DxxxxR0 draft 1. Stackable, thread local, signal guards

Document #: DxxxxR0

Date: 2019-05-30

Project: Programming Language C+-+
SG12 Undefined Behaviour study group
SG18 LEWG Incubator study group
WG14-WG21 liaison group

Reply-to: Niall Douglas
<s_ sourceforge@nedprod.com>

A proposal for standard library support for executing a routine, guarding against compiler-unanticipated
failure and interruption (i.e. ‘signals’), with the possibility of recovering from the failure and con-
tinuing execution. This is a high level design, abstracting away for the majority of use cases any
need to care about POSIX signal handlers or Win32 structured exception handling.

A reference implementation of the proposed library facility with API documentation can be found at
https://github.com/ned1l4/quickcpplib/blob/master/include/signal_guard.hpp. It has been
in production use for over a year at the time of writing, and has proven to be quite popular with
some in the C+4-+ ecosystem i.e. it has been lifted and borrowed by quite a few people, because it
solves well an ever growing problem (see Introduction). It works well on Android, FreeBSD, MacOS,
Linux and Microsoft Windows on ARM, AArch64, x64 and x86.

Contents
1 Introduction 2
2 Example of use 3
3 Impact on the Standard 5
4 Proposed Design 7
5 Design decisions, guidelines and rationale 10
5.1 Separate handler install step 0o o 10
5.2 early_global_signals 11
5.3 Open design questions L Lo 12
6 Acknowledgements 12
7 References 12

mailto:s_sourceforge@nedprod.com

1 Introduction

Why propose this facility?

1. Recent versions of the major desktop and server operating systems proactively seek out and
silently unmap from memory pages previously written to by the C++ program'. When the
C++ program next refers to that memory page, a page fault occurs, faulting the memory page
back into existence. If there are insufficient system resources to restore that memory page, a
system exception is sent to the C++ program, which if unhandled, causes the C++ program
to immediately terminate.

2. Even though memory mapped i/o is not currently supported by standard C+-+, if WG21
chooses to adopt [P1631] Object detachment and attachment, and possibly [P1031] Low level
file i/0, then reading and writing mapped memory may also generate system exceptions e.g.

‘disk full’.

3. Additionally, if WG21 chooses to adopt the ‘default terminate’” OOM model as proposed by
[PO709] Zero-overhead deterministic exceptions, this would cause code which works with STL
containers configured with the default allocator to become not stack unwindable when OOM
by the container’s default allocator occurs.

For the purposes of brevity, let us call all these three cases above a problem of wunanticipated
interruptions, because the C++ compiler does not, by default, generate code which is tolerant to
these kinds of interruption (nor, incidentally, are many functions in the C and C++ runtime support
libraries e.g. malloc()).

Proprietary mechanisms exist for C+-+ programs to be notified of unanticipated interruptions,
however these are tricky to implement both correctly and with good performance, even for those
very experienced in writing this kind of code. If the developer takes very special care when writing
the C++ which works with such ‘ghostly’ memory? (e.g. never write code which could call a non-
trivial destructor, only call async-signal-safe POSIX functions, etc), it is possible to write ‘hardened’
code which can safely recover from unanticipated interruptions, including system exceptions and
Out Of Memory.

It is currently proposed that ‘unanticipated interruption safe code’ be left implementation defined
outside conforming to the same requirements as for longjmp() as is currently in the standard,
though see ‘Impact on the Standard’ for more discussion on this.

This paper proposes a standard library facility for calling a guarded routine in which unanticipated
interruption may occur:

e One may specify which unanticipated interruptions ought to be guarded:
— Process abort.

— Undefined memory access.

'Linux may merge identical pages, and eliminate pages containing all bits zero e.g. those precleared by std: :vector
or operator new[]. Windows 10 memory compression removes and compresses pages not recently accessed, reex-
panding on first access, and also eliminates pages containing all bits zero.

