
A Framework For Contracts
Document #: P3968R0
Date: 2026-01-16
Project: Programming Language C++
Audience: EWGI / SG21
Reply-to: Bengt Gustafsson

<bengt.gustafsson@beamways.com>

Contents
1 Overview 1

2 Proposal 2
2.1 Identifying that a type is an assertion object type . 3
2.2 Identifying assertions and looking up their assertion objects . 3
2.3 Data members controlling core language behavior . 4
2.4 The function call operator . 4

2.4.1 The value of the semantic argument . 5

3 Reimplementing C++26 contract assertion types 6
3.1 Standard assertion objects . 6

4 Discussions and consequences 7
4.1 Name lookup rule for assertion objects . 7
4.2 Customization of standard assertion objects . 7
4.3 No core language dependency on <contracts> . 7

4.3.1 Changes to the contract_violation type . 8
4.4 Additional standard assertion objects . 8
4.5 Static analyzer requirements . 8
4.6 Forwarding the source_location . 8
4.7 Caller and callee side checking control . 9

5 Specification alternatives 9
5.0.1 A more P3400-like syntax . 10

6 Backwards compatibility to C++26 contracts 11

7 Reasons to not standardize C++26 contracts first 11

8 References 12

1 Overview
This proposal introduces a framework where various contract assertion types can be defined. The aim is to remove
the dependency from the compiler to the standard library and delegate as much as possible of the functionality
to library code for maximum flexibility. The <contracts> header implements the contract assertions according
to the C++26 draft standard but different contract assertion types can also be specified.

This proposal strives to reconcile the seemingly opposing requirements that a) contract-assertion must be adapt-
able to the requirements of different codebases and b) it must be possible to verify that contract-assertions

1

mailto:bengt.gustafsson@beamways.com

according to those requirements are actually in place. With C++26 draft contracts many feel that the adapt-
ability is favored making it is too hard to guarantee that the contracts-assertions have the desired semantics.
Alternative proposals go in the other direction and want to remove flexibility in favor if easy verifiability.

With this proposal you can get an exact semantics of contract-assertions by giving them other names or redefine
the pre, post, and contract_assert names to have well defined semantics that can’t be changed with compiler
switches.

In the proposed contracts framework the name of a contract-assertion refers to an object called a assertion object.
A user defined class type is an assertion object type if it fulfills a certain concept and constexpr instances of this
type are assertion objects. The values of specifically named data members of an assertion object controls how
the compiler generates code for contract-assertions and an operator() of the assertion object is called when a
contract assertion is violated. This idea bears resemblance with how co-routine promise_types can be used to
configure how the compiler generates the code for the co-routine.

To retain backwards compatibility to C++26 (except that <contracts> has to be included to use C++26
contracts) an assertion object type with three assertion objects called pre, post, and contract_assert are
included in the proposal.

The configurability proposed in [P3400R2] is achieved by providing assertion objects with separate names instead
of providing a label as a template argument. To get an always enforced pre-condition you would thus write
something like pre_enforce(cond) instead of pre<enforce>(cond).

This proposal agrees with the statement “Various things that we’ve run into that should have been doable as
third-party libraries, not language changes” of [P3909R0] but without immediately drawing the conclusion that
contracts as such should be withdrawn from the C++26 draft. This is as introducing this proposal later can be
made in a backwards compatible way, removing the dependency from the compiler to the standard library. There
are however some reasons to withdraw C++26 contracts in case this proposal is selected for C++29, mainly
that the compiler options for selecting semantics are not needed, and with them the semantic parameter of the
assertion object type’s operator(). This removes one of the big risks for not getting the contract checks you
asked for. Without [P3967R0] there is still a need for a compiler switch to select unchecked or checked contract
assertions though.

2 Proposal
This proposal gives objects of certain types the ability to act as contract assertions. Below is an example type
MyAssertionType which is shows the general idea, a precondition assertion object and a function using it:
namespace myns {

struct MyAssertionType {
// The existence of the assertion_object_kind data member is used to
// determine that objects of this type are usable as contract assertions. This can be
// detected using a concept or innately by the compiler.
int assertion_object_kind; // pre, post or assert.

