterator operator++(int);

  Effects:
      reverse_bidirectional_iterator tmp = *this;
      --current;
      return tmp;

  24.4.1.2.6  operator--                   [lib.reverse.bidir.iter.op--]

  reverse_bidirectional_iterator& operator--();

  Effects:
    ++current
  Returns:
    *this

  reverse_bidirectional_iterator operator--(int);

  Effects:
      reverse_bidirectional_iterator tmp = *this;
      ++current;
      return tmp;

  24.4.1.2.7  operator==                   [lib.reverse.bidir.iter.op==]
  template <class BidirectionalIterator, class T,
      class Reference, class Pointer, class Distance>
    bool operator==(
      const reverse_bidirectional_iterator
        <BidirectionalIterator,T,Reference,Pointer,Distance>& x,
      const reverse_bidirectional_iterator
        <BidirectionalIterator,T,Reference,Pointer,Distance>& y);
  Returns:
    x.current == y.current.

  24.4.1.3  Template class reverse_iterator       [lib.reverse.iterator]
  namespace std {
    template <class RandomAccessIterator,
              class T = iterator_trait<RandomAccessIterator>::value_type&,
              class Reference = T&, class Pointer = T*,
              class Distance = ptrdiff_t>
    class reverse_iterator :
              public iterator<random_access_iterator_tag,T,Distance> {
    protected:
      RandomAccessIterator current;
    public:
      reverse_iterator();
      explicit reverse_iterator(RandomAccessIterator x);
      RandomAccessIterator base() const;        // explicit
      Reference operator*() const;
      Pointer   operator->() const;
      reverse_iterator& operator++();
      reverse_iterator  operator++(int);
      reverse_iterator& operator--();
      reverse_iterator  operator--(int);

      reverse_iterator  operator+ (Distance n) const;
      reverse_iterator& operator+=(Distance n);
      reverse_iterator  operator- (Distance n) const;
      reverse_iterator& operator-=(Distance n);
      Reference operator[](Distance n) const;
    };
  }

  +-------                 BEGIN BOX 3                -------+
  Corfield: Motion 34 from Monterey added const to operator[].   Now  we
  have  a  const member function that returns a reference to non-const T
  which I think is wrong.
  +-------                  END BOX 3                 -------+

      template <class RandomAccessIterator, class T,
                class Reference, class Pointer, class Distance>
        bool operator==(
          const reverse_iterator
             <RandomAccessIterator,T,Reference,Pointer,Distance>& x,
          const reverse_iterator
             <RandomAccessIterator,T,Reference,Pointer,Distance>& y);
      template <class RandomAccessIterator, class T,
                class Reference, class Pointer, class Distance>
        bool operator<(
          const reverse_iterator
             <RandomAccessIterator,T,Reference,Pointer,Distance>& x,
          const reverse_iterator
             <RandomAccessIterator,T,Reference,Pointer,Distance>& y);
      template <class RandomAccessIterator, class T,
                class Reference, class Pointer, class Distance>
        Distance operator-(
          const reverse_iterator
             <RandomAccessIterator,T,Reference,Pointer,Distance>& x,
          const reverse_iterator
             <RandomAccessIterator,T,Reference,Pointer,Distance>& y);
      template <class RandomAccessIterator, class T,
                class Reference, class Pointer, class Distance>
        reverse_iterator
           <RandomAccessIterator,T,Reference,Pointer,Distance> operator+(
               Distance n,
               const reverse_iterator
                   <RandomAccessIterator,T,Reference,Pointer,Distance>& x);

  24.4.1.4  reverse_iterator operations           [lib.reverse.iter.ops]

  24.4.1.4.1  reverse_iterator constructor       [lib.reverse.iter.cons]

  explicit reverse_iterator(RandomAccessIterator x);

  Effects:
    Initializes current with x.

