______________________________________________________________________

  14   Templates                                        [temp]

  ______________________________________________________________________

1 A class template defines the layout and operations  for  an  unbounded
  set  of  related  types.  [Example: a single class template List might
  provide a common definition for list of int, list of float,  and  list
  of pointers to Shapes.  ] A function template defines an unbounded set
  of related functions.  [Example: a  single  function  template  sort()
  might provide a common definition for sorting all the types defined by
  the List class template.  ]

2 A template defines a family of types or functions.
          template-declaration:
                  template < template-parameter-list > declaration
          template-parameter-list:
                  template-parameter
                  template-parameter-list , template-parameter
  The declaration in a template-declaration shall declare  or  define  a
  function  or a class, define a static data member of a template class,
  or define a template member of a class.  A template-declaration  is  a
  declaration.   A  template-declaration  is  a definition (also) if its
  declaration defines a function, a class, or a static data member of  a
  template  class.   There shall be exactly one definition for each tem­
  plate in a program.  [Note: there can be many  declarations.   ]  How­
  ever,  if the multiple definitions are in different translation units,
  the behavior is undefined (and no diagnostic is required).

  +-------                 BEGIN BOX 1                -------+
  This - and all other requirements for unique definitions of  templates
  in  this  clause  -  will  have  to  be rephrased to take the ODR into
  account when the ODR is completely defined.
  +-------                  END BOX 1                 -------+

3 The name of a template obeys the usual scope and access control rules.
  A  template-declaration  can appear only as a global declaration, as a
  member of a namespace, as a member of a class, or as  a  member  of  a
  class template.  A member template shall not be virtual.  A destructor
  shall not be a template.  A local class shall not have a  member  tem­
  plate.

4 A  template shall not have C linkage.  If the linkage of a template is
  something other than C or C++, the behavior is implementation-defined.

5 [Example: An array class template might be declared like this:

          template<class T> class Array {
              T* v;
              int sz;
          public:
              explicit Array(int);
              T& operator[](int);
              T& elem(int i) { return v[i]; }
              // ...
          };
  The  prefix  template  <class  T>  specifies  that a template is being
  declared and that a type-name T will be used in the  declaration.   In
  other words, Array is a parameterized type with T as its parameter.  ]

6 [Note: a class template definition specifies  how  individual  classes
  can be constructed much as a class definition specifies how individual
  objects can be constructed.  ]

7 A member template can be  defined  within  its  class  or  separately.
  [Example:
          template<class T> class string {
          public:
                  template<class T2> int compare(const T2&);
                  template<class T2> string(const string<T2>& s) { /* ... */ }
                  // ...
          };
          template<class T> template<class T2> int string<T>::compare(const T2& s)
          {
                  // ...
          }
   --end example]

  14.1  Template names                                      [temp.names]

1 A template can be referred to by a template-id:
          template-id:
                  template-name < template-argument-list >
          template-name:
                  identifier
          template-argument-list:
                  template-argument
                  template-argument-list , template-argument
          template-argument:
                  assignment-expression
                  type-id
                  template-name

2 A template-id that names a template class is a class-name (_class_).

3 A  template-id that names a defined template class can be used exactly
  like the names of other defined classes.  [Example:
          Array<int> v(10);
          Array<int>* p = &v;
   --end example] [Note: template-ids that name functions are  discussed
  in _temp.fct_.  ]

4 A  template-id  that names a template class that has been declared but
  not defined can be used exactly like the names of other  declared  but
  undefined classes.  [Example:
          template<class T> class X; // X is a class template

          X<int>* p; // ok: pointer to declared class X<int>
          X<int> x;  // error: object of undefined class X<int>
   --end example]

5 The  name  of a template followed by a < is always taken as the begin­
  ning of a template-id and never as a name followed  by  the  less-than
  operator.   Similarly,  the  first non-nested > is taken as the end of
  the  template-argument-list  rather  than  a  greater-than   operator.
  [Example:
          template<int i> class X { /* ... */ }

          X< 1>2 >x1; // syntax error
          X<(1>2)>x2; // ok

          template<class T> class Y { /* ... */ }
          Y< X<1> > x3; // ok
   --end example]

6 The  name  of  a  class template shall not be declared to refer to any
  other template,  class,  function,  object,  enumeration,  enumerator,
  namespace, value, or type in the same scope.  Unless explicitly speci­
  fied to have internal linkage,  a  template  in  namespace  scope  has
  external  linkage  (_basic.link_).   A  global  template name shall be
  unique in a program.

7 In a template-argument, an ambiguity between a type-id and an  expres­
  sion is resolved to a type-id.  [Example:
          template<class T> void f();
          template<int I> void f();

          void g()
          {
                  f<int()>(); // ``int()'' is a type-id: call the first f()
          }
   --end example]

  14.2  Name resolution                                       [temp.res]

1 A  name used in a template is assumed not to name a type unless it has
  been explicitly declared to refer to a type in the  context  enclosing
  the  template  declaration  or  is  qualified by the keyword typename.
  [Example:

          // no B declared here

          class X;

          template<class T> class Y {
                  class Z; // forward declaration of member class

                  void f() {
                          X* a1;    // declare pointer to X
                          T* a2;    // declare pointer to T
                          Y* a3;    // declare pointer to Y
                          Z* a4;    // declare pointer to Z
                          typedef typename T::A TA;
                          TA* a5;   // declare pointer to T's A
                          typename T::A* a6;   // declare pointer to T's A
                          T::A* a7; // T::A is not a type name:
                                    // multiply T::A by a7
                          B* a8;    // B is not a type name:
                                    // multiply B by a8
                  }
          };
   --end example]

2 In a template, any use of a qualified-name where the qualifier depends
  on  a  template-parameter  can  be prefixed by the keyword typename to
  indicate that the qualified-name denotes a type.
          elaborated-type-specifier:
                  ...
                  typename ::opt nested-name-specifier identifier full-template-argument-listopt

          full-template-argument-list:
                  < template-argument-list >

3 If a specialization of that template  is  generated  for  a  template-
  argument such that the qualified-name does not denote a type, the spe­
  cialization is ill-formed.  The keyword typename states that the  fol­
  lowing  qualified-name names a type.  [Note: but gives no clue to what
  that type might be.  ] The qualified-name shall  include  a  qualifier
  containing a template parameter or a template class name.

4 Knowing which names are type names allows the syntax of every template
  declaration to be checked.  Syntax errors in  a  template  declaration
  can  therefore be diagnosed at the point of the declaration exactly as
  errors for non-template constructs.  Other errors, such as type errors
  involving  template  parameters, cannot be diagnosed until later; such
  errors shall be diagnosed at the point  of  instantiation  or  at  the
  point where member functions are generated (_temp.inst_).  Errors that
  can be diagnosed at the point of a template declaration shall be diag­
  nosed  there or later together with the dependent type errors.  [Exam­
  ple:

          template<class T> class X {
                  // ...
                  void f(T t, int i, char* p)
                  {
                          t = i;  // typecheck at point of instantiation,
                                  //        or at function generation
                          p = i;  // typecheck immediately at template declaration,
                                  //        at point of instantiation,
                                  //        or at function generation
                  }
          };
   --end example] No diagnostics shall be issued for a template  defini­
  tion for which a valid specialization can be generated.

5 Three kinds of names can be used within a template definition:

  --The  name  of  the  template  itself,  the  names  of  the template-
    parameters (_temp.param_), and names declared  within  the  template
    itself.

  --Names from the scope of the template definition.

  --Names  dependent  on a template-argument (_temp.arg_) from the scope
    of a template instantiation.