2Memory prone to disapperance and reappearance.

Illegal instruction.
— Process interruption.

— Broken pipe.

Segmentation fault.

Floating point error.
— C++ out of memory (instead of throwing std: :bad_alloc).
— C++ termination (somebody has called std::terminate()).

This is a subset of what could be available, and WG21 may wish to standardise all of what
POSIX provides. However, the semantics of the less common options vary somewhat more
in non-POSIX implementations. The list above was chosen precisely because of the common
semantics between the major hosted implementations.

One can configure a callable to be called if the guarded routine was aborted, and execution was
resumed outside the guarded routine. This callable would typically clean up any interrupted
state.

One can furthermore configure a callable to be called at the exact moment when the interrup-
tion occurs, in-situ. This callable may be able to recover the problem, and resume execution
by returning true. Alternatively, by returning false, it will cause execution to jump back
to just before the guarded routine was entered, and to call the previously described cleanup
handler.

e Finally, it is possible to nest guarded sections within other guarded sections.

It is recognised that this proposal involves a level of low level implementation detail which WG21
has not been keen on mentioning in the standard until now. However, I still feel it is worth asking,
and see what WG21 thinks.

2 Example of use

The following is taken from the [P1031] Low level file i/o reference implementation of proposed
map_handle: :write(), which is working code in production use right now. I have decluttered and
reformatted it a little, and added explanatory comments, otherwise it is identical.

/* This function implements synchronous gather write for map_handle,
which is an i/o0 handle working upon memory mapped storage.
Implementation is easy, simply memcpy() each buffer in the gather
buffer list into the mapped memory. However, if the disk runs out
of free space, a SIGBUS or equivalent shall be raised. We want to
trap that, and return it as an errc::no_space_on_device instead.

*/

map_handle::io_result<map_handle::const_buffers_type>
map_handle: :write(io_request<const_buffers_type> reqs, deadline /*d*/) noexcept

{

// const_buffers_type is a span<const_buffer_type>

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

// const_buffer_type is a span<const byte>
// 1o_request<T> supplies a const_buffers_type list of buffers to
// gather write, and an offset within the file at which to write them

// Where in memory we shall be writing to (addr is base of the map)
byte *addr = _addr + reqgs.offset;

// Clamp the gather write to the end of the map (length is length of the map)
size_type togo = regs.offset < _length ? static_cast<size_type>(_length - regs.offset)

/* This signal_guard() function overload takes a bitfield of what
to guard against, a callable to be guarded, and a callable to be
called if the guarded callable is aborted. It returns whatever
the guarded callable, or the cleanup callable, returns, which in
this case is false for success, and true for failure.
*/
if(signal_guard(signalc::undefined_memory_access,
[&] // The guarded section of code
{
for(size.t i = 0; i < reqgs.buffers.size(); i++)
{
const_buffer_type &req = reqs.buffers[i];

// If this gather buffer’s size exceeds that of
// the bytes before end of map, truncate the
// buffers returned to those actually written.
if(reg.size() > togo)
{
memcpy(addr, reqg.data(), togo);
// We wrote togo bytes, not req.size() bytes
req = {addr, togo};
// Truncate gather list to buffers written
reqs.buffers = {reqs.buffers.data(), i + 1};
// Return success
return false;
}
memcpy(addr, req.data(), req.size());
// Return where the buffer was written to
req = {addr, req.size()};
addr += req.size();
togo -= req.size();
}
// Return success
return false;
+
[&] (const raised_signal_info &info) // the cleanup handler
{
// Retrieve the memory location associated with the failure
auto *causingaddr = (byte x) info.address();

// This could be a undefined memory access not involving
// this map at all, if so, re-raise it.
if(causingaddr < _addr || causingaddr >= (_addr + _reservation))
{
// Not caused by this map, so re-raise it on this thread
info.reraise();

1 0;