  24.4.1.4.2  Conversion                         [lib.reverse.iter.conv]

  RandomAccessIterator base() const;    // explicit

  Returns:
    current

  24.4.1.4.3  operator*                       [lib.reverse.iter.op.star]

  Reference operator*() const;

  Effects:
      RandomAccessIterator tmp = current;
      return *--tmp;

  24.4.1.4.4  operator->                        [lib.reverse.iter.opref]

  Pointer operator->() const;

  Effects:
      return &(operator*());

  24.4.1.4.5  operator++                         [lib.reverse.iter.op++]

  reverse_iterator& operator++();

  Effects:
    --current;
  Returns:
    *this

  reverse_iterator operator++(int);

  Effects:
      reverse_iterator tmp = *this;
      --current;
      return tmp;

  24.4.1.4.6  operator--                         [lib.reverse.iter.op--]

  reverse_iterator& operator--();

  Effects:
    ++current
  Returns:
    *this

  reverse_iterator operator--(int);

  Effects:
      reverse_iterator tmp = *this;
      ++current;
      return tmp;

  24.4.1.4.7  operator+                           [lib.reverse.iter.op+]

  reverse_iterator operator+(Distance n) const;

  Returns:
    reverse_iterator(current-n)

  24.4.1.4.8  operator+=                         [lib.reverse.iter.op+=]

  reverse_iterator& operator+=(Distance n);

  Effects:
    current -= n;
  Returns:
    *this

  24.4.1.4.9  operator-                           [lib.reverse.iter.op-]

  reverse_iterator operator-(Distance n) const;

  Returns:
    reverse_iterator(current+n)

  24.4.1.4.10  operator-=                        [lib.reverse.iter.op-=]

  reverse_iterator& operator-=(Distance n);

  Effects:
    current += n;
  Returns:
    *this

  24.4.1.4.11  operator[]                     [lib.reverse.iter.opindex]

  Reference operator[](Distance n) const;

  Returns:
    current[-n-1]

  +-------                 BEGIN BOX 4                -------+
  Corfield:  Motion  34  at  Monterey  did  not  ascribe  semantics   to

  operator[] which I think was an accidental omission. I think returning
  a reference to non-const T is a bad thing.
  +-------                  END BOX 4                 -------+

  24.4.1.4.12  operator==                        [lib.reverse.iter.op==]

  template <class RandomAccessIterator, class T,
            class Reference, class Pointer, class Distance>
    bool operator==(
      const reverse_iterator
         <RandomAccessIterator,T,Reference,Pointer,Distance>& x,
      const reverse_iterator
         <RandomAccessIterator,T,Reference,Pointer,Distance>& y);

  Returns:
    x.current == y.current

  24.4.1.4.13  operator<                          [lib.reverse.iter.op<]

  template <class RandomAccessIterator, class T,
            class Reference, class Pointer, class Distance>
    bool operator<(
      const reverse_iterator
         <RandomAccessIterator,T,Reference,Pointer,Distance>& x,
      const reverse_iterator
         <RandomAccessIterator,T,Reference,Pointer,Distance>& y);

  Returns:
    x.current < y.current

  24.4.1.4.14  operator-                       [lib.reverse.iter.opdiff]

  template <class RandomAccessIterator, class T,
            class Reference, class Pointer, class Distance>
    Distance operator-(
      const reverse_iterator
         <RandomAccessIterator,T,Reference,Pointer,Distance>& x,
      const reverse_iterator
         <RandomAccessIterator,T,Reference,Pointer,Distance>& y);

  Returns:
    y.current - x.current

  24.4.1.4.15  operator+=                       [lib.reverse.iter.opsum]

  template <class RandomAccessIterator, class T,
            class Reference, class Pointer, class Distance>
    reverse_iterator
     <RandomAccessIterator,T,Reference,Pointer,Distance> operator+(
      Distance n,
      const reverse_iterator
       <RandomAccessIterator,T,Reference,Pointer,Distance>& x);

  Returns:
    reverse_iterator<RandomAccessIterator,T,Reference,Pointer,Distance>(x.current
    - n)

  24.4.2  Insert iterators                        [lib.insert.iterators]

1 To  make it possible to deal with insertion in the same way as writing
  into an array, a special kind  of  iterator  adaptors,  called  insert
  iterators,  are  provided  in  the  library.   With  regular  iterator
  classes,
    while (first != last) *result++ = *first++;

2 causes a range [first, last) to be copied into a range  starting  with
  result.   The  same  code  with  result  being an insert iterator will
  insert corresponding elements into the container.  This device  allows
  all  of  the  copying  algorithms in the library to work in the insert
  mode instead of the regular overwrite mode.