6 [Example:
          #include <iostream>
          using namespace std;

          template<class T> class Set {
                  T* p;
                  int cnt;
          public:
                  Set();
                  Set<T>(const Set<T>&);
                  void printall()
                  {
                          for (int i = 0; i<cnt; i++)
                                  cout << p[i] << '\n';
                  }
                  // ...
          };
   --end example] When looking for the declaration of a name used  in  a
  template  definition the usual lookup rules (_class.scope0_) are first
  applied.  [Note: in the example, i is the local variable i declared in
  printall, cnt is the member cnt declared in Set, and cout is the stan­
  dard output stream declared in iostream.  However, not every  declara­
  tion can be found this way; the resolution of some names must be post­
  poned until the actual template-argument is known.  For example,  even
  though  the name operator<< is known within the definition of sum() an
  a declaration of it can be found in <iostream>, the actual declaration
  of  operator<<  needed to print p[i] cannot be known until it is known
  what type T is (_temp.dep_).  ]

7 If a name can be bound at the point of the template definition and  it
  is not a function called in a way that depends on a template-parameter
  (as defined in _temp.dep_), it will be bound at the  template  defini­
  tion  point  and  the  binding  is not affected by later declarations.
  [Example:
          void f(char);

          template<class T> void g(T t)
          {
                  f(1);     // f(char)
                  f(T(1));  // dependent
                  f(t);     // dependent
          }
          void f(int);

          void h()
          {
                  g(2);   // will cause one call of f(char) followed
                          //  by two calls of f(int)
                  g('a'); // will cause three calls of f(char)
          }
   --end example]

  14.2.1  Locally declared names                            [temp.local]

1 Within the scope of a class template or a specialization of a template
  the  name  of  the  template is equivalent to the name of the template
  followed by the template-parameters enclosed  in  <>.   [Example:  the
  constructor  for Set can be referred to as Set() or Set<T>().  ] Other
  specializations (_temp.spec_) of the  class  can  be  referred  to  by
  explicitly  qualifying  the  template  name with appropriate template-
  arguments.  [Example:
          template<class T> class X {
                  X* p;           // meaning X<T>
                  X<T>* p2;
                  X<int>* p3;
          };
          template<class T> class Y;

          class Y<int> {
                  Y* p;           // meaning Y<int>
          };
   --end example] [Note: see _temp.param_ for  the  scope  of  template-
  parameters.  ]

2 A template type-parameter can be used in an elaborated-type-specifier.
  [Example:
          template<class T> class A {
                  friend class T;
                  class T* p;
                  class T;        // error: redeclaration of template parameter T
                                  // (a name declaration, not an elaboration)
                  // ...
          }

   --end example]

3 However, a specialization of a template  for  which  a  type-parameter
  used  this  way is not in agreement with the elaborated-type-specifier
  (_dcl.type_) is ill-formed.  [Example:
          class C { /* ... */ };
          struct S { /* ... */ };
          union U { /* ... */ };
          enum E { /* ... */ };

          A<C> ac;        // ok
          A<S> as;        // ok
          A<U> au;        // error: parameter T elaborated as a class,
                          // but the argument supplied for T is a union
          A<int> ai;      // error: parameter T elaborated as a class,
                          // but the argument supplied for T is an int
          A<E> ae;        // error: parameter T elaborated as a class,
                          // but the argument supplied for T is an enumeration
   --end example]

  14.2.2  Names from the template's enclosing scope          [temp.encl]

1 If a name used in a template isn't defined in the template  definition
  itself, names declared in the scope enclosing the template are consid­
  ered.  If the name used is found there, the name used  refers  to  the
  name in the enclosing context.  [Example:
          void g(double);
          void h();

          template<class T> class Z {
          public:
                  void f() {
                          g(1); // calls g(double)
                          h++;  // error: cannot increment function
                  }
          };

          void g(int); // not in scope at the point of the template
                       // definition, not considered for the call g(1)
    --end  example]  [Note:  a  template definition behaves exactly like
  other definitions.  ] [Example:

          void g(double);
          void h();

          class ZZ {
          public:
                  void f() {
                          g(1); // calls g(double)
                          h++;  // error: cannot increment function
                  }
          };

          void g(int); // not in scope at the point of class ZZ
                       // definition, not considered for the call g(1)
   --end example]

  14.2.3  Dependent names                                     [temp.dep]

1 Some names used in a template are neither known at the  point  of  the
  template definition nor declared within the template definition.  Such
  names shall depend on a template-argument and shall be in scope at the
  point of the template instantiation (_temp.inst_).  [Example:
          class Horse { /* ... */ };

          ostream& operator<<(ostream&,const Horse&);

          void hh(Set<Horse>& h)
          {
                  h.printall();
          }
  In  the call of Set<Horse>::printall(), the meaning of the << operator
  used  to  print  p[i]  in   the   definition   of   Set<T>::printall()
  (_temp.res_), is
          operator<<(ostream&,const Horse&);
  This  function  takes  an  argument of type Horse and is called from a
  template with a template-parameter T for which  the  template-argument
  is  Horse.   Because  this function depends on a template-argument the
  call is well-formed.  ]

2 A function call depends on a template-argument if the call would  have
  a  different resolution or no resolution if a type, template, or named
  constant mentioned in the template-argument were missing from the pro­
  gram.  [Example: some calls that depend on an argument type T are:

  1)The  function  called has a parameter that depends on T according to
    the  type  deduction  rules  (_temp.deduct_).   For  example:  f(T),
    f(Array<T>), and f(const T*).

  2)The type of the actual argument depends on T.  For example: f(T(1)),
    f(t), f(g(t)), and f(&t) assuming that t has the type T.

  3)A call is resolved by the use of a conversion to T without either an
    argument  or a parameter of the called function being of a type that
    depended on T as specified in (1) and (2).  For example:

              struct B { };
              struct T : B { };
              struct X { operator T(); };

              void f(B);

              void g(X x)
              {
                      f(x);  // meaning f( B( x.operator T() ) )
                             // so the call f(x) depends on T
              }

3 This ill-formed template instantiation uses a function that  does  not
  depend on a template-argument:
          template<class T> class Z {
          public:
                  void f() {
                          g(1); // g() not found in Z's context.
                                // Look again at point of instantiation
                  }
          };
          void g(int);

          void h(const Z<Horse>& x)
          {
                  x.f(); // error: g(int) called by g(1) does not depend
                         // on template-parameter ``Horse''
          }
  The call x.f() gives raise to the specialization:
          Z<Horse>::f() { g(1); }
  The call g(1) would call g(int), but since that call in no way depends
  on the template-argument Horse and because g(int) wasn't in  scope  at
  the  point  of  the definition of the template, the call x.f() is ill-
  formed.

4 On the other hand:
          void h(const Z<int>& y)
          {
                  y.f(); // fine: g(int) called by g(1) depends
                         // on template-parameter ``int''
          }
  Here, the call y.f() gives raise to the specialization:
          Z<int>::f() { g(1); }
  The call g(1) calls g(int), and since that call depends  on  the  tem­
  plate-argument  int,  the  call y.f() is acceptable even though g(int)
  wasn't in scope at the point of the template definition.  ]

5 A name from a base class (of a non-dependent type) can hide  the  name
  of a template-parameter.  [Example:

          struct A {
                  struct B { /* ... */ };
                  int a;
                  int Y;
          };

          template<class B, class a> struct X : A {
                  B b;  // A's B
                  a b;  // error: A's a isn't a type name
          };
   --end example]

6 However,  a  name from a template-argument cannot hide a name declared
  within a template, a template-parameter, or a name from the template's
  enclosing scopes.  [Example:
          int a;

          template<class T> struct Y : T {
                  struct B { /* ... */ };
                  B b;                     // The B defined in Y
                  void f(int i) { a = i; } // the global a;
                  Y* p;                    // Y<T>
          };

          Y<A> ya;
  The  members  A::B,  A::a,  and A::Y of the template argument A do not
  affect the binding of names in Y<A>.  ]

7 A name of a member can hide the name of a template-parameter.   [Exam­
  ple:
          template<class T> struct A {
                  struct B { /* ... */ };
                  void f();
          };

          template<class B> void A<B>::f()
          {
                  B b;  // A's B, not the template parameter
          }
   --end example]

