
Dual compiles of functions with contracts
Document #: P3967R0
Date: 2026-01-16
Project: Programming Language C++
Audience: EWGI /SG21
Reply-to: Bengt Gustafsson

<bengt.gustafsson@beamways.com>

Contents
1 Introduction 1

1.1 Example . 2

2 Motivation 3

3 Proposal 3
3.1 Checked and unchecked compiles . 3
3.2 Unchecked and checked code blocks . 4

4 Discussions 4
4.1 Interfacing to code compiled without this proposal . 4
4.2 Global variable initializers . 5
4.3 Drawbacks . 5

4.3.1 Compiled code size . 5
4.3.2 Compile time . 5
4.3.3 Runtime overhead . 5

4.4 Extra symbols for optimization . 6
4.5 Debug builds and always checked contracts . 6
4.6 Possible compiler controllability of dual code generation . 6

4.6.1 Functions without contracts . 6
4.6.2 Dual entry vtables . 7

4.7 Interaction with P3400 or P3968 . 7
4.8 Interaction with library hardening . 7
4.9 Interaction with implicit contract checks . 8

5 References 8

1 Introduction
This proposal solves a number of problems related to contracts by generating code both with and without checked
contract-assertions with one compilation command. We call these the checked and unchecked compiles and the
result the checked and unchecked code. The checked compile works exactly like a compile with C++26 contracts,
or as amended by other proposals. The unchecked compile works like a C++26 contracts build with ignore
semantic, except for contract-assertions marked as non-ignorable by some mechanism applicable to individual
assertions. The two compiles of a function are differentiated by their mangled names and are created by the
same compilation command.

The checked compile of the main function is called by the startup code. To run any code with unchecked
contract assertions a special unchecked_contracts block has to be executed. This is syntactically similar to
an extern "C" or a consteval block and causes its contents to be compiled as in the unchecked compile, with

1

mailto:bengt.gustafsson@beamways.com

function calls directed at unchecked compiles. A checked_contracts block is also available which works in the
opposite way.

In addition to the two compiles of each function a thunk which jumps to either the checked or unchecked code
depending on a checking mode variable is compiled. This thunk has the same mangled name as a compiler
would emit for the function prior to this proposal. When taking the address of a function the address of this
thunk results, and the address of the thunk is used in vtables. By virtue of its legacy name mangling the thunk
will also be called by code compiled with an older compiler. The checking mode variable is thread_local and
indicates the current (checked or unchecked) checking mode of the thread and is modified when entering and
exiting unchecked_contracts and checked_contracts blocks.

1.1 Example
This example shows how unchecked_contracts and checked_contracts blocks can be nested. Note that each
compile of func is called once from main, and that its first call to subfunc is to the corresponding compile.
while the two subsequent calls go to the same compiles of subfunc for both compiles of func. This works the
same even if the functions are in different translation units and/or inlined.
bool log(const char* msg)
{

std::cout << msg << std::endl;
return true;

}

void subfunc() pre(log("Running subfunc"))
{
}

void func() pre(log("Enter func") post(log("Leave func"))
{

sub_func();
unchecked_contracts {

sub_func();
checked_contracts {

sub_func();
}

}
}

int main()
{

func();
unchecked_contracts {

func();
}

}

Running this program results in the following output:
Enter func // First call of func is with contracts
Running subfunc // First call to subfunc follows func's checking mode
Running subfunc // Third call to subfunc unconditionally checks contracts
Leave func // First call of func ends
Running subfunc // When calling func in an unchecked block only the third subfunc call logs.

Sorry for the side effect of the contract-assertion predicate…

2

2 Motivation
With the TU-level evaluation semantic of C++26 contracts based on compiler switches performance critical
code can’t reside in the same TU as safety critical code. This forces unnatural subdivision of code such as
setup and run functions in the same classes into different TUs just to get contract checks on the setup parts
without getting unacceptable performance degradation in the run parts. Furthermore the lack of name mangling
difference between functions with different evaluation semantics in C++26 allows the linker to randomly select
implementations of outlined inline and template functions, which is a big problem for instance for the standard
library.