3 An insert iterator is constructed from a container and possibly one of
  its iterators pointing to where insertion takes place if it is neither
  at the beginning nor at the end of the  container.   Insert  iterators
  satisfy  the  requirements of output iterators.  operator* returns the
  insert iterator itself.   The  assignment  operator=(const  T&  x)  is
  defined  on  insert iterators to allow writing into them, it inserts x
  right before where the insert iterator is pointing.  In  other  words,
  an  insert iterator is like a cursor pointing into the container where
  the insertion takes place.  back_insert_iterator inserts  elements  at
  the  end of a container, front_insert_iterator inserts elements at the
  beginning of a container, and insert_iterator inserts  elements  where
  the iterator points to in a container.  back_inserter, front_inserter,
  and inserter are three functions making the insert iterators out of  a
  container.

  24.4.2.1  Template class                    [lib.back.insert.iterator]
       back_insert_iterator

  +-------                 BEGIN BOX 5                -------+
  Change: N0845/96-0027 specified eliminating the member ``iter'' below,
  mistaking it for a typedef.  It has been kept.
  +-------                  END BOX 5                 -------+

  namespace std {
    template <class Container>
    class back_insert_iterator : public iterator<output_iterator_tag,void,void> {
    protected:
      Container& container;
      typename Container::iterator iter;
    public:
      explicit back_insert_iterator(Container& x);
      back_insert_iterator<Container>&
        operator=(const typename Container::value_type& value);
      back_insert_iterator<Container>& operator*();
      back_insert_iterator<Container>& operator++();
      back_insert_iterator<Container>  operator++(int);
    };
    template <class Container>
      back_insert_iterator<Container> back_inserter(Container& x);
  }

  24.4.2.2  back_insert_iterator              [lib.back.insert.iter.ops]
       operations

  24.4.2.2.1  back_insert_iterator           [lib.back.insert.iter.cons]
       constructor

  explicit back_insert_iterator(Container& x);

  Effects:
    Initializes container with x.

  24.4.2.2.2                                  [lib.back.insert.iter.op=]
       back_insert_iterator::operator=

  back_insert_iterator<Container>&
    operator=(const typename Container::value_type& value);

  Effects:
    container.push_back(value);
  Returns:
    *this.

  24.4.2.2.3                                  [lib.back.insert.iter.op*]
       back_insert_iterator::operator*

  back_insert_iterator<Container>& operator*();

  Returns:
    *this.

  24.4.2.2.4                                 [lib.back.insert.iter.op++]
       back_insert_iterator::operator++

  back_insert_iterator<Container>& operator++();
  back_insert_iterator<Container>  operator++(int);

  Returns:
    *this.

  24.4.2.2.5  back_inserter                          [lib.back.inserter]

  template <class Container>
    back_insert_iterator<Container> back_inserter(Container& x);

  Returns:
    back_insert_iterator<Container>(x).

  24.4.2.3  Template class                   [lib.front.insert.iterator]
       front_insert_iterator
  namespace std {
    template <class Container>
    class front_insert_iterator : public iterator<output_iterator_tag,void,void> {
    protected:
      Container& container;
    public:
      explicit front_insert_iterator(Container& x);
      front_insert_iterator<Container>&
        operator=(const typename Container::value_type& value);
      front_insert_iterator<Container>& operator*();
      front_insert_iterator<Container>& operator++();
      front_insert_iterator<Container>  operator++(int);
    };

  24.4.2.3.1  front_inserter                   [lib.front.inserter.decl]
    template <class Container>
      front_insert_iterator<Container> front_inserter(Container& x);
  Returns:
    front_insert_iterator<Container>(x).