  14.2.4  Non-local names declared within a template       [temp.inject]

1 Names  that are not template members can be declared within a template
  class or function.  When a template is specialized, the names declared
  in  it  are  declared  as  if  the  specialization had been explicitly
  declared at its point of instantiation.  If a template is  first  spe­
  cialized  as the result of use within a block or class, names declared
  within the template shall be used only after  the  template  use  that
  caused the specialization.  [Example:

          // Assume that Y is not yet declared

          template<class T> class X {
                  friend class Y;
          };
          Y* py1;             // ill-formed: Y is not in scope

          // Here is the point of instantiation for X<C>
          void g()
          {
                  X<C>* pc;   // does not cause instantiation
                  Y* py2;     // ill-formed: Y is not in scope
                  X<C> c;     // causes instantiation of X<C>, so
                              // names from X<C> can be used
                              // here on
                  Y* py3;     // ok
          }
          Y* py4;             // ok
   --end example]

  14.3  Template instantiation                               [temp.inst]

1 A  class  generated from a class template is called a generated class.
  A function generated from a function template is  called  a  generated
  function.   A  static  data member generated from a static data member
  template is called a generated static data member.   A  class  defined
  with  a  template-id  as  its name is called an explicitly specialized
  class.  A function defined with a template-id as its name is called an
  explicitly  specialized function.  A static data member defined with a
  template-id as its name is called  an  explicitly  specialized  static
  data  member.   A  specialization is a class, function, or static data
  member that is either generated or explicitly specialized.

2 [Note: the act of generating a class, function, or static data  member
  from a template is commonly referred to as template instantiation.  ]

  14.3.1  Template linkage                                [temp.linkage]

1 A function template has external linkage, as does a static member of a
  class template.  Every function template shall have the  same  defini­
  tion in every translation unit in which it appears.

  14.3.2  Point of instantiation                            [temp.point]

1 The  point  of  instantiation  of  a template is the point where names
  dependent on the template-argument are bound.  That point  is  immedi­
  ately before the declaration in the nearest enclosing global or names­
  pace scope containing the first use of the template requiring its def­
  inition.  [Note: this implies that names used in a template definition
  cannot be bound to local names or class member names from the scope of
  the  template  use.  They can, however, be bound to names of namespace
  members.  For example:

          // void g(int); not declared here

          template<class T> class Y {
          public:
                  void f() { g(1); }
          };
          void k(const Y<int>& h)
          {
                  void g(int);
                  h.f(); // error: g(int) called by g(1) not found
                         //        local g() not considered
          }
          class C {
                  void g(int);

                  void m(const Y<int>& h)
                  {
                          h.f(); // error: g(int) called by g(1) not found
                                 //        C::g() not considered
                  }
          };
          namespace N {
                  void g(int);

                  void n(const Y<int>& h)
                  {
                          h.f(); // N::g(int) called by g(1)
                  }
          }
   --end note]

2 Names from both the namespace of the template itself and of the names­
  pace  containing  the  point  of instantiation of a specialization are
  used to resolve names for the specialization.  Overload resolution  is
  used to chose between functions with the same name in these two names­
  paces.  [Example:
          namespace NN {
                  void g(int);
                  void h(int);
                  template<class T> void f(T t)
                  {
                          g(t);
                          h(t);
                          k(t);
                  }
          }

          namespace MM {
                  void g(double);
                  void k(double);

                  // instantiation point for NN::f(int) and NN::f(double)

                  void m()
                  {
                          NN::f(1);    // indirectly calls NN::g(int),
                                       //                  NN::h, and MM::k.
                          NN::f(1.0);  // indirectly calls MM::g(double),
                                       //                  NN::h, and MM::k.
                  }
          }
   --end example] If a name is found in  both  namespaces  and  overload
  resolution cannot resolve a use, the program is ill-formed.

3 Each translation unit in which the definition of a template is used in
  a way that require definition of  a  specialization  has  a  point  of
  instantiation for the template.  If this causes names used in the tem­
  plate definition to bind to different names in  different  translation
  units,  the  one-definition  rule has been violated and any use of the
  template is ill-formed.  Such violation does not require a diagnostic.

4 A  template can be either explicitly instantiated for a given argument
  list or be implicitly instantiated.  A template that has been used  in
  a  way  that  require a specialization of its definition will have the
  specialization implicitly generated unless it has either been  explic­
  itly   instantiated   (_temp.explicit_)   or   explicitly  specialized
  (_temp.spec_).  A specialization  will  not  be  implicitly  generated
  unless  the  definition  of  a  template  specialization  is required.
  [Example:
          template<class T> class Z {
                  void f();
                  void g();
          };
          void h()
          {
                  Z<int> a;     // instantiation of class Z<int> required
                  Z<char>* p;   // instantiation of class Z<char> not required
                  Z<double>* q; // instantiation of class Z<double> not required

                  a.f();  // instantiation of Z<int>::f() required
                  p->g(); // instantiation of class Z<char> required, and
                          // instantiation of Z<char>::g() required
          }
  Nothing in this example  requires  class  Z<double>,  Z<int>::g(),  or
  Z<char>::f()  to  be  instantiated.   ]  An  implementation  shall not
  instantiate a function or a class that does not require instantiation.
  However, virtual functions can be instantiated for implementation pur­
  poses.

5 If a virtual function is instantiated, its point of  instantiation  is
  immediately following the point of instantiation for its class.

6 The point of instantiation for a template used inside another template
  and not instantiated previous to an  instantiation  of  the  enclosing
  template  is  immediately  before  the  point  of instantiation of the
  enclosing template.  [Example:
          namespace N {
                  template<class T> class List {
                  public:
                          T* get();
                          // ...
                  };
          }
          template<class K, class V> class Map {
                  List<V> lt;
                  V get(K);
                  //  ...
          };
          void g(Map<char*,int>& m)
          {
                  int i = m.get("Nicholas");
                  // ...
          }
   --end example] This allows instantiation of a  used  template  to  be
  done before instantiation of its user.

7 Implicitly generated template classes, functions, and static data mem­
  bers are placed in the  namespace  where  the  template  was  defined.
  [Example:  a  call  of lt.get() from Map<char*,int>::get() would place
  List<int>::get() in the namespace N rather than in the  global  names­
  pace.  ]

  +-------                 BEGIN BOX 2                -------+
  Name injection from an implicitly generated template function special­
  ization are under debate. That is, it might be banned.
  +-------                  END BOX 2                 -------+

8 If a template for which a definition is in scope is used in a way that
  involves  overload resolution or conversion to a base class, the defi­
  nition of a template specialization is required.  [Example:

          template<class T> class B { /* ... */ };
          template<class T> class D : public B<T> { /* ... */ };

          void f(void*);
          void f(B<int>*);

          void g(D<int>* p, D<char>* pp)
          {
                  f(p); // instantiation of D<int> required: call f(B<int>*)

                  B<char>* q = pp; // instantiation of D<char> required:
                                   // convert D<char>* to B<char>*
          }
   --end example]

9 If an instantiation of a class template is required and  the  template
  is declared but not defined, the program is ill-formed.  [Example:
          template<class T> class X;

          X<char> ch; // error: definition of X required
   --end example]

10Recursive instantiation is possible.  [Example:
          template<int i> int fac() { return i>1 ? i*fac<i-1>() : 1; }

          int fac<0>() { return 1; }

          int f()
          {
                  return fac<17>();
          }
   --end example]

11There  shall be an implementation quantity that specifies the limit on
  the depth of recursive instantiations.