// These data members, if they exist, modify the core language behavior, reverting to
// these P2900-compatible defaults if they don't.
bool constify; // Constify condition if true.
bool ignorable; // Contract assertions are ignored in unchecked builds.
bool assumable; // Don't assume predicate was true in following code.

void operator()(string_view comment, exception_ptr ep, int,
source_location loc = source_location::current()) const {

if (ep == nullptr)
std::println(f"Assertion {comment} at {loc} failed.");

2

https://wg21.link/p3400r2
https://wg21.link/p3909r0

else
std::println(f"Exception evaluating assertion {comment} at {loc}");

abort();
}

};

inline constexpr MyAssertionType myPre {
.assertion_object_kind = 1, // Values are the same as in the assertion_kind enum.
.constify = false, // I don't want constification in my contract assertions.
.ignorable = false, // These contracts can't be ignored.
.assumable = true // Assume the contract was not violated in succeeding code.

}

void myFun(int v) myPre(v > 0);

}

In this example the myPre assertion object specifies that no constification is to be performed, that the contract
condition is always to be evaluated even if the build is unchecked and that the optimizer is free to assume that
no violation occurred.

The following paragraphs describe the aspects of assertion object types in detail.

2.1 Identifying that a type is an assertion object type
A concept can be used to detect that a type (such as myAssertionType above) is a valid assertion object type.
The concept checks for the existence of the assertion_object_kind member variable convertible to int. The
concept could be extended to also require an operator(), but I think it would be better to just make it an name
lookup error if this doesn’t exist.

Tentatively it is suggested that this concept is to be defined in <type_traits> the standard library, but it could
also be built in to the compiler and not have a visible name, the compiler just checks for assertion_object_kind
in any way it wants.

2.2 Identifying assertions and looking up their assertion objects
When an identifier is found after the closing parenthesis of a function parameter list the compiler checks that
the identifier names an assertion object. When an assertion object is found its assertion_object_kind member
is used to see if the assertion is a pre- or postcondition. If it is neither a compiler error results.

Assertions of the assert kind are looked up using the regular name lookup when doing semantic analysis of an
expression statement. If the top level operation of an expression statement is invoking the function call operator
of an assertion object of assert kind a contract-assertion has been detected. If the kind is not assert a compiler
error results.

An assertion object and its type must be complete to be usable as a contract-assertion even when used on a
function declaration. This ensures that the information needed for caller side contract checking is available.

It is not possible to form contract-assertions from references to assertion objects. This ensures that the values
of the data members are available at compile time. It could be possible to allow references to assertion object
types if the compiler can find the referred to object but this would be novel and not very useful so this is not
proposed.

If different assertion object definitions are found in different declarations or definitions of the same function
there is a regular ODR violation. Within a translation the compiler can easily detect if contract-assertions on
different declarations of the same function refer to different assertion objects.

3

If during compilation of different TUs different assertion object definitions are found when compiling the same
function declaration or definition there is an ODR violation which is hard to detect, as usual. This situation
is equivalent with compiling C++26 code with different evaluation semantics in different translation units:
Sometimes the same pre contract is treated in one way, sometimes in another.

To be able to emulate C++26 contracts per translation semantic assertion object type and assertion object defi-
nitions must be placed in an anonymous namespace. This ensures that even if the implementation of operator()
for assertion object types is different in different translations function definitions in each translation unit are
guaranteed to call the operator() it has compiled even if it is not inlined, as the assertion object type’s functions
have internal linkage. If different per-translation evaluation semantic selection is emulated using #ifdefs in the
assertion object type’s definition the result is the same as with C++26 contracts.

2.3 Data members controlling core language behavior
Three boolean data members of an assertion object affect how the compiler generates the code for contracts
using it. As these values must be known at compile time contract control objects must be constexpr variables.
It is conceivable that similar data members could be added to control for instance inheritance of assertions on
virtual functions in the future (with reasonable defaults).

The bool data member constify controls whether the compiler performs constification of the function parameters
in the contract-assertion predicate.

The data member ignorable controls whether the compiler includes the contract check when the semantic is
ignore or not. If ignorable is false and the semantic is ignore the contract check is implemented and if the
contract predicate evaluates to false the operator() of the assertion object is called with the semantic parameter
set to evaluation_semantic::ignore and it is up to the operator() to handle this situation.

The data member assumable controls if the compiler is allowed to optimize code following the contract-assertion
assuming it didn’t fail.