  +-------                 BEGIN BOX 6                -------+
  Glassborow: WG21-N0833R1 section 4 asks that  the  Returns  clause  be
  removed  from the template class.  The Returns clause refers to a tem­
  plate function I have opened a subsection lib.front.inserter.decl  for
  this   template   function  declaration.   Similar  action  on  clause
  lib.insert.iterator
  +-------                  END BOX 6                 -------+

  24.4.2.4  front_insert_iterator            [lib.front.insert.iter.ops]
       operations

  24.4.2.4.1  front_insert_iterator         [lib.front.insert.iter.cons]
       constructor

  explicit front_insert_iterator(Container& x);

  Effects:
    Initializes container with x.

  24.4.2.4.2                                 [lib.front.insert.iter.op=]
       front_insert_iterator::operator=

  front_insert_iterator<Container>&
    operator=(const typename Container::value_type& value);

  Effects:
    container.push_front(value);
  Returns:
    *this.

  24.4.2.4.3                                 [lib.front.insert.iter.op*]
       front_insert_iterator::operator*

  front_insert_iterator<Container>& operator*();

  Returns:
    *this.

  24.4.2.4.4                                [lib.front.insert.iter.op++]
       front_insert_iterator::operator++

  front_insert_iterator<Container>& operator++();
  front_insert_iterator<Container>  operator++(int);

  Returns:
    *this.

  24.4.2.4.5  front_inserter                        [lib.front.inserter]

  template <class Container>
    front_insert_iterator<Container> front_inserter(Container& x);

  Returns:
    front_insert_iterator<Container>(x).

  24.4.2.5  Template class insert_iterator         [lib.insert.iterator]
  namespace std {
    template <class Container>
    class insert_iterator : public iterator<output_iterator_tag,void,void> {
    protected:
      Container& container;
      typename Container::iterator iter;
    public:
      insert_iterator(Container& x, typename Container::iterator i);
      insert_iterator<Container>&
        operator=(const typename Container::value_type& value);
      insert_iterator<Container>& operator*();
      insert_iterator<Container>& operator++();
      insert_iterator<Container>  operator++(int);
    };

  +-------                 BEGIN BOX 7                -------+
  Glassborow: inserted a sub-section and added Returns clause
  +-------                  END BOX 7                 -------+

  24.4.2.5.1  insert_inserter                      [lib.insert.inserter]
    template <class Container, class Iterator>
      insert_iterator<Container> inserter(Container& x, Iterator i);
  }
  Returns:
    insert_iterator<Container>(x,i).

  24.4.2.6  insert_iterator operations             [lib.insert.iter.ops]

  24.4.2.6.1  insert_iterator constructor         [lib.insert.iter.cons]

  insert_iterator(Container& x, typename Container::iterator i);

  Effects:
    Initializes container with x and iter with i.

  24.4.2.6.2  insert_iterator::operator=           [lib.insert.iter.op=]

  insert_iterator<Container>&
    operator=(const typename Container::value_type& value);

  Effects:
        iter = container.insert(iter, value);
        ++iter;
  Returns:
    *this.

  24.4.2.6.3  insert_iterator::operator*           [lib.insert.iter.op*]

  insert_iterator<Container>& operator*();

  Returns:
    *this.

  24.4.2.6.4  insert_iterator::operator++         [lib.insert.iter.op++]

  insert_iterator<Container>& operator++();
  insert_iterator<Container>  operator++(int);

  Returns:
    *this.

  24.4.2.6.5  inserter                                    [lib.inserter]

  template <class Container, class Inserter>
    insert_iterator<Container> inserter(Container& x, Inserter i);

  Returns:
    insert_iterator<Container>(x,typename Container::iterator(i)).

  24.5  Stream iterators                          [lib.stream.iterators]

1 To make it possible for algorithmic templates to  work  directly  with
  input/output  streams,  appropriate iterator-like template classes are
  provided.