68
69

// POSIX permit signal handlers to return, also the
// handler may be set to SIG_IGN, so if undefined
// memory access was not handled, abort.

abort();

// The guarded routine failed due to undefined memory
// access, so return true to cause no_space_on_device
// to be returned by the write() function.

return true;

M)
{
// If true was returned, we failed due to no space on device
return errc::no_space_on_device;
}

// Otherwise return buffers successfully written
return reqs.buffers;

}

3 Impact on the Standard

As mentioned earlier, it is currently proposed that the subset of C++ code which is ‘unanticipated
interruption safe’ be left implementation defined, apart from the current C++ standard’s require-
ments for code which uses longjmp (). longjmp() is permitted over automatic duration C++ objects
if, and only if [csetjmp.syn|:

A setjmp/longjmp call pair has undefined behavior if replacing the setjmp and longjmp
by catch and throw would invoke any non-trivial destructors for any automatic objects.

Thus, one would borrow identical normative wording for guarded code sections, as recovery is
implemented using longjmp().
As unanticipated interruptions may occur at any time, one must only call async signal safe POSIX

functions within guarded code, if one is on POSIX. POSIX.2017 requires the following functions to
be async signal safe?:

e _Exit() e cfgetospeed() e dup2() e fentl()

e _exit() e cfsetispeed() e execl() e fdatasync()
e abort() e cfsetospeed() o execle() o fexecve()

e accept() e chdir() o execv() o ffs()

e access() e chmod() e execve() o fork()

e aio_error() e chown() e faccessat() o fstat()

e aio_return() o clock gettime() e fchdir() e fstatat()

e aio_suspend() e close() e fchmod() e fsync()

e alarm() e connect() e fchmodat() e ftruncate()
e bind() e creat() e fchown() e futimens()
e cfgetispeed() e dup() e fchownat() e getegid()

3https://pubs.opengroup.org/onlinepubs/9699919799/functions/VZ_chapOZ.html

https://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html

e geteuid() e poll() e sigprocmask() e timer_getoverrun()

e getgid() e posix_trace_event() o sigqueue() e timer_gettime()
e getgroups() e pselect() e sigset() e timer_settime()
e getpeername() e pthread_kill() e sigsuspend() e times()
e getpgrp() o pthread_self() e sleep() e umask()
e getpid() e pthread_sigmask() o sockatmark() e uname()
e getppid() e raise() e socket() o unlink()
® getsockname() e read() e socketpair() e unlinkat()
e getsockopt() e readlink() e stat() o utime()
e getuid() e readlinkat() e stpcpy() e utimensat()
e htonl() e recv() e stpncpy() o utimes()
e htons() e recvfrom() e strcat())

e wait()
e Kkill() e recvmsg() e strchr() L

e waitpid()
e link() e rename() e stremp()

e wcpepy ()
e linkat() e renameat() e strcpy()

o wcpncpy ()
e listen() e rmdir() e strcspn()

e wcscat()
e longjmp() o select() e strlen()

e wcschr()
e Tlseek() e sem_post() e strncat()

e wcscmp()
e lstat() e send() e strncmp()

e wcscpy()
e memccpy () e sendmsg() e strncpy()

e wcscspn()
e memchr() e sendto() e strnlen()

e wcslen()
e memcmp () e setgid() e strpbrk()

e wcsncat()
e memcpy () e setpgid() e strrchr()

e wcsncmp()
e memmove () o setsid() e strspn()

e wecsncpy ()
e memset() e setsockopt() e strstr()

. . e wcsnlen()
e mkdir() e setuid() e strtok_r()
) . e wcspbrk()

e mkdirat() e shutdown() e symlink()
o mkfifo() e sigaction() e symlinkat() e wesrchr()
o mkfifoat() e sigaddset() e tcdrain() e wesspn()
e mknod() e sigdelset() o tcflow() e wesstr()
e mknodat() e sigemptyset() e tcflush() o westok()
e ntohl() o sigfillset() e tcgetattr() ® wmemchr()
e ntohs() e sigismember() e tcgetpgrp() e wmemcmp ()
e open() e siglongjmp() o tcsendbreak() e wmemcpy ()
e openat() e signal() e tcsetattr() e wmemmove ()
e pause() e sigpause() e tcsetpgrp() e wmemset()
e pipe() e sigpending() e time() e write()