Note that while the assertion objects must be declared constexpr to make sure that the compiler can use these
data member values at compile time mutable can be used to be able to modify other data members that a
particular assertion object type may need. For instance it would be possible to count how many times contracts
are violated in some kind of observe-like assertion object type. While similar tasks can be performed using a
user defined contract violation handler in P2900 contracts this handler is always global while an assertion object
is used only when referred from a contract-assertion.

2.4 The function call operator
The operator() can have different signatures starting with any combination of comment, ep and, semantic
parameters, in this order. The comment is first to differentiate this parameter from any user defined message
parameter provided as extra arguments at the contract-assertion site.

The comment parameter must have a type implicitly convertible from const char* or const char8_t* and if it
exists it is typically called with a textual representation of the source code for the contract-assertion predicate
encoded in the narrow execution character set or UTF-8. The comment parameter is optional to allow the
compiler to avoid consuming the storage for comment strings if they are not used.

The ep parameter must be of type exception_pointers as this is a magic type that can’t be reimplemented
outside of the standard library. Any codebase that uses this parameter must use the relevant parts of the
standard library anyway. When this parameter is present the compiler encloses the code that evaluates the
contract-assertion predicate in a try block to be able to capture thrown exceptions into an exception_pointer
and pass it to the operator() should an exception occur.

The semantic parameter must be of type int or an enum type. It is assumed that the enumerator values
of the enum type represent the semantics the compiler can handle, which (according to C++26) are the four
enumerator values of evalutation_semantic. The type of the semantic parameter is not required to be exactly
evaluation_semantic to allow for codebases not using the standard library. This parameter is optional just

4

for consistency with the other parameters, but if for instance all contract-assertions quick_enforce it saves some
bytes to not send the semantic to the operator. This parameter exists to be able to emulate C++26 contracts. If
we don’t get contracts in C++26 it can be replaced by a bool checked parameter which is only set for violations
of non-ignorable contract-assertions in unchecked builds (or with [P3967R0] compiles).

The operator() can take additional parameters. These parameters are matched to an argument list
formed from any additional arguments after the contract assertion predicate. A typical such parameter is a
string_view message used to provide a user defined message to the assertion object, but other arguments
could convey for instance a file handle to a log file for a particular contract or group of contracts.
struct handler_t {

int kind = 1;
void operator()(const char* comment, evaluation_semantic semantic); // #1
void operator()(evaluation_semantic semantic, string_view message); // #2

};

constexpr handler_t pre_m;

void f(int x) pre_m(x > 0), pre_m(x < 10, f"x must be less than 10 but is {x}"); // P3412

Here the first precondition of f calls #1 if x <= 0 and the second precondition calls #2 if x >= 10.

TODO: This doesn’t work very well if the user provided argument is an int or an exception_pointer. It
should not be possible to provide values for the three parameters listed above as additional arguments in a
contract-assertion. One way to accomplish this is to make the semantic parameter mandatory and the last of
the three predefined parameters. A special tag type is also a possiblity but this reinstates a dependency from
the compiler to the standard library unless this tag type is just identified by its name. In either case there is a
slight inefficiency compared to not having to send any semantic parameter value (or dummy tag type value) as
no types can have zero size.

2.4.1 The value of the semantic argument

When the code for a contract assertion is generated a value for the semantic parameter of the function call
must be found by the compiler. To keep backwards compatibility to C++26 this must be specified to happen
in an implementation defined way. While many compilers will probably just have a compiler switch to select
between the four semantics it is also possible to for instance provide a list of contracts to observe in a text file
when compiling, by the means that was implemented for C++26 contracts in that particular compiler. It is even
allowed to evaluate contracts randomly, but in C++26 any such possibility must be hardcoded into the compiler
and that same logic can be applied with this proposal.

As it is the assertion object’s responsibility to terminate or not this allows user defined assertion object types
to for instance implement the “observe if you would otherwise enforce” semantic for newly added assertions by
never terminating regardless of the value of the semantic parameter. A subsequent source code change is needed
to turn such contract assertions into regular contract assertions just like with the labels of P3400.

Note: The value of the semantic parameter can only be ignore if the ignorable data member of the assertion
object exists and is false. This indicates that the implementation specific semantic for the assertion was ignore
but the predicate was evaluated anyway as ignorable was false for the assertion object.