2 [Example:
  partial_sum_copy(istream_iterator<double>(cin),  istream_iterator<double>(),
    ostream_iterator<double>(cout, "\n"));
  reads a file containing floating point numbers from  cin,  and  prints
  the partial sums onto cout.   --end example]

  24.5.1  Template class istream_iterator         [lib.istream.iterator]

1 istream_iterator<T>  reads (using operator>>) successive elements from
  the input stream for which it  was  constructed.   After  it  is  con­
  structed,  and  every time ++ is used, the iterator reads and stores a
  value of T.  If the end of stream is reached ( operator void*() on the
  stream returns false), the iterator becomes equal to the end-of-stream
  iterator value.  The constructor with no arguments  istream_iterator()
  always constructs an end of stream input iterator object, which is the
  only legitimate iterator to be used for the end condition.  The result
  of operator* on an end of stream is not defined.  For any other itera­
  tor value a const T& is returned.  The result of operator-> on an  end
  of  stream is not defined.  For any other iterator value a const T* is
  returned.  It is impossible to store things  into  istream  iterators.
  The  main  peculiarity  of  the  istream iterators is the fact that ++

  operators are not equality preserving, that is, i == j does not  guar­
  antee  at  all  that ++i == ++j.  Every time ++ is used a new value is
  read.

2 The practical consequence of this fact is that istream  iterators  can
  be  used  only  for  one-pass algorithms, which actually makes perfect
  sense, since for multi-pass algorithms it is always  more  appropriate
  to  use  in-memory  data  structures.  Two end-of-stream iterators are
  always equal.  An end-of-stream iterator is not equal to a non-end-of-
  stream  iterator.  Two non-end-of-stream iterators are equal when they
  are constructed from the same stream.
  namespace std {
    template <class T, class charT, class traits = ios_traits<charT>,
        class Distance = ptrdiff_t>
    class istream_iterator : public iterator<input_iterator_tag,T,Distance> {
    public:
      typedef basic_istream<charT,traits> istream_type;
      istream_iterator();
      istream_iterator(istream_type& s);
      istream_iterator(const istream_iterator<T,Distance>& x);
     ~istream_iterator();
      const T& operator*() const;
      const T* operator->() const;
      istream_iterator<T,Distance>& operator++();
      istream_iterator<T,Distance>  operator++(int);
    };
    template <class T, class Distance>
      bool operator==(const istream_iterator<T,Distance>& x,
                      const istream_iterator<T,Distance>& y);
  }

  24.5.2  Template class ostream_iterator         [lib.ostream.iterator]

1 ostream_iterator<T> writes (using operator<<) successive elements onto
  the  output  stream  from  which  it  was constructed.  If it was con­
  structed with char* as a constructor argument, this string,  called  a
  delimiter  string,  is written to the stream after every T is written.
  It is not possible to get a value out of  the  output  iterator.   Its
  only use is as an output iterator in situations like
    while (first != last) *result++ = *first++;

2 ostream_iterator is defined as:
  namespace std {
    template <class T, class charT, class traits = ios_traits<charT> >
    class ostream_iterator : public iterator<output_iterator_tag,void,void> {
    public:
      typedef basic_ostream<charT,traits> ostream_type;
      ostream_iterator(ostream_type& s);
      ostream_iterator(ostream_type& s, const charT* delimiter);
      ostream_iterator(const ostream_iterator<T>& x);
     ~ostream_iterator();
      ostream_iterator<T>& operator=(const T& value);

      ostream_iterator<T>& operator*();
      ostream_iterator<T>& operator++();
      ostream_iterator<T>  operator++(int);
    };

  +-------                 BEGIN BOX 8                -------+
  +-------                  END BOX 8                 -------+

  24.5.3  Template class                       [lib.istreambuf.iterator]
       istreambuf_iterator
  namespace std {
    template<class charT, class traits = ios_traits<charT>,
       class Distance = ptrdiff_>
    class istreambuf_iterator
       : public iterator<input_iterator_tag, charT, Distance> {
    public:
      typedef charT                         char_type;
      typedef traits                        traits_type;
      typedef typename traits::int_type     int_type;
      typedef basic_streambuf<charT,traits> streambuf_type;
      typedef basic_istream<charT,traits>   istream_type;
      class proxy;
      public:
        istreambuf_iterator() throw();
        istreambuf_iterator(istream_type& s) throw();
        istreambuf_iterator(streambuf_type* s) throw();
        istreambuf_iterator(const proxy& p) throw();
        charT operator*() const;
        istreambuf_iterator<charT,traits>& operator++();
        proxy operator++(int);
        bool equal(istreambuf_iterator& b);
      private:
        streambuf_type* sbuf_;   exposition only
    };
    input_iterator iterator_category(const istreambuf_iterator& s);
    template <class charT, class traits = ios_traits<charT> >
      bool operator==(istreambuf_iterator<charT,traits>& a,
                      istreambuf_iterator<charT,traits>& b);