If one is not on POSIX, then different lists of permitted versus non-permitted system calls exist,
depending on the system in question. For example, on Microsoft Windows, almost none of the
Win32 APIs which are implemented by kernel32.d11 are permitted e.g. WriteFile(), whereas all
the APIs implemented by ntdll.d1l1l are safe e.g. NtWriteFile().

All this said, the safest approach is to not call system functions at all in portable guarded code,
which ought to be kept as short and as simple as possible in most use cases. Perhaps this is what

© 00 N O s W N

11
12
13

14
15
16
17
18
19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

the C++ standard might wish to recommend in a non-normative comment, if WG21 smiles on this
proposal.

4 Proposed Design

namespace signal_guard

{

//! The signals which can be raised
bitfield(signalc)

{

none = 0,

abort_process = (1 << 0), //'< The process is aborting
undefined_memory_access = (1 << 1), //!< Attempt to access a memory page which doesn’t exist

illegal_instruction = (1 << 2), //'< Execution of illegal instruction

interrupt = (1 << 3), //'< The process is interrupted

broken_pipe = (1 << 4), //'< Reader on a pipe vanished

segmentation_fault = (1 << 5), //'< Attempt to access a memory page whose permissions
disallow

floating_point_error = (1 << 8), //'< Floating point error

// leave bits 9-15 for individual FP errors

// C++ handlers
out_of_memory = (1 << 16), //!< A call to operator new failed, and a throw is about to occur
termination = (1 << 17), //'< A call to std::terminate() was made

// Signal install flags
early_global_signals = (1 << 28) //!< CAUTION: Enable signals globally at install time, not at
guard time. This is dangerous, see documentation.

}
bitfield(signalc)

/*! On platforms where it is necessary (POSIX), installs, and potentially enables,
the global signal handlers for the signals specified by ‘guarded‘. Each signal installed
is threadsafe reference counted, so this is safe to call from multiple threads or multiple times.

If this call does anything at all, it is not fast, plus it serialises on a global mutex.
POSIX only

Changing the signal mask for a process involves a kernel transition, which costs perhaps

500 CPU cycles. The default implementation enables the guarded signals for the local thread

just before executing the guarded section of code, and restores the previous thread local

signal mask on exiting the guarded section of code. This, inevitably, adds at least 1,000

CPU cycles to each guarded code invocation, but it comes with the big advantage of predictability.

One can set the ‘signalc::early_global_signals‘ flag during signal install which profoundly
changes these semantics. When we install the handlers, we use ‘SA_NODEFER‘ to prevent the
blocking of the raised signal during the execution of the signal handler. We enable the guarded
signals immediately, and globally.

These differences mean that ‘signal_guard‘ no longer needs to touch the signal mask during
execution, and thus avoid all kernel transitions. Performance is enormously improved. The

48 cost however is that signal handling becomes much less predictable. If the installed signal

49 handlers cause the raising of a signal, an infinite loop occurs. Signal handlers are executed
50 in all threads in the process, not just in the guarded code sections.

51

52 Because of these profound differences, you cannot mix different types of signal install in
53 the same process. An attempt to instantiate a second install with differing
54 ‘signalc::early_global_signals’ will throw an exception.