If backwards compatibility is not needed due to contracts being retracted from the official C++26 standard the
semantic argument may be replaced by a bool checked parameter. This is as there is no need for contract specific
compiler options except for a checked/unchecked build mode flag. All other configuration such as enforce/quick-
enforce can be done using the -D switch defining a macro that controls the semantics of the operator() when
it comes to calling a handler etc. With [P3967R0] not even this compiler switch is strictly necessary.

5

3 Reimplementing C++26 contract assertion types
With this proposal the built in functionality of C++26 contracts can be reimplemented as standard library
assertion objects without changing semantics.

Here is an assertion object type that can emulate C++26 contracts using this proposal:
namespace std::contracts {

struct assertion_object_t {
assertion_kind assertion_object_kind;

bool constify;
bool ignorable;
bool assumable;

void operator()(string_view comment, evaluation_semantic semantic, exception_ptr ep,
source_location loc = source_location::current()) {

if (semantic != evaluation_semantic::quick_enforce) {
contract_violation violation(comment, ep, kind, loc, semantic);
handle_contract_violation(violation);

}

if (semantic != evaluation_semantic::observe)
abort();

}
};

}

3.1 Standard assertion objects
The standard assertion objects are just instances of the std::contracts::assertion_object_t type in the
global namespace, declared in the <contracts> header. To provide backwards compatibility to C++26 contracts
the objects must be in the global namespace. This is also convenient to avoid repeating std::contracts:: for
each contract assertion.
// In the global namespace
inline constexpr std::contracts::assertion_object_t pre {

.kind = std::contracts::assertion_kind::pre,

.constify = true,

.ignorable = true,

.assumable = false
};

inline constexpr std::contracts::assertion_object_t post {
.kind = std::contracts::assertion_kind::post,
.constify = true,
.ignorable = true,
.assumable = false

};

inline constexpr std::contracts::assertion_object_t contract_assert {
.kind = std::contracts::assertion_kind::assert,
.constify = true,
.ignorable = true,

6

.assumable = false
};

4 Discussions and consequences
Here some consequences and possibilities of handling contracts by assertion objects rather than built in specifiers
and keywords are discussed.

4.1 Name lookup rule for assertion objects
Assertion objects are looked up using regular name lookup rules as seen from the function declaration or definition
where they are used. It would also be possible to add a rule that in name lookup after function declarations
assertion objects are not hidden by other entities of the same name.

Also: Vice versa: assertion objects of the pre and post kind could be made invisible when looking up names
for other purposes: This has the drawback that if for instance a violation counter that is incremented for each
violation is needed it can’t be member of the assertion object type as it could never be accessed when reporting
the statistics, well, unless this is done by the destructor which runs when the program exists, but that’s very
limiting.

Using regular name lookup may look like a drawback at first glance but it has the advantage that contracts in a
certain namespace can get handled differently than contracts in another namespace even if they have the same
name. This allows library vendors to ensure that contract violations in their code are handled according to their
specification and not subjected to a global contract violation handler that can subvert the semantics that the
library depends on. Note that this includes any use of this library even if the contracts are on inline functions
as name lookup is performed as seen from the declaration of the function. It is also possible to ensure specific
contract handling in a class hierarchy by defining the assertion objects as static members of the base class. Using
a class just providing assertion objects as a mixin may turn out to be a very convenient way to opt in to specific
contract violation handling semantics. This is essentially the same rules as for [P3400R2] label lookup.

4.2 Customization of standard assertion objects
It is debatable if it is a drawback or advantage to be able to customize the standard assertion objects. This
proposal takes the stance that predictable behavior is more important than customization possibility. This means
that as long as you use the standard library you have the standard behavior of the three standardized assertion
objects. Customized assertion objects can however be introduced in namespace scope, even if named pre, post,
or contract_assert. This poses the same risk as P3400 labels in namespace scope: You could always declare
a label called enforce in some namespace that doesn’t actually enforce.

To allow customization of the standard assertion objects but still allow them to create a contract_violation
object the <contracts> header would have to be subdivided into one header with the current contents and
one header containing the contract control objects. This can be done by just adding a <contract_objects>
file (which includes the current <contracts> header) but it seems more logical to put the assertion objects in
<contracts> and relegate its current contents to a subordinate <contract_violation> header. This would be
problematic with import std; and is not proposed.