With this proposal calls to inline and template functions that are not inlined always call the checked or unchecked
compile depending on whether the calling code is checked or unchecked, which guarantees that both performance
and checking is maintained according to programmer intent.

As unchecked code never executes unless called directly or indirectly from an unchecked_contracts block it is
relatively easy to find out which parts of a program run are unchecked, and as easy to find out that there is no
checking going on in performance critical parts of the code.

Optimizers can elide caller side checks as it is guaranteed that callee side checks are actually performed in checked
compiles. With the additional ABI specific entry point suggested below the precondition checking can be moved
to the caller side if this is more optimal.

With this proposal it is pointless to compile translation units with the ignore semantic as the same code is
generated by the unchecked compile anyway. It is expected that the observe semantic will most often be set
on a specific subset of contract-assertions, so the overall evaluation semantic when compiling will be enforce or
quick-enforce. This minimizes the risk that the checked code of a function actually doesn’t check the contract
assertions if selected randomly by the linker.

The thunk with the traditionally mangled name makes sure that checking is consistent even when calling virtual
functions on objects created in code with opposite checking mode, when calling through function pointers
obtained by code with the opposite checking mode and when calling back from code compiled without knowledge
of this proposal. Furthermore the address-equality of all function pointers to the same function is preserved, as
the address is always that of the thunk.

This proposal also solves the problem of distributing pre-compiled libraries as the same library file contains both
the checked and unchecked compiles. This includes the specific problem of linking to a hardened or unhardened
standard library as there is only one. Selection of which compile to use is done separately for different parts
of the codebase using unchecked_contracts and checked_contracts blocks even when these call the same
function.

3 Proposal
The actual proposal consists of the checked and unchecked compiles of functions, the checking mode variable and
the unchecked_contracts and checked_contracts blocks. Any possibilities beyond this is related to compiler
switches etc. and are beyond the scope of the C++ standard. However, it is suggested that compilers should
not provide a way to compile all contract-assertions in a translation unit as ignore or observe.

As name mangling is not something that the standard talks about some other nomenclature may have to be
introduced, such wording details are not part of this first proposal revision.

3.1 Checked and unchecked compiles
This proposal introduces two checking modes: checked and unchecked. Each function in a program is compiled
in both these checking modes. Function calls from checked code call checked code of called functions and
function calls from unchecked code call unchecked code of called functions. In unchecked code all contract
assertions except those especially marked as non-ignorable are ignored. In checked code all contract assertions

3

are checked according to whatever system the compiler implements to control the semantic of each contract
assertion, including using in flight proposals such as [P3400R2] or [P3968R0].

The startup code calls the checked compile code of the main function.

Special thunks are generated during compilation, which just jump to the checked or unchecked code depending
on a thread_local checking mode variable. The address of this thunk is returned when the address of a function
is taken, including when building vtables.

Lambdas are not special in this regard, conceptually there are two compiles of the lambda body. When a
captureless lambda is converted to a function pointer the thunk selecting between these two compiles is returned.
This follows from the rewrite rules from lambdas to structs with function call operators.

Defining a local class or lambda inside a unchecked_contracts or checked_contracts block does not prevent
the dual compiles of the lambda’s function call operator or the generated constructors and destructor.

3.2 Unchecked and checked code blocks
Special unchecked_contracts and checked_contracts blocks are part of this proposal as shown in the intro-
ductory example. Function calls in unchecked_contracts blocks don’t do caller side contract checks and call
unchecked code in both compiles of the surrounding function. Similarly function calls in checked_contracts
blocks call checked compile code in both compiles of the surrounding function and may do caller side contract
checks.

unchecked_contracts or checked_contracts blocks are only allowed in block scope.

When entering an unchecked_contracts block in the checked code of a function the checking mode variable is set
to unchecked, and when the block ends the variable is set back to checked. When entering a checked_contracts
block in the unchecked code of a function the checking mode variable is set to checked, and when the block ends
the variable is set back to unchecked. The checking mode variable for the main thread is initiated to the checked
state before main is called. The checking mode variable of other std::threads is initiated from the initiating
thread’s value.

The braces of unchecked_contracts and checked_contracts blocks do not introduce a block scope which is
to say that local variables are not destroyed at the end of the block. This is consistent with extern “C” blocks.

The checking mode variable is hidden from the programmer and only observed by the thunks.

4 Discussions
Here are some additional discussions and observations regarding the consequences and further details of this
proposal.

4.1 Interfacing to code compiled without this proposal
To make sure that both checked and unchecked compiles can call functions compiled with an older C++ compiler
an alternate name for the function to call using the traditionally mangled name for the function is added to each
call site. Alternate names is an object file format feature available in the elf and coff file formats used on Linux,
Windows and Mac, but it is possible that such a feature is not available on some less well-known platforms.
Another solution may be to include an entry point with a weak symbol with each called unchecked or checked
mangled name which just jumps to the traditionally mangled function. This should work on all platforms as
weak symbols must be available to link C++ programs.

Functions declared with extern "C" don’t have mangled names and thus both compiles will call the only existing
implementation of the function. For an extern "C" function which is defined in a C++ translation unit both
compiles are made but the only symbol exposed in the object file refers to the thunk.

4

https://wg21.link/p3400r2

4.2 Global variable initializers
All global and static variables are initialized by calling checked code. As initialization of global variables is
usually not performance critical this proposal does not include a way to initialize global variables using the
unchecked compile code. A future version of this proposal or a follow up proposal may make this possible if
needed. One reason for not proposing unchecked_contracts blocks in namespace scope is that it is unclear
what it would mean to declare or define functions or classes with member functions inside such blocks. Also the
possibility of inlined class static variables complicates this considering that the header file containing the inline
declaration of the variable may be included from within an unchecked_contracts block in some TUs, but not
int others.

4.3 Drawbacks
No feature comes without drawbacks, but in this case these are mainly evident during builds.

4.3.1 Compiled code size

One obvious drawback of this proposal is that the generated code size is larger by something approaching a
factor of 2 compared to a C++26 build. This is true for the object files and static library files but with function
level linking this space premium decreases to a much smaller value, including two compiles only for functions
that are actually called from both unchecked and checked code (and not inlined).

With advanced systems such as link time code generation and modules the actual dual code generation can
be relegated to link time, when only the code generation that is actually needed in the executable is actually
performed.

Note that this drawback can be seen as an advantage: It makes it possible to distribute libraries in binary form
that are suitable for both performance critical and safety critical use.

4.3.2 Compile time

Without link time code generation the actual code generation step has to be done twice which affects the compile
times. How much this adds depends on how much of the time is spent in the compiler back end generating object
code compared to the front end tasks of parsing and semantic analysis that are still only done once. For inline
functions that are not inlined as well as for functions with static linkage only compiles called from the compiled
TU need to be performed, which alleviates the compile time overhead.

With link time code generation the code generation for regular functions including non-inline functions would
be performed at link time. As link time code generation has traditionally been used with high optimization
levels in mind the time to link may be high, but in principle the total time could be lower as inline functions are
only code-generated once. In most programs only the checked or unchecked compile functions are ever called
which may create a significant time saving compared to always generate both checked and unchecked code during
compilation and then only link one of these compiles.

4.3.3 Runtime overhead

The reading of the checking mode variable introduces a small overhead for indirect calls via vtables and function
pointers. Modifying this variable during execution of unchecked_contracts and checked_contracts blocks
adds an even smaller overhead. This overhead can be made lower than accessing a regular thread_local variable
as the checking mode variable can be part of runtime state directly accessible via the thread_local pointer