55 */

56 class signal_guard_install

57 {

58 public:

59 explicit signal_guard_install(signalc guarded);

60 ~signal_guard_install();

61 signal_guard_install(const signal_guard_install &) = delete;

62 signal_guard_install(signal_guard_install &&) = delete;

63 signal_guard_install &operator=(const signal_guard_install &) = delete;
64 signal_guard_install &operator=(signal_guard_install &&) = delete;

65 }i

66

67 //' Thrown by the default signal handler to abort the current operation
68 class signal_raised : public std::exception

69 {

70 public:

71 //! Constructor

72 signal_raised(signalc code);

73 virtual const char xwhat() const noexcept override;

74 }i

75

76 /*! \class raised_signal_info

77 \brief Portable information about a raised signal.

78 */

79 class raised_signal_info

80 {

81 protected:

82 raised_signal_info() = default;

83

84 public:

85 raised_signal_info(const raised_signal_info &) = delete;

86 raised_signal_info(raised_signal_info &&) = delete;

87 raised_signal_info &operator=(const raised_signal_info &) = delete;

88 raised_signal_info &operator=(raised_signal_info &&) = delete;

89

90 //' The signal raised

91 virtual signalc signal() const noexcept = 0;

92

93 /*! The faulting address for ‘signalc::undefined_memory_access‘, ‘signalc::segmentation_fault’,
94 ‘signalc::illegal_instruction’ and ‘signalc::floating_point_error’

95 */

96 virtual void *address() const noexcept = 0;

97

98 /*! The system specific error code for this signal, the ‘si_errno‘ code (POSIX) or
99 ‘NTSTATUS' code (Windows)

100 */

101 #ifdef _WIN32

102 virtual long error_code() const noexcept = 0;

103 #else

104 virtual int error_code() const noexcept = 0;
105 #endif

106

107 //! The 0S specific ‘siginfo_t *‘ (POSIX) or ‘PEXCEPTION_RECORD‘ (Windows)

108 virtual const void *raw_info() const noexcept = 0;

109

110 //! The 0S specific ‘ucontext_t‘ (POSIX) or ‘PCONTEXT‘ (Windows)

111 virtual const void *raw_context() const noexcept = 0;

112

113 //! Re-raise this signal on the calling thread, returning false if there is no handler available.

114 virtual bool reraise() const = 0;

115 };

116

117 /*! Call a callable ‘f‘ with signals ‘gquarded’ protected for this thread only, returning whatever

118 ‘“f' returns.

119

120 Note that on POSIX, if a ‘signal_guard_install’ is not already instanced, one is temporarily

121 installed, which is not quick. You are therefore very strongly recommended, when on POSIX, to

122 call this function with a ‘signal_guard_install‘’ already installed.

123

124 Firstly, how to restore execution to this context is saved, if thread locally configured the

125 guarded signals are enabled for the calling thread, and ‘f‘ is executed, returning whatever

126 ‘f’ returns, and restoring the signal enabled state to what it was on entry to this guard

127 before returning. This is mostly inlined code, so it will be relatively fast. No memory

128 allocation is performed if a ‘signal_guard_install‘’ is already instanced. Approximate overhead

129 on an Intel CPU:

130

131 - Linux (thread local): 1450 CPU cycles (mostly the two syscalls to enable and disable the

132 guarded signals)

133 - Linux (early global): 52 CPU cycles

134 - Windows: 85 CPU cycles

135

136 If during the execution of ‘f‘, any one of the signals ‘guarded’ is raised:

137

138 1. ‘c’, which must have the prototype ‘bool(const raised signal_info &)‘, is called with the

139 signal which was raised. You can fix the cause of the signal and return ‘true’ to continue

140 execution, or else return ‘false’ to halt execution. Note that the variety of code you can

141 call in ‘c‘ is extremely limited, the same restrictions as for signal handlers apply.

142

143 2. If ‘c’ returned ‘false’, the execution of ‘f‘ is halted **immediatelyx** without stack unwind,

144 the thread is returned to the state just before the calling of ‘f‘, and the callable ‘g’ is

145 called with the specific signal which occurred. ‘g‘ must have the prototype

146 ‘R(const raised_signal_info &)‘ where ‘R’ is the return type of ‘f‘. ‘g’ is called with this

147 signal guard removed, though a signal guard higher in the call chain may instead be active.