4.3 No core language dependency on <contracts>
With this proposal the compiler knows only about the names of the data members in a assertion object
that controls the semantics of the contracts. This includes the assertion_object_kind member which is
converted to int by the compiler before use. By this definition the dependency from the compiler to the
standard library header <contracts> is removed and contracts can be used without using the standard li-
brary. The actual integer constants selected are compatible with the enumerator values specified for the
std::contracts::assertion_kind enum:

7

https://wg21.link/p3400r2

// From N5032:
enum class assertion_kind : unspecified {

pre = 1,
post = 2,
assert = 3

};

The other data members that the compiler looks for: constify, ignorable and assumable are converted to
bool before use by the compiler and if they don’t exist a default value is used.

The semantic parameter of the operator() is defined to have an int or enum type, assuming the compiler
can convert its internal integer value to any enum type. This is to avoid depending on the definition of the
evaluation_semantic enum but in principle any enum would match, which allows an alternative library to
define some other enum with matching enumerator values.
// From N5032:
enum class evaluation_semantic : unspecified {

ignore = 1,
observe = 2,
enforce = 3,
quick_enforce = 4

};

The only unavoidable dependencies on the standard library are for the magic types source_location and
exception_pointers but using these types is optional for user defined assertion object types.

Note that this is in contrast from C++26 contracts where everything in <contracts> is used directly by the
compiler, except invoke_default_contract_violation_handler.

4.3.1 Changes to the contract_violation type

To make backwards compatibility possible a constructor must be provided for the contract_violation class,
removing the magical construction by the compiler of C++26. It is possible but not necessary to provide a
constructor which takes the comment in UTF-8 and a getter returning it.

4.4 Additional standard assertion objects
In this first revision no additional standard assertion objects are proposed. However, it would be easy to define
a number of such objects, the hard part is to figure out which ones are important enough to be standardized
and how they should be named. Using a variable template it would even be possible to build the label system
of P3400 on top of this proposal, but as the reason for this proposal is partly to get rid of the complexities of
P3400 this is not proposed.

4.5 Static analyzer requirements
With this proposal based on a concept identifying an object as being a assertion object static analyzers would
need to be able to detect such objects too. This is especially true for contract assertions when the syntax used
looks just like a function call. The static analyzer, if it is to try to detect compile time detectable contract
violations, has to do the same checking for a assertion object as the compiler does. This should be a very simple
task compared to the complex semantic analysis that static analyzers regularly perform today.

4.6 Forwarding the source_location
The std::assertion_object_t captures the location of the failed contract using a defaulted source_location
parameter. This does not allow contract checks to “spoof” the source location by explicitly providing
an argument value for the parameter as the only way to construct a source_location is using the

8

source_location::current function. However this offers the benefit of being able to record the caller side
source location even for callee checked contracts, but this possibility should not be over-used as it forces the
construction and copying of source_location objects even if the contract doesn’t fail.

Here is an example of how this is done, given the assertion_object_t type shown above.
void myFunction(int a, source_location loc = source_location::current()) pre(a > 0, loc);

void caller()
{

myFunction(-1);
}

When the call to myFunction fails the source location created at the call site of myFunction in caller is recorded
by the violation handler giving more information than the myFunction declaration.

4.7 Caller and callee side checking control
Additional data members could be added to allow customizing whether a contract is to be checked on the caller
side, the callee side or both. This can be implemented with two bool variables but as this would allow both to
be false, which is not really useful. This suggests an enum with values caller, callee, or both. This controllability
is questionable: for non-inline functions we can’t be sure that the values seen when compiling the TU containing
the function definition is the same as the values seen when compiling some calling TU, which allows checks to
be omitted in checked compiles.

With dual compiles according to [P3967] the callee is known to check all contracts which allows the compiler
to omit caller side checks. Not specifying where contracts are checked gives the compiler much more leeway for
optimizing the checking without having to come up with exception rules to explain why contracts may not get
checked caller side even if the assertion object says so.

Thus this proposal does not include such caller and callee side checking control.

5 Specification alternatives
There are a number of changes that could be made to the specification that assertion object types have to adhere
to.

— One possible change is to somehow tell the operator() that the function the contract is applied to is
noexcept. However, it is unclear what good this would do as any exception thrown during condition
evaluation or by a called handler would cause termination anyway. However an assertion object type
could include a try block around the call to handle_contract_violation and report that it threw before
termination.