    template <class charT, class traits = ios_traits<charT> >
      bool operator!=(istreambuf_iterator<charT,traits>& a,
                      istreambuf_iterator<charT,traits>& b);
  }

  +-------                 BEGIN BOX 9                -------+
  Change: Added synopses for operators == and  !=,  and  for  overloaded
  iterator_category(),  as  they  appear  in  the  detailed descriptions
  below.
  +-------                  END BOX 9                 -------+

1 The template class  istreambuf_iterator  reads  successive  characters
  from  the  streambuf for which it was constructed.  operator* provides
  access to the current input character, if any.  Each  time  operator++
  is  evaluated,  the iterator advances to the next input character.  If
  the  end  of  stream  is  reached   (streambuf_type::sgetc()   returns
  traits::eof()), the iterator becomes equal to the end of stream itera­
  tor value.  The default constructor istreambuf_iterator() and the con­
  structor istreambuf_iterator(0) both construct an end of stream itera­
  tor object suitable for use as an end-of-range.

2 The result of operator*() on an end of stream is undefined.   For  any
  other  iterator value a char_type value is returned.  It is impossible
  to assign a character via an input iterator.

3 Note that in the input iterators, ++ operators are not  equality  pre­
  serving,  that  is,  i == j does not guarantee at all that ++i == ++j.
  Every time ++ is evaluated a new value is used.

4 The practical consequence of this fact is that an  istreambuf_iterator
  object  can  be  used only for one-pass algorithms.  Two end of stream
  iterators are always equal.  An end of stream iterator is not equal to
  a non-end of stream iterator.

  24.5.3.1  Template class              [lib.istreambuf.iterator::proxy]
       istreambuf_iterator::proxy
  namespace std {
    template <class charT, class traits = ios_traits<charT> >
    class istreambuf_iterator<charT, traits>::proxy {
      charT keep_;
      basic_streambuf<charT,traits>* sbuf_;
      proxy(charT c,
            basic_streambuf<charT,traits>* sbuf);
        : keep_(c), sbuf_(sbuf) {}
    public:
      charT operator*() { return keep_; }
    };
  }

  +-------                BEGIN BOX 10                -------+
  Note: The member class proxy is identified in the issues  list  as  an
  implementation detail.  Expect it to be replaced by an opaque, unnamed
  type to which operator* can be applied yielding char_type,  and  which
  can be implicitly converted to istreambuf_iterator<>, but is otherwise
  unspecified.
  +-------                 END BOX 10                 -------+

1 Class istreambuf_iterator<charT,traits>::proxy  provides  a  temporary
  placeholder  as the return value of the post-increment operator opera­
  tor++).  It keeps the character pointed to by the  previous  value  of
  the iterator for some possible future access to get the character.

  24.5.3.2  istreambuf_iterator           [lib.istreambuf.iterator.cons]
       constructors

  istreambuf_iterator() throw();

  Effects:
    Constructs the end-of-stream iterator.

  istreambuf_iterator(basic_istream<charT,traits>& s) throw();
  istreambuf_iterator(basic_streambuf<charT,traits>* s) throw();

  Effects:
    Constructs an istreambuf_iterator<> that uses the  basic_streambuf<>
    object *(s.rdbuf()), or *s, respectively.

  +-------                BEGIN BOX 11                -------+
  Change:    Added    a    description    for   the   constructor   from
  basic_streambuf<>*, to match the synopsis (and the enabling proposal).
  +-------                 END BOX 11                 -------+

  istreambuf_iterator(const proxy& p) throw();

  Effects:
    Constructs  a  istreambuf_iterator<> that uses the basic_streambuf<>
    object pointed to by the proxy object's constructor argument p.