148

149 Obviously all state which ‘f‘ may have been in the process of doing will be thrown away. You

150 should therefore make sure that ‘f‘ never causes side effects, including the interruption in

151 the middle of some operation, which cannot be fixed by the calling of ‘h‘. The default ‘h’

152 simply throws a ‘signal_raised’ C++ exception.

153 */

154 template<class F, class H, class C, class R = decltype(std::declval<F>()())>

155 requires(std::is_constructible<R, decltype(std::declval<H>()(std::declval<const raised_signal_info
>()))>::value

156 && std::is_constructible<bool, decltype(std::declval<C>()(std::declval<const raised_signal_info>()

))>::value)
157 inline R signal_guard(signalc guarded, F &&f, H &&h, C &&c);

158
159
160
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175

176
177

/*! Convenience overload with preconfigured handlers:

- For the ‘h’ parameter, a callable which throws an exception of type ‘signal_raised‘’ i.e.

upon resumption of execution outside the guarded section, throw that exception.

- For the ‘c’ parameter, a callable which always returns ‘false’ i.e. halt execution immediately
without stack unwind, and call the callable which throws the aforementioned exception.

*/

template <class F, class R = decltype(std::declval<F>()())>

inline R signal_guard(signalc guarded, F &&f);

/*! Convenience overload with preconfigured handlers:

- For the ‘c’ parameter, a callable which always returns ‘false’ i.e. halt execution immediately

without stack unwind, and call the callable specified by ‘h‘.

*/

template<class F, class H, class R = decltype(std::declval<F>()())>

requires(std::is_constructible<R, decltype(std::declval<H>()(std::declval<const raised_signal_info
>()))>::value)

inline auto signal_guard(signalc guarded, F &&f, H &&h);

5 Design decisions, guidelines and rationale

5.1 Separate handler install step

For those who have ever had the misfortune of working with them from library code, POSIX signals
have many problems:

1. Their handlers are installed globally for a process, which creates problems for third party
library code.

2. There is only the ‘current’ signal handler for a signal, which means that ‘filtering’ signal
handlers need to check whether the signal’s cause applies to the specific cases they were
installed for, and then call the previously installed signal handler.

3. If you install a handler, and then some other code then installs another handler, there is no
way to remove your handler because it is now managed by whomever replaced your handler.

4. Installation and removal of signal handlers is not thread safe. However, each thread has a
signal mask, which determines which signals can be delivered to it.

5. Some signals get delivered to any random thread for which its bit is enabled in that thread’s
signal mask.

For those who have ever used structured exception handling on Microsoft Windows, you will in-
stantly agree that their stackable per-thread approach is the correct way to implement signals. Not
what POSIX does.

Implicit in the design presented above for standardisation is effectively stackable per-thread signal
handling i.e. what Microsoft Windows does, and indeed on Microsoft Windows, one implements

10

this facility using a trivially simple structured exception handling implementation, as the system
already implements everything for us.

On generic POSIX, however — and for the std::set_terminate() and std::set_new_handler()
support on all platforms — one must emulate stackable per-thread signal handling using the global
handlers. On generic POSIX, without using platform-specific extensions, this can be done by
replacing the global signal handlers with ones which:

1. Check if a signal_guard instance for the specific unanticipated failure is present for the calling
thread.

2. If so, invokes the guard.
3. If not, calls the previously installed global handler.

This implies that a thread local stack is kept of currently applicable signal_guard instances on
POSIX, and for the terminate and new global handlers on Windows as well.

Because of this non-trivial setup overhead on POSIX, and the problem of race conditions if you
modify the signal handlers outside of program bootstrap, we separate out global handler installation
into the signal_guard_install class. It would be expected that C++ programs would instance that
class somewhere in their static init or their main (), however third party libraries can also instance
that class in their static init, as it is the combined set of signalc from all the signal_guard_install
class instances which is actually used.