— It would be possible to require the compiler to create a contract_violation object before calling the
operator() of the assertion object but as some contract handlers may not use all of this information it
seems better to provide a constructor to the contract_violation class that contract handlers can use. A
assertion object type can also decide not to provide the source location information or qualify including it
with some compiler define to be able to tune debuggability versus code size.

— It would be possible to require that the operator() of all assertion object types must take a comment and
exception pointer as the first two parameters and let the compiler optimize away the comment string if it
is not used and the try block if the exception pointer is immediately rethrown using rethrow_exception.
This removes the special handling in the compiler to check which of the two parameter values are needed,
by attempting overload resolution before compiling the contract checking code. This however requires that
the operator() is inline and that the compiler actually is able to detect the optimization possibilities.

— To avoid these peculiar overload resolution attempts bool data members catch_exceptions and
include_comment could be added but this results in new ways in which a assertion object type could

9

be erroneous, that is, if the signature of operator() does not match the setting of these variables. It
would be possible to always require that the two first parameters are comment and exception_pointer
but provide empty values if the bool data members are not true. Maybe this is the cleanest specification
although it is a bit wasteful in that those dummy values must be provided to the operator() which
knows that it can’t use them. This takes a few extra code bytes for each contract-assertion.

— A possibility with a templated operator() taking the contract-assertion predicate that it could evaluate
inside or not inside a try block to implement the catch_exception option was rejected as it would add a
lot to compile times if each contract would involve synthesizing a lambda type and then specializing the
operator() for it.

— A possibility to use functions instead of objects with function call operators was discarded as it would
be hard to associate values for the contract control variables based on a function name. This is mainly
that without [P3312R1] variable templates can’t be be used as the instances are associated with the type
of the function rather than the function itself. One idea which has not yet been explored is to retrieve
the contract control variables from the return type of such a function, taking lead from co-routine return
types.

5.0.1 A more P3400-like syntax

An alternative specification would be that the three names used for C++26 contracts are retained and named
assertion objects are treated just like the labels of P3400. This has some advantages and still offers more flexibility
with fewer novel ideas than P3400. The major reason this is not the promoted solution in this proposal is that
the syntax is clumsier and invites defining macros to get back to the syntax the rest of this proposal. One
obvious advantage of this alternative, if C++26 contracts is a starting point, is that you don’t have to include
<contracts> to use assertions as the three template functions are somehow built in to the compiler. Another
possible advantage is that the three assertion kinds pre, post and contract_assert have known meanings when
used with the default template parameter value. However, this meaning is so vaguely defined in C++26 that
many codebases seem to not want to use C++26 contracts. With the promoted solution you can hardwire the
meaning of one of these names or use other names for your assertion objects which provides an easier way to
ensure that assertions do what you think they do.

A P3400-like syntax can be accomplished by actually defining the contract assertions as template functions,
albeit with a magic touch. Here is a sketch of how the pre function could be defined. Note that this is not
source code that is actually in a library, the compiler has it hidden somewhere or just generates code for it
anyway:
template<auto Label = std_label, typename... Ts> void pre(function_ref<bool()> predicate, Ts&& ts)
{

if constexpr (Label.ignorable && current_semantric() == evaluation_semantic::ignore)
return;

if constexpr (is_invocable_v<Label, exception_pointer, int, Ts...) {
try {

if (!predicate())
Label(nullptr, current_semantric(), std::forward<Ts>(ts)...);

}
catch(...) {

Label(current_exception(), current_semantric(), std::forward<Ts>(ts)...);
}

}
else {

if (!predicate())
Label(current_semantric(), std::forward<Ts>(ts)...);

}
}

10

https://wg21.link/p3312r1

While there is not necessarily anything magic about this function itself the data member constification of
the Label object control the code generation for the callable shown as the predicate parameter here and the
assumable data member controls if the compiler emits code under the assumption that the predicate is true.

Note: There are also additional if constexpr clauses not shown above. These are used to handle the other possible
signatures of the operator(), the order of which control the priority. These were excluded for brevity.

The current_semantic function used above returns the semantic that the implementation specific mechanism
gave the C++26 contracts. There will also have to be a current_comment function that returns the source code
of the contract assertion predicate, possibly with a current_comment_u8 variant. This requires the above pre
function to always be inlined.

The compiler is free to accomplish this semantic in any which way it may, under the as-if rule.

6 Backwards compatibility to C++26 contracts
The main (only?) backwards compatibility issue is that the <contracts> header must be included to get the
standard assertion object declarations. In C++26 contracts can be used without including any header, which is
logical as the names of the contract assertion kinds are built in. Adding an include of this header is a refactoring
that is somewhat tedious but not hard to do or error prone, and failing to do it causes compile time errors.
A codebase can also select to change the build system to pre-include the contracts header to avoid excessive
code changes. Most codebases have central headers that are included by all or most TUs so the work should be
limited. If import std; is used there is no backwards compatibility issue.

If name lookup for assertion objects is not modified for pre- and postconditions the identifiers pre and post
defined in the global namespace by <contracts> can be hidden by entities in intermediate namespaces that are
not assertion objects. This causes a risk of backwards compatibility issues: If a program declares the name pre
or post in a namespace also containing contract checks the contract checks fail to compile as name lookup for
the contracts will now find the user defined entity instead of the assertion objects. The risk that such a name
lookup result will not result in a compile error is very small as the entity found when looking up the name must
be an object whose type has a data member assertion_object_kind of type convertible to int and a suitable
operator(). Note that with C++26 contracts contract_assert is a keyword so no declarations of entities of
this name can exist in C++26 code. This type of compiler error can be fixed by prefixing each pre or post
contract assertion with :: to explicitly select the assertion object or to rename the clashing entity.

Another risk is of course that a codebase declares entities called pre or post in the global namespace and also
includes <contracts>. This will result in a compiler error with this proposal as global variables don’t overload
with any other entities. In this case the only solution is to rename the clashing entity or to move it into a
namespace where contracts are not used.

Apart from these naming related issues there could be subtle semantic differences from C++26 in this pro-
posal. If so this is unintended and can hopefully be corrected either by modifying the assertion_object_t
implementation sketched above or by modifying the semantics of the remaining built in compiler functionality.

7 Reasons to not standardize C++26 contracts first
There are some reasons to not standardize P2900 for C++26 if this proposal is a future direction. One reason
documented above is the possible code breakage, although minimal. The requirement to include <contracts>
to be able to use contracts can be implemented easily as a warning or error by compilers as soon as this proposal
is accepted to give users more time to add the include of the header.

The replaceable handler and all of the contents of the <contracts> header becomes more of a convenience
than a necessity with this proposal but something similar would be needed anyway to avoid having to define
new assertion objects and violation handling infrastructure in each codebase. There is nothing wrong with the
contract_violation type or the replaceable handler that would benefit from not being standardized in C++26.

11

I think that the most compelling reason for removing P2900 from C++26 is its dependency from the core
compiler to the contents of <contracts> which is novel and something we usually want to avoid, and which
is avoided with this proposal. Another rather big advantage is that compilers need not implement (and then
retain even with this proposal) compiler switches or other means to select an evaluation semantic for each TU.
If functionality similar to C++26 contracts is desired this can be accomplished with the -D switch and some
ifdefs in the <contracts> header.

8 References
[P3312R1] Bengt Gustafsson. 2025-04-16. Overload Set Types.

https://wg21.link/p3312r1

[P3400R2] Joshua Berne. 2025-12-14. Controlling Contract-Assertion Properties.
https://wg21.link/p3400r2

[P3909R0] Ville Voutilainen. 2025-11-03. Contracts should go into a White Paper - even at this late point.
https://wg21.link/p3909r0

12

https://wg21.link/p3312r1
https://wg21.link/p3400r2
https://wg21.link/p3909r0

	Overview
	Proposal
	Identifying that a type is an assertion object type
	Identifying assertions and looking up their assertion objects
	Data members controlling core language behavior
	The function call operator
	The value of the semantic argument

	Reimplementing C++26 contract assertion types
	Standard assertion objects

	Discussions and consequences
	Name lookup rule for assertion objects
	Customization of standard assertion objects
	No core language dependency on <contracts>
	Changes to the contract_violation type

	Additional standard assertion objects
	Static analyzer requirements
	Forwarding the source_location
	Caller and callee side checking control

	Specification alternatives
	A more P3400-like syntax

	Backwards compatibility to C++26 contracts
	Reasons to not standardize C++26 contracts first
	References