12The result of an infinite recursion in instantiation is undefined.  In
  particular,  an implementation is allowed to report an infinite recur­
  sion as being ill-formed.  [Example:
          template<class T> class X {
                  X<T>* p; // ok
                  X<T*> a; // instantiation of X<T> requires
                           // the instantiation of X<T*> which requires
                           // the instantiation of X<T**> which ...
          };
   --end example]

13No program shall explicitly instantiate any template more  than  once,
  both  explicitly  instantiate and explicitly specialize a template, or
  specialize a template more than once for  a  given  set  of  template-
  arguments.   An implementation is not required to diagnose a violation
  of this rule.

14An explicit specialization or explicit  instantiation  of  a  template
  shall  be  in the namespace in which the template was defined.  [Exam­
  ple:
          namespace N {
                  template<class T> class X { /* ... */ };
                  template<class T> class Y { /* ... */ };
                  template<class T> class Z {
                          void f(int i) { g(i); }
                          // ...
                  };

                  class X<int> { /* ... */ }; // ok: specialization
                                              //     in same namespace
          }
          template class Y<int>; // error: explicit instantiation
                                 //        in different namespace
          template class N::Y<char*>; // ok: explicit instantiation
                                      //     in same namespace
          class N::Y<double> { /* ... */ }; // ok: specialization
                                            //     in same namespace
   --end example]

15A member function of an explicitly  specialized  class  shall  not  be
  implicitly  generated  from the general template.  Instead, the member
  function shall itself be explicitly specialized.  [Example:
          template<class T> struct A {
                  void f() { /* ... */ }
          };

          struct A<int> {
                  void f();
          };

          void h()
          {
                  A<int> a;
                  a.f();  // A<int>::f must be defined somewhere
          }

          void A<int>::f() { /* ... */ };
   --end example] Thus, an explicit specialization of  a  class  implies
  the declaration of specializations of all of its members.  The defini­
  tion of each such specialized member which is used shall  be  provided
  in some translation unit.

  14.3.3  Instantiation of operator->                       [temp.opref]

1 If  a  template  class  has  an operator->, that operator-> can have a
  return type that cannot be dereferenced by -> as long as  that  opera­
  tor->  is  neither  invoked, nor has its address taken, isn't virtual,
  nor is explicitly instantiated.  [Example:

          template<class T> class Ptr {
                  // ...
                  T* operator->();
          };

          Ptr<int> pi; // ok
          Ptr<Rec> pr; // ok

          void f()
          {
                  pi->m = 7; // error: Ptr<int>::operator->() returns a type
                             //        that cannot be dereference by ->
                  pr->m = 7; // ok if Rec has an accessible member m
                             // of suitable type
          }
   --end example]

  14.4  Explicit instantiation                           [temp.explicit]

1 A class or function specialization can be explicitly instantiated from
  its template.

2 The syntax for explicit instantiation is:
          explicit-instantiation:
                  template declaration
  Where  the  unqualifier-id  in the declaration shall be a template-id.
  [Example:
          template class Array<char>;

          template void sort<char>(Array<char>&);
   --end example]

3 A declaration of the template shall  be  in  scope  at  the  point  of
  explicit instantiation.

4 A  trailing  template-argument  can be left unspecified in an explicit
  instantiation or explicit specialization of a template  function  pro­
  vided it can be deduced from the function argument type.  [Example:
          // instantiate sort(Array<int>&):
          // deduce template-argument:
          template void sort<>(Array<int>&);
   --end example]

5 The explicit instantiation of a class implies the instantiation of all
  of its members not previously explicitly specialized in  the  transla­
  tion unit containing the explicit instantiation.

  14.5  Template specialization                              [temp.spec]

1 Except for a type member or template class member of a non-specialized
  template class, the following can be declared by a  declaration  where
  the declared name is a template-id: a specialized template function, a
  template class, or a static member of a template; that is:

          specialization:
                  declaration
  [Note: a static member of a template can only be specialized in a def­
  inition due to syntactic restrictions.  ] [Example:
          template<class T> class stream;

          class stream<char> { /* ... */ };
          template<class T> void sort(Array<T>& v) { /* ... */ }

          void sort<char*>(Array<char*>&) ;
  Given  these declarations, stream<char> will be used as the definition
  of streams of chars; other streams will be handled by template classes
  generated  from  the  class  template.  Similarly, sort<char*> will be
  used as the sort function for arguments of  type  Array<char*>;  other
  Array  types  will be sorted by functions generated from the template.
  ]

2 A declaration of the template being specialized shall be in  scope  at
  the point of declaration of a specialization.  [Example:
          class X<int> { /* ... */ }; // error: X not a template

          template<class T> class X { /* ... */ };

          class X<char*> { /* ... */ }; // fine: X is a template
   --end example]

3 If a template is explicitly specialized then that specialization shall
  be declared before the first  use  of  that  specialization  in  every
  translation unit in which it is used.  [Example:
          template<class T> void sort(Array<T>& v) { /* ... */ }

          void f(Array<String>& v)
          {
                  sort(v); // use general template
                           // sort(Array<T>&), T is String
          }

          void sort<String>(Array<String>& v); // error: specialize after use
          void sort<>(Array<char*>& v); // fine sort<char*> not yet used
    --end  example]  If a function or class template has been explicitly
  specialized for a template-argument list  no  specialization  will  be
  implicitly generated for that template-argument list.

4 It is possible for a specialization with a given function signature to
  be generated by more than  one  function  template.   In  such  cases,
  explicit  specification  of  the  template  arguments  must be used to
  uniquely identify the template function instance that  is  being  spe­
  cialized.  [Example:
          template <class T> void f(T);
          template <class T> void f(T*);
          void f<>(int*);        // Ambiguous
          void f<int>(int*);     // OK
          void f<>(int);         // OK

   --end example]

5 Note  that a function with the same name as a template and a type that
  exactly  matches  that  of  a  template  is   not   a   specialization
  (_temp.over.spec_).

  14.6  Class template specializations                 [temp.class.spec]

1 A  primary  class  template declaration is one in which the class tem­
  plate name is an identifier.  A  template  declaration  in  which  the
  class  template  name is a template-id, is a partial specialization of
  the class template named in the  template-id.   The  primary  template
  shall be declared before any specializations of that template.

2 [Example:

3         template<class T1, class T2, int I> class A             { }; // #1
          template<class T, int I>            class A<T, T*, I>   { }; // #2
          template<class T1, class T2, int I> class A<T1*, T2, I> { }; // #3
          template<class T>                   class A<int, T*, 5> { }; // #4
          template<class T1, class T2, int I> class A<T1, T2*, I> { }; // #5

4 The  first declaration declares the primary (unspecialized) class tem­
  plate.  The second and subsequent declarations declare specializations
  of the primary template.  ]

5 The  template  parameters  are specified in the angle bracket enclosed
  list that immediately follows the keyword template.  A  template  also
  has  a  template  argument  list.   For  specializations, this list is
  explicitly written immediately following the class template name.  For
  primary  templates,  this list is implicitly described by the template
  parameter list.  Specifically, the order of the template parameters is
  the  sequence  in  which  they  appear in the template parameter list.
  [Example: the template argument list for the primary template  in  the
  example above is <T1, T2, I>.  ]

6 A  nontype  argument  is nonspecialized if it is the name of a nontype
  parameter.  All other nontype arguments are specialized.

7 Within the argument list of a class template specialization, the  fol­
  lowing restrictions apply:

  --A  specialized  nontype argument expression shall not involve a tem­
    plate parameter of the specialization.

  --The type of a specialized  nontype  argument  shall  not  depend  on
    another type parameter of the specialization.

  --The  argument  list  of the specialization shall not be identical to
    the implicit argument list of the primary template.

8
  14.6.1  Matching of class template             [temp.class.spec.match]
       specializations

1 When  a  template  class is used in a context that requires a complete
  instantiation of the class, it is necessary to determine  whether  the
  instantiation  is to be generated using the primary template or one of
  the partial specializations.  This is done by  matching  the  template
  arguments  of the template class being used with the template argument
  lists of the partial specializations.