  +-------                BEGIN BOX 12                -------+
  Change: Added throw() to the default constructor and to the conversion
  from proxy for consistency with the other constructors.
  +-------                 END BOX 12                 -------+

  24.5.3.3                                [lib.istreambuf.iterator::op*]
       istreambuf_iterator::operator*

  charT operator*() const

  Returns:
    The character obtained via the streambuf member sbuf_->sgetc().

  24.5.3.4                               [lib.istreambuf.iterator::op++]
       istreambuf_iterator::operator++

  istreambuf_iterator<charT,traits>&
      istreambuf_iterator<charT,traits>::operator++();

  Effects:
    sbuf_->sbumpc().
  Returns:
    *this.

  proxy istreambuf_iterator<charT,traits>::operator++(int);

  Returns:
    proxy(sbuf_->sbumpc(), sbuf_).

  24.5.3.5                              [lib.istreambuf.iterator::equal]
       istreambuf_iterator::equal

  bool equal(istreambuf_iterator<charT,traits>& b);

  Returns:
    true if and only if both iterators are at end-of-stream, or  neither
    is at end-of-stream, regardless of what streambuf object they use.

  24.5.3.6  operator==                   [lib.istreambuf.iterator::op==]

  template <class charT, class traits = ios_traits<charT> >
    bool operator==(istreambuf_iterator<charT,traits>& a,
                    istreambuf_iterator<charT,traits>& b);

  Returns:
    a.equal(b).

  24.5.3.7  operator!=                   [lib.istreambuf.iterator::op!=]

  template <class charT, class traits = ios_traits<charT> >
    bool operator!=(istreambuf_iterator<charT,traits>& a,
                    istreambuf_iterator<charT,traits>& b);

  Returns:
    !a.equal(b).

  24.5.4  Template class                       [lib.ostreambuf.iterator]
       ostreambuf_iterator
  namespace std {
    template <class charT, class traits = ios_char_traits<charT> >
    class ostreambuf_iterator : iterator<output_iterator_tag,void,void>{
    public:
      typedef charT                         char_type;
      typedef traits                        traits_type;
      typedef basic_streambuf<charT,traits> streambuf_type;
      typedef basic_ostream<charT,traits>   ostream_type;

    public:
      ostreambuf_iterator(ostream_type& s) throw();
      ostreambuf_iterator(streambuf_type* s) throw();
      ostreambuf_iterator& operator=(charT c);
      ostreambuf_iterator& operator*();
      ostreambuf_iterator& operator++();
      ostreambuf_iterator  operator++(int);
      bool failed() const throw();
    private:
      streambuf_type* sbuf_;     exposition only
    };

1 The template class ostreambuf_iterator  writes  successive  characters
  onto  the output stream from which it was constructed.  It is not pos­
  sible to get a character value out of the output iterator.

  24.5.4.1  ostreambuf_iterator               [lib.ostreambuf.iter.cons]
       constructors

  ostreambuf_iterator(ostream_type& s) throw();

  Effects:
    : sbuf_(s.rdbuf()) {}

  ostreambuf_iterator(streambuf_type* s) throw();

  Effects:
    : sbuf_(s) {}

  ostreambuf_iterator<charT,traits>&
    operator=(charT c);

  Effects:
    If  failed()  yields  false, calls sbuf_->sputc(c); otherwise has no
    effect.
  Returns:
    *this.

  24.5.4.2  ostreambuf_iterator                [lib.ostreambuf.iter.ops]
       operations

  ostreambuf_iterator<charT,traits>& operator*();

  Returns:
    *this.

  ostreambuf_iterator<charT,traits>& operator++();
  ostreambuf_iterator<charT,traits>  operator++(int);

  Returns:
    *this.

  bool failed() const throw();

  Returns:
    true  if  in  any  prior  use  of  member  operator=,  the  call  to
    sbuf_->sputc() returned traits::eof(); or false otherwise.