
DRAFT: Removing Undefined
Behavior from the Preprocessor

Gabriel Dos Reis
Microsoft

Document number: D3801
Date: 2013-10-dd
Working groups: SG12, CWG
Reply to: gdr@microsoft.com

Abstract
This paper recommends removal of undefined behavior from the C++

preprocessor. In all cases, the erroneous constructs are identified as violations
of diagnosable rules.

1 Introduction

The recommendations contained in this document implement the consensus of SG-
12’s first meeting in Chicago on Thursday September 26, 2013. At that meeting,
the attendance felt strongly that violations of preprocessor constraints should be
diagnosed, and none of them should lead to unrestricted runtime behavior.

It turns out that all changes were straightforward, except one case as discussed
in section §3.

2 Changes

The removal of undefined behavior from the preprocessor calls for altering clauses
2 and 16. These changes are relative to committee document N3691, the latest
Wording Draft prior to the Chicago meeting.

2.1 Modification of Clause 2

1. Modify second bullet of §2.2/1 as follows:

[...] If, as a result, a character sequence that matches the syn-
tax of a universal-character-name is produced, the behavior is
undefinedthe program is ill-formed.

1



2. Modify fourth bullet of §2.2/1 as follows:

[...] If a character sequence that matches the syntax of a universal-
character-name is produced by token concatenation (16.3.3), the
behavior is undefinedthe program is ill-formed.

3. Modify §2.5/2 as follows:

If a ’ or a " character matches the last category, the behavior is
undefinedthe program is ill-formed.

2.2 Modification of Clause 16

1. Modify §16.1/4 as follows:

[...] If the token defined is generated as a result of this replace-
ment process or use of the defined unary operator does not match
one of the two specified forms prior to macro replacement, the
behavior is undefinedthe program is ill-formed.

2. Modify §16.2/4 as follows:

[...] If the directive resulting after all replacements does not match
one of the two previous forms, the behavior is undefinedthe pro-
gram is ill-formed.

3. Modify §16.3/11 as follows:

[...] If there are sequences of preprocessing tokens within the
list of arguments that would otherwise act as preprocessing direc-
tives, the behavior is undefinedthe program is ill-formed.

4. Modify §16.3.2/2 as follows:

[...] If the replacement that results is not a valid character string
literal, the behavior is undefinedthe program is ill-formed.

5. Modify §16.3.3/3 as follows:

[...] If the result is not a valid preprocessing token, the behavior
is undefinedthe program is ill-formed.

6. Modify §16.4/3 as follows:

2



[...] If the digit sequence specifies zero or a number greater than
2147483647, the behavior is undefinedan implementation-defined
limit, which shall be no less than 2147483647, the program is ill-
formed.

7. Modify §16.4/5 as follows:

[...] If the directive resulting after all replacements does not match
one of the two previous forms, the behavior is undefinedthe pro-
gram is ill-formed; otherwise, the result is processed as appropri-
ate.

8. Modify §16.8/4 as follows:

If any of the pre-defined macro names in this subclause, or the
identifier defined, is the subject of a #define or a #undef pre-
processing directive, the behavior is undefinedthe program is ill-
formed.

2.3 Implementation-defined limits

The modification of §16.4/3 clearly acknowledge the existence of an implementation-
defined limit for the line number in a #line preprocessing directive. Consequencely,
add the following to Annex B

— the line number in #line directive [2147483647]

3 Discussion

There is no proposal to amend §2.14.5/12 because it is a prescription on the effect
of potentially evaluated expression that is outside the real of the preprocessor.

The implementation-defined limit on the line-number is an explicit recognition
of implicit constraint on programs are best diagnosed at translation time.

4 Acknowledgment

3