  --If no matches are found, the instantiation  is  generated  from  the
    primary template.

  --If  exactly  one matching specialization is found, the instantiation
    is generated from that specialization.

  --If more than one specialization is found, the  partial  order  rules
    (_temp.class.order_)  are  used to determine whether one of the spe­
    cializations is more specialized than the others.  If  none  of  the
    specializations  is  more specialized than all of the other matching
    specializations, then the use of the template class is ambiguous and
    the program is ill-formed.

2 A  specialization matches a given actual template argument list if the
  template arguments of the  specialization  can  be  deduced  from  the
  actual  template  argument  list  (_temp.deduct_).  A nontype template
  parameter can also be deduced from the value  of  an  actual  template
  argument of a nontype parameter of the primary template.  [Example:

3         A<int, int, 1>   a1;  // uses #1
          A<int, int*, 1>  a2;  // uses #2, T is int, I is 1
          A<int, char*, 5> a3;  // uses #4, T is int
          A<int, char*, 1> a4;  // uses #5, T1 is int, T2 is char, I is 1
          A<int*, int*, 2> a5;  // ambiguous: matches #3 and #5
   --end example]

4 In  a  class  template  reference, (e.g., A<int, int, 1>) the argument
  list must match the template parameter list of the  primary  template.
  The  template arguments of a specialization are deduced from the argu­
  ments of the primary template.  The template parameter list of a  spe­
  cialization shall not contain default template argument values.1)

  14.6.2  Partial ordering of class template          [temp.class.order]
       specializations

1 For two class template partial specializations, the first is at  least
  as specialized as the second if:

  _________________________
  1) There is no way in which they could be used.

  --the  type  arguments  of  the  first template's argument list are at
    least as specialized as those of the second template's argument list
    using the ordering rules for function templates (_temp.func.order_),
    and

  --each nontype argument of the first template's argument  list  is  at
    least as specialized as that of the second template's argument list.

2 A nontype argument is at least as specialized as another nontype argu­
  ment if:

  --both are formal arguments,

  --the first is a value and the second is a formal argument, or

  --both are the same value.

3 A  template  class  partial  specialization  is  more specialized than
  another if, and only if, it is at least as specialized  as  the  other
  template  class partial specialization and that template class partial
  specialization is not at least as specialized as the first.  Otherwise
  the two template class partial specializations are unordered.

  14.7  Template parameters                                 [temp.param]

1 The syntax for template-parameters is:
          template-parameter:
                  type-parameter
                  parameter-declaration
          type-parameter:
                  class identifieropt
                  class identifieropt = type-id
                  typename identifieropt
                  typename identifieropt = type-id
                  template < template-parameter-list > class  identifieropt
                  template < template-parameter-list > class  identifieropt = template-name
  [Example:
          template<class T> class myarray { /* ... */ };

          template<class K, class V, template<class T> class C = myarray>
          class Map {
                  C<K> key;
                  C<V> value;
                  // ...
          };
   --end example]

2 Default arguments shall not be specified in a declaration or a defini­
  tion of a specialization.

3 A type-parameter defines its identifier to be a type-name in the scope
  of the template declaration.  A type-parameter shall not be redeclared
  within its scope (including  nested  scopes).   A  non-type  template-
  parameter  shall not be assigned to or in any other way have its value
  changed.  [Example:
          template<class T, int i> class Y {
                  int T;  // error: template-parameter redefined
                  void f() {
                          char T; // error: template-parameter redefined
                          i++;    // error: change of template-argument value
                  }
          };

          template<class X> class X; // error: template-parameter redefined
   --end example]

4 A template-parameter that could be interpreted as either an parameter-
  declaration or a type-parameter (because its identifier is the name of
  an already existing class) is taken as a type-parameter.  A  template-
  parameter  hides  a variable, type, constant, etc. of the same name in
  the enclosing scope.  [Example:
          class T { /* ... */ };
          int i;

          template<class T, T i> void f(T t)
          {
                  T t1 = i;      // template-arguments T and i
                  ::T t2 = ::i;  // globals T and i
          }
  Here, the template f has a type-parameter called  T,  rather  than  an
  unnamed non-type parameter of class T.  ] There is no semantic differ­
  ence between class and typename in a template-parameter.

5 There are no restrictions on what  can  be  a  template-argument  type
  beyond   the   constraints  imposed  by  the  set  of  argument  types
  (_temp.arg_).  In particular, reference types and types containing cv-
  qualifiers are allowed.  A non-reference template-argument cannot have
  its address taken.  When a non-reference template-argument is used  as
  an initializer for a reference a temporary is always used.  [Example:
          template<const X& x, int i> void f()
          {
                  &x; // ok
                  &i; // error: address of non-reference template-argument

                  int& ri = i; // error: non-const reference bound to temporary
                  const int& cri = i; // ok: reference bound to temporary
          }
   --end example]

6 A  non-type  template-parameter shall not be of floating type.  [Exam­
  ple:

          template<double d> class X;    // error
          template<double* pd> class X;  // ok
          template<double& rd> class X;  // ok
   --end example]

7 A default template-argument is a type, value,  or  template  specified
  after  =  in a template-parameter.  A default template-argument can be
  specified in a template declaration or a template definition.  The set
  of  default  template-arguments available for use with a template in a
  translation unit shall be provided by the  first  declaration  of  the
  template in that unit.

8 If  a  template-parameter  has a default argument, all subsequent tem­
  plate-parameters shall have a default argument supplied.  [Example:
          template<class T1 = int, class T2> class B; // error
   --end example]

9 The scope of a template-argument extends from its point of declaration
  until  the  end  of its template.  In particular, a template-parameter
  can be used in the declaration of subsequent  template-parameters  and
  their default arguments.  [Example:
          template<class T, T* p, class U = T> class X { /* ... */ };
          template<class T> void f(T* p = new T);
    --end example] A template-parameter cannot be used in preceding tem­
  plate-parameters or their default arguments.

10A template-parameter can be used in the specification of base classes.
  [Example:
          template<class T> class X : public Array<T> { /* ... */ };
          template<class T> class Y : public T { /* ... */ };
   --end example] [Note: the use of a template-parameter as a base class
  implies that a class used as a template-argument must be  defined  and
  not just declared.  ]

  14.8  Template arguments                                    [temp.arg]

1 The  types  of the template-arguments specified in a template-id shall
  match the types specified for the template in its  template-parameter-
  list.  [Example: Arrays as defined in _temp_ can be used like this:
          Array<int> v1(20);
          typedef complex<double> dcomplex; // complex is a standard
                                            // library template
          Array<dcomplex> v2(30);
          Array<dcomplex> v3(40);

          v1[3] = 7;
          v2[3] = v3.elem(4) = dcomplex(7,8);
   --end example]

2 A  non-type  non-reference  template-argument  shall  be  a  constant-
  expression of non-floating type, the address of an object or  a  func­
  tion  with  external  linkage,  or a non-overloaded pointer to member.
  The address of an object or function shall be expressed as &f, plain f

  (for  function only), or &X::f where f is the function or object name.
  In the case of &X::f, X shall be a  (possibly  qualified)  name  of  a
  class  and  f  the  name of a static member of X.  A pointer to member
  shall be expressed as &X::m where X is a (possibly qualified) name  of
  a  class and m is the name of a nonstatic member of X.  In particular,
  a string literal (_lex.string_) is not an acceptable template-argument
  because a string literal is the address of an object with static link­
  age.  [Example:
          template<class T, char* p> class X {
                  // ...
                  X(const char* q) { /* ... */ }
          };
          X<int,"Studebaker"> x1; // error: string literal as template-argument

          char* p = "Vivisectionist";
          X<int,p> x2; // ok
   --end example]

3 Similarly, addresses of array elements and  non-static  class  members
  are not acceptable as template-arguments.  [Example:
          int a[10];
          struct S { int m; static int s; } s;