In other words, it is safe in the proposed design to instance as many signal_guard_install objects
as you want, and to destruct them in any order. However be aware that on POSIX the final
signal_guard_install instance destruction must abort the process if third party code has replaced
the handler we installed with another one, as it is not possible to safely deinstall our handler.

(Aside: One would hope that if this proposal is standardised, POSIX implementations would in-
ternally implement a less broken solution to signal handling, and have this C++ support use that
internal implementation instead of the POSIX standard semantics)

5.2 early_global_signals

The default signal mask for a thread is to block delivery of all signals. This implies that during
the execution of guarded code, we must temporarily unblock the delivery of the guarded signals for
the duration of the guarded code, taking care to remember that signal guards can be legally nested
inside one another.

Unfortunately, most POSIX implementations store a thread’s signal mask in the kernel, so modifying
it involves a syscall, which means two syscalls per guarded code exection. This is approximately
1,000 CPU cycles on Linux, which is a lot if you are reading a single byte, for example.

By setting early_global_signals, we can avoid this overhead by enabling the guarded signals
globally, for the entire process, until the last signal_guard_install instance is destructed. This
reduces the signal guard overhead to a mere 50 CPU cycles, which is probably as low as is possible.

11

However, with standard POSIX signals, doing this is not risk free. Enabling signal delivery for all
threads means that the global signal handlers are called from all threads. Obviously, our global
signal handler implementation passes on the signal if it cannot find a signal guard instance for the
calling thread, however because we are installing a global, filtering signal handler which is active for
all threads, we must specify SA_NODEFER for the global handler i.e. don’t disable the signal during
signal handling. This is necessary to avoid deadlock, however the corollory is that if the handler
itself causes a signal, it’ll loop into itself forever, without termination.

Again, if this proposal were standardised, I would like to hope that POSIX implementations would
take the opportunity to substantially refactor how signals are implemented by their C runtime
support. I would strongly suggest replicating how Windows implements this, where there are both
globally installable AND stackable, per-thread, handlers, with the ability to deinstall a globally
installed handler without being the last piece of code to install a handler. The POSIX signal API
would then be a subset API for the true, internal, implementation. For more information, see
https://docs.microsoft.com/en-gb/windows/desktop/Debug/vectored-exception-handling.

5.3 Open design questions

e In the current design, raised_signal_info is not copyable nor moveable. It is passed by
const lvalue ref to the cleanup handler of the signal guard.

raised_signal_info::raw_info() and raised_signal_info::raw_context() are const mem-
ber functions returning pointers to const data. This is because the data they return are to OS
allocated internal structures, which should not be modified from a strict C++ standpoint, as
we don’t own them.

However, the const-ness of these returned pointers makes them useless for reuse with OS-
specific functions, which DO own them. So should we make these functions return non-const
pointers, or simply insist that the end user casts off the const-ness as an explicit declaration
of ‘I know what I am doing’?

6 Acknowledgements

Todo

7 References

[PO709] Herb Sutter,

Zero-overhead deterministic exceptions
https://wg21.1link/P0709

[P1031] Douglas, Niall
Low level file i/o library
https://wg21.1link/P1031

12

https://docs.microsoft.com/en-gb/windows/desktop/Debug/vectored-exception-handling
https://wg21.link/P0709
https://wg21.link/P1031

[P1095] Douglas, Niall
Zero overhead deterministic failure — A unified mechanism for C and C++
https://wg21.1link/P1095

[P1631] Douglas, Niall
Object detachment and attachment
https://wg21.link/P1631

13

https://wg21.link/P1095
https://wg21.link/P1631

	Introduction
	Example of use
	Impact on the Standard
	Proposed Design
	Design decisions, guidelines and rationale
	Separate handler install step
	early_global_signals
	Open design questions

	Acknowledgements
	References