          X<&a[2],p> x3; // error: address of element
          X<&s.m,p> x4;  // error: address of member
          X<&s.s,p> x5;  // error: address of member (dot operator used)
          X<&S::s,p> x6; // ok: address of static member
   --end example]

4 Nor  is a local type or a type with no linkage name an acceptable tem­
  plate-argument.  [Example:
          void f()
          {
                  struct S { /* ... */ };

                  X<S,p> x3; // error: local type used as template-argument
          }
   --end example]

5 Similarly, a reference template-parameter shall not be bound to a tem­
  porary,  an unnamed lvalue, or a named lvalue with no linkage.  [Exam­
  ple:
          template<const int& CRI> struct B { /* ... */ };

          B<1> b2; // error: temporary required for template argument

          int c = 1;
          B<c> b1; // ok
   --end example]

6 An argument to a template-parameter of pointer to function type  shall
  have  exactly  the  type  specified  by  the template parameter.  This
  allows selection from a set of overloaded functions.  [Example:

          void f(char);
          void f(int);

          template<void (*pf)(int)> struct A { /* ... */ };

          A<&f> a; // selects f(int)
   --end example]

7 If a template-argument to a template class is a function type and that
  causes  a  declaration that does not use the syntactic form of a func­
  tion declarator to have function  type,  the  program  is  ill-formed.
  [Example:
          template<class T>
          struct A {
                  static T t;
          };
          typedef int function();
          A<function> a;  // ill-formed: would declare A<function>::t
                          // as a static member function
   --end example]

8 A  template  has  no  special  access  rights to its template-argument
  types.  A template-argument shall be accessible at the point where  it
  is used as a template-argument.  [Example:
          template<class T> class X { /* ... */ };

          class Y {
          private:
                  struct S { /* ... */ };
                  X<S> x;  // ok: S is accessible
          };

          X<Y::S> y; // error: S not accessible
   --end example]

9 When default template-arguments are used, a template-argument list can
  be empty.  In that case the empty <> brackets  shall  still  be  used.
  [Example:
          template<class T = char> class String;
          String<>* p; // ok: String<char>
          String* q;   // syntax error
    --end  example] The notion of " array type decay"  does not apply to
  template-parameters.  [Example:
          template<int a[5]> struct S { /* ... */ };
          int v[5];
          int* p = v;
          S<v> x; // fine
          S<p> y; // error
   --end example]

  14.9  Type equivalence                                     [temp.type]

1 Two template-ids refer to the same class or function if their template
  names are identical and in the same scope and their template-arguments
  have identical values.  [Example:
          template<class E, int size> class buffer;

          buffer<char,2*512> x;
          buffer<char,1024> y;
  declares x and y to be of the same type, and
          template<class T, void(*err_fct)()> class list { /* ... */ };

          list<int,&error_handler1> x1;
          list<int,&error_handler2> x2;
          list<int,&error_handler2> x3;
          list<char,&error_handler2> x4;
  declares x2 and x3 to be of the same type.  Their  type  differs  from
  the types of x1 and x4.  ]

  14.10  Function templates                                   [temp.fct]

1 A  function  template  specifies  how individual functions can be con­
  structed.  [Example: a family of sort  functions,  might  be  declared
  like this:
          template<class T> void sort(Array<T>&);
    --end  example]  A  function  template specifies an unbounded set of
  (overloaded) functions.  A function generated from a function template
  is  called  a template function, so is an explicit specialization of a
  function template.  Template arguments can either be explicitly speci­
  fied in a call or be deduced from the function arguments.

  14.10.1  Explicit template argument                [temp.arg.explicit]
       specification

1 Template arguments can be specified in a call by qualifying  the  tem­
  plate  function name by the list of template-arguments exactly as tem­
  plate-arguments are specified in uses of a class template.  [Example:
          void f(Array<dcomplex>& cv, Array<int>& ci)
          {
              sort<dcomplex>(cv); // sort(Array<dcomplex>)
              sort<int>(ci);      // sort(Array<int>)
          }
  and
          template<class U, class V> U convert(V v);

          void g(double d)
          {
                  int i = convert<int,double>(d);  // int convert(double)
                  char c = convert<char,double>(d); // char convert(double)
          }
   --end example] Implicit conversions (_conv_) are accepted for a func­
  tion argument for which the parameter has been fixed by explicit spec­
  ification of template-arguments.  [Example:

          template<class T> void f(T);

          class Complex {
                  // ...
                  explicit Complex(double);
          };
          void g()
          {
                  f<Complex>(1); // ok, means f<Complex>(Complex(1))
          }
   --end example]

2 For a template function name to be explicitly  qualified  by  template
  arguments,  the  name  must be known to refer to a template.  When the
  name appears after .  or -> in a postfix-expression, or after :: in  a
  qualified-id  where  the  nested-name-specifier  depends on a template
  parameter, the member template name must be prefixed  by  the  keyword
  template.   Otherwise  the  name  is  assumed  to name a non-template.
  [Example:

3         class X {
          public:
                  template<size_t> X* alloc();
          };
          void f(X* p)
          {
                  X* p1 = p->alloc<200>();
                          // ill-formed: < means less than

                  X* p2 = p->template alloc<200>();
                          // fine: < starts explicit qualification
          }

4  --end example] If a name prefixed by the keyword template in this way
  is  not  the  name  of a member template function, the program is ill-
  formed.

  14.10.2  Template argument deduction                     [temp.deduct]

1 Template arguments that can be deduced from the function arguments  of
  a call need not be explicitly specified.  [Example:
          void f(Array<dcomplex>& cv, Array<int>& ci)
          {
              sort(cv);   // call sort(Array<dcomplex>)
              sort(ci);   // call sort(Array<int>)
          }
  and
          void g(double d)
          {
                  int i = convert<int>(d);   // call convert<int,double>(double)
                  int c = convert<char>(d);  // call convert<char,double>(double)
          }

   --end example]

2 Type  deduction is done for each parameter of a function template that
  contains a reference to a template parameter that  is  not  explicitly
  specified.   The  type of the parameter of the function template (call
  it P) is compared to the type of the  corresponding  argument  of  the
  call  (call  it  A), and an attempt is made to find types for the tem­
  plate type arguments, and values for the template non-type  arguments,
  that  will make P after substitution of the deduced values and explic­
  itly-specified values (call that the deduced P)  compatible  with  the
  call  argument.  Type deduction is done independently for each parame­
  ter/argument pair, and the deduced template argument types and  values
  are  then  combined.  If type deduction cannot be done for any parame­
  ter/argument pair, or if different parameter/argument pairs yield dif­
  ferent  deduced  values  for a given template argument, or if any tem­
  plate argument remains neither deduced nor explicitly specified,  tem­
  plate argument deduction fails.

3 If P is not a reference type:

  --if  A  is  an array type, the pointer type produced by the array-to-
    pointer standard conversion (_conv.array_) is used in place of A for
    type deduction; otherwise,

  --if  A is a function type, the pointer type produced by the function-
    to-pointer standard conversion (_conv.func_) is used in place  of  A
    for type deduction; otherwise,

  --the  cv-unqualified  version  of  A  is  used in place of A for type
    deduction.

  If P is a reference type, the type referred to by P is used  in  place
  of P for type deduction.

4 In  general,  the deduction process attempts to find template argument
  values that will make the deduced P identical to  A.   However,  there
  are three cases that allow a difference:

  --If the original P is a reference type, the deduced P (i.e., the type
    referred to by the reference) can be more cv-qualified than A.

  --If P is a pointer or pointer  to  member  type,  A  can  be  another
    pointer  or  pointer  to  member  type  that can be converted to the
    deduced P via a qualification conversion (_conv.qual_).

  --If P is a class, A can be a derived class of the  deduced  P  having
    the  form  class-template-name<arguments>.   Likewise,  if  P  is  a
    pointer to a class, A can be a pointer to a  derived  class  of  the
    underlying  type  of  the  deduced P having the form class-template-
    name<arguments>.  These alternatives are  considered  only  if  type
    deduction  cannot  be  done  otherwise.  If they yield more than one
    possible deduced P, the type deduction fails.

  When deducing arguments in the context of taking  the  address  of  an
  overloaded  function  (_over.over_),  these inexact deductions are not
  considered.

5 A template type argument T or a template non-type argument  i  can  be
  deduced if P and A have one of the following forms:

6         T
          cv-list T
          T*
          T&
          T[integer-constant]
          class-template-name<T>
          type(*)(T)
          type T::*
          T(*)()
          T(*)(T)
          type[i]
          class-template-name<i>
  where (T) represents parameter lists where at least one parameter type
  contains a T, and () represents parameter  lists  where  no  parameter
  contains a T.  Similarly, <T> represents template argument lists where
  at least one argument contains a T, and <i> represents template  argu­
  ment lists where at least one argument contains an i.  These forms can
  be used in the same way as T is  for  further  composition  of  types.
  [Example:
          X<int>(*)(char[6])
  is of the form
          class-template-name<T> (*)(type[i])
  which is a variant of
          type (*)(T)
  where type is X<int> and T is char[6].  ]

7 In  addition,  a  template-parameter can be deduced from a function or
  pointer to member function argument if at most one of a set  of  over­
  loaded functions provides a unique match.  [Example:
          template<class T> void f(void(*)(T,int));

          void g(int,int);
          void g(char,int);

          void h(int,int,int);
          void h(char,int);

          int m()
          {
                  f(&g);  // error: ambiguous
                  f(&h);  // ok: void h(char,int) is a unique match
          }
    --end  example]  Template  arguments cannot be deduced from function
  arguments involving constructs other than the ones specified  in  here
  (_temp.deduct_).

  +-------                 BEGIN BOX 3                -------+
  Can  a  template template-parameter be deduced? and if so how?  Spicer
  issue 3.19.
  +-------                  END BOX 3                 -------+

8 Template arguments of an explicit instantiation or  explicit  special­
  ization  are deduced (_temp.explicit_, _temp.spec_) according to these
  rules specified for deducing function arguments.

9 [Note: a major array bound is not part of a function parameter type so
  it can't be deduced from an argument:
          template<int i> void f1(int a[10][i]);
          template<int i> void f2(int a[i][20]);
          void g(int v[10][20])
          {
                  f1(v);     // ok: i deduced to be 20
                  f1<10>(v); // ok
                  f2(v);     // error: cannot deduce template-argument i
                  f2<10>(v); // ok
          }
   --end note]

10Nontype  parameters  shall  not be used in expressions in the function
  declaration.  The type of the function template-parameter shall  match
  the type of the template-argument exactly.  [Example:
          template<char c> class A { /* ... */ };
          template<int i> void f(A<i>);   // error: conversion not allowed
          template<int i> void f(A<i+1>); // error: expression not allowed
   --end example]

11If function template-arguments are explicitly specified in a call they
  are specified in declaration order.  Trailing arguments  can  be  left
  out of a list of explicit template-arguments.  [Example:
          template<class X, class Y, class Z> X f(Y,Z);

          void g()
          {
                  f<int,char*,double>("aa",3.0);
                  f<int,char*>("aa",3.0); // Z is deduced to be double
                  f<int>("aa",3.0); // Y is deduced to be char*, and
                                    // Z is deduced to be double
                  f("aa",3.0); // error X cannot be deduced

          }
   --end example]

12A  template-parameter  cannot be deduced from a default function argu­
  ment.  [Example:

          template <class T> void f(T = 5, T = 7);

          void g()
          {
                  f(1);     // fine: call f<int>(1,7)
                  f();      // error: cannot deduce T
                  f<int>(); // fine: call f<int>(5,7)
          }

13Here is example in which different  parameter/argument  pairs  produce
  inconsistent template argument deductions:
          template<class T> void f(T x, T y) { /* ... */ }

          struct A { /* ... */ };
          struct B : A { /* ... */ };

          int g(A a, B b)
          {
                  f(a,a);  // ok: T is A
                  f(b,b);  // ok: T is B
                  f(a,b);  // error T could be A or B
                  f(b,a);  // error: T could be A or B
          }

14Here  is  an  example where a qualification conversion applies between
  the call argument type and the deduced parameter type:
          template<class T> void f(const T*) {}
          int *p;
          void s()
          {
                  f(p);  // f(const int *)
          }

15Here is an example where the deduced parameter type is a derived class
  of a class template reference:
          template <class T> struct B { };
          template <class T> struct D : public B<T> {};
          struct D2 : public B<int> {};
          template <class T> void f(B<T>&){}

          void main()
          {
                  D<int> d;
                  D2     d2;

                  f(d);  // calls f(B<int>&)
                  f(d2); // calls f(B<int>&)
          }
   --end example]

  14.10.3  Overload resolution                               [temp.over]

1 A  function  template can be overloaded either by (other) functions of
  its name or by (other) function templates of that same name.   When  a
  call  to  that  name  is  written (explicitly, or implicitly using the
  operator notation), template  argument  deduction  (_temp.deduct_)  is
  performed on each function template to find the template argument val­
  ues (if any) that can be used with that function template to  generate
  a  function  that  can  be  invoked with the call arguments.  For each
  function template, if the argument  deduction  succeeds,  the  deduced
  template  arguments  are  used to generate a single template function,
  which is added to the candidate functions set to be used  in  overload
  resolution.   The complete set of candidate functions includes all the
  template functions generated in this way and all of  the  non-template
  overloaded  functions  of  the  same name.  The template functions are
  treated like any other functions in the remainder of overload  resolu­
  tion, except as explicitly noted.2)

2 [Example:
          template<class T> T max(T a, T b) { return a>b?a:b; };

          void f(int a, int b, char c, char d)
          {
              int m1 = max(a,b);  // max(int a, int b)
              char m2 = max(c,d); // max(char a, char b)
              int m3 = max(a,c);  // error: cannot generate max(int,char)
          }

3 Adding
          int max(int,int);
  to the example above would resolve the  third  call,  by  providing  a
  function  that  could  be called for max(a,c) after using the standard
  conversion of char to int for c.

4 Here is an  example  involving  conversions  on  a  function  argument
  involved in template-parameter deduction:
          template<class T> struct B { /* ... */ };
          template<class T> struct D : public B<T> { /* ... */ };
          template<class T> void f(B<T>&);
          void g(B<int>& bi, D<int>& di)
          {
                  f(bi);  // f(bi)
                  f(di);  // f( (B<int>&)di )
          }

  _________________________
  2)  The parameters of template functions contain no template parameter
  types.  The set of conversions allowed on deduced arguments is  limit­
  ed, because the argument deduction process produces template functions
  with parameters that either match the call arguments exactly or differ
  only  in  ways that can be bridged by the allowed limited conversions.
  Non-deduced arguments allow the full range of conversions.

5 Here  is  an  example involving conversions on a function argument not
  involved in template-parameter deduction:
          template<class T> void f(T*,int);  // #1
          template<class T> void f(T,char);  // #2

          void h(int* pi, int i, char c)
          {
                  f(pi,i);  // #1: f<int>(pi,i)
                  f(pi,c);  // #2: f<int*>(pi,c)

                  f(i,c);   // #2: f<int>(i,c);
                  f(i,i);   // #2: f<int>(i,char(i))
          }
   --end example]

6 The template definition is needed to  generate  specializations  of  a
  template.   However, only a function template declaration is needed to
  call a specialization.  [Example:
          template<class T> void f(T);    // declaration

          void g()
          {
                  f("Annemarie"); // call of f<char*>
          }
  The call of f is well formed because of the declaration of f, and  the
  program will be ill-formed unless a definition of f is present in some
  translations unit.

7 Here is a case involving explicit specification of some  of  the  tem­
  plate arguments and deduction of the rest:
          template<class X, class Y> void f(X,Y*);  // #1
          template<class X, class Y> void f(X*,Y);  // #2

          void g(char* pc, int* pi)
          {
                  f(0,0); // error: ambiguous: f<int,int>(int,int*)
                            //                or f<int,int>(int*,int) ?
                  f<char*>(pc,pi); // #1: f<char*,int>(char*,int*)
                  f<char>(pc,pi);  // #2: f<char,int*>(char*,int*)
          }
   --end example]

  14.10.4  Overloading and linkage                      [temp.over.link]

1 It  is possible to overload template functions so that specializations
  of two different template functions have the same type.  [Example:
          // file1.c                     // file2.c
          template<class T>              template<class T>
          void f(T*);                    void f(T);
          void g(int* p) {               void h(int* p) {
                  f(p); // call f_PT_pi          f(p); // call f_T_pi
          }                              }
   --end example]

2 Such specializations are distinct functions and  do  not  violate  the
  ODR.

3 The  signature  of a specialization of a template function consists of
  the  actual  template  arguments  (whether  explicitly  specified   or
  deduced) and the signature of the function template.

4 The  signature  of a function template consists of its function signa­
  ture and its return type and template parameter list.   The  names  of
  the  template  parameters  are  significant  only for establishing the
  relationship between the template parameters and the rest of the  sig­
  nature.

  14.10.5  Overloading and specialization               [temp.over.spec]

1 A template function can be overloaded by a function with the same type
  as a potentially generated function.  [Example:
          template<class T> T max(T a, T b) { return a>b?a:b; }
          int max(int a, int b);
          int min(int a, int b);
          template<class T> T min(T a, T b) { return a<b?a:b; }
   --end example] Such an overloaded function is  a  specialization  but
  not  an  explicit  specialization.   The declaration simply guides the
  overload  resolution.   [Note:  this  implies  that  a  definition  of
  max(int,int)  and  min(int,int)  will be implicitly generated from the
  templates.  If such implicit instantiation is not wanted, the explicit
  specialization syntax should be used instead:
          template<class T> T max(T a, T b) { return a>b?a:b; }
          int max<int>(int a, int b);
   --end note]

2 Defining  a  function  with the same type as a template specialization
  that is called is ill-formed.  [Example:
          template<class T> T max(T a, T b) { return a>b?a:b; }
          int max(int a, int b) { return a>b?a:b; }

          void f(int x, int y)
          {
                  max(x,y); // error: duplicate definition of max()
          }
  If the two definitions of max() are not in the same  translation  unit
  the  diagnostic  is not required.  If a separate definition of a func­
  tion max(int,int) is needed, the specialization syntax  can  be  used.
  If the conversions enabled by an ordinary declaration are also needed,
  both can be used.

          template<class T> T max(T a, T b) { return a>b?a:b; }
          int max<>(int a, int b) { /* ... */ }

          void g(char x, int y)
          {
                  max(x,y); // error: no exact match, and no conversions allowed
          }

          int max(int,int);

          void f(char x, int y)
          {
                  max(x,y); // max<int>(int(x),y)
          }
   --end example]

3 An explicit specialization of a function template shall be  inline  or
  static  only  if it is explicitly declared to be, and independently of
  whether its function template is.  [Example:
          template<class T> void f(T) { /* ... */ }
          template<class T> inline T g(T) { /* ... */ }

          inline void f<>(int) { /* ... */ } // ok: inline
          int g<>(int) { /* ... */ } // ok: not inline
   --end example]

  14.10.6  Partial ordering of function templates      [temp.func.order]

1 Given  two  function  templates,  whether one is more specialized than
  another can be determined by transforming each template  in  turn  and
  using argument deduction to compare it to the other.

2 The transformation used is:

  --For  each type template parameter, synthesize a unique type and sub­
    stitute that for each occurrence of that parameter in  the  function
    parameter list.

  --for  each  nontype  template parameter, synthesize a unique value of
    the appropriate type and substitute that for each occurrence of that
    parameter in the function parameter list.

3 Using the transformed function parameter list, perform argument deduc­
  tion against the other function template (_temp.deduct_).  The  trans­
  formed  template  is at least as specialized as the other if, and only
  if, the deduction succeeds.

4 A template is more specialized than another if, and only if, it is  at
  least as specialized as the other template and that template is not at
  least as specialized as the first.  [Example:

          template<class T> class A {};

          template<class T> void f(T);
          template<class T> void f(T*);
          template<class T> void f(const T*);

          template<class T> void g(T);
          template<class T> void g(T&);

          template<class T> void h(const T&);
          template<class T> void h(A<T>);

          void m() {
                  const int *p;
                  f(p);    // f(const T*) is more specialized than f(T) or f(T*)
                  float x;
                  g(x);    // Ambiguous: g(T) or g(T&)
                  A<int> z;
                  h(z);    // h(A<T>) is more specialized than f(const T&)
                  const A<int> z2;
                  h(z2);   // h(const T&) is called because h(A<T>) is not callable
          }
   --end example]

  14.11  Member function templates                       [temp.mem.func]

1 A member function of a template class is implicitly a  template  func­
  tion  with  the  template-parameters  of  its  class  as its template-
  parameters.  [Example:
          template<class T> class Array {
              T* v;
              int sz;
          public:
              explicit Array(int);
              T& operator[](int);
              T& elem(int i) { return v[i]; }
              // ...
          };
  declares three function templates.  The subscript  function  might  be
  defined like this:
          template<class T> T& Array<T>::operator[](int i)
          {
              if (i<0 || sz<=i) error("Array: range error");
              return v[i];
          }

2 The template-argument for Array<T>::operator[]() will be determined by
  the Array to which the subscripting operation is applied.
          Array<int> v1(20);
          Array<dcomplex> v2(30);

          v1[3] = 7;              // Array<int>::operator[]()
          v2[3] = dcomplex(7,8);  // Array<dcomplex>::operator[]()

   --end example]

  14.12  Friends                                           [temp.friend]

1 A friend function of a template can be a template function or  a  non-
  template function.  [Example:
          template<class T> class task {
              // ...
              friend void next_time();
              friend task<T>* preempt(task<T>*);
              friend task* prmt(task*);           // task is task<T>
              friend class task<int>;
              // ...
          };
  Here,  next_time()  and  task<int> become friends of all task classes,
  and each task has appropriately typed functions preempt()  and  prmt()
  as friends.  The preempt functions might be defined as a template.
          template<class T> task<T>* preempt(task<T>* t) { /* ... */ }
   --end example]

2 A friend template shall not be defined within a class.  [Example:
          class A {
                  template<class T> friend B;    // ok
                  template<class T> friend void f(T); // ok

                  template<class T> friend BB { /* ... /* }; // error
                  template<class T> friend void ff(T){ /* ... /* } // error
          };
    --end  example]  [Note:  a  friend  declaration can add a name to an
  enclosing scope (_temp.inject_).  ]

  14.13  Static members and variables                      [temp.static]

1 Each template class or function generated from a template has its  own
  copies of any static variables or members.  [Example:
          template<class T> class X {
              static T s;
              // ...
          };
          X<int> aa;
          X<char*> bb;
  Here  X<int>  has  a  static  member  s of type int and X<char*> has a
  static member s of type char*.  ]

2 Static class member templates are defined similarly to member function
  templates.  [Example:
          template<class T> T X<T>::s = 0;

          int X<int>::s = 3;

3 Similarly,

          template<class T> f(T* p)
          {
              static T s;
              // ...
          };
          void g(int a, char* b)
          {
              f(&a);  // call f<int>(int*)
              f(&b);  // call f<char*>(char**)
          }
  Here   f<int>(int*)   has   a   static   member  s  of  type  int  and
  f<char*>(char**) has a static member s of type char*.  ]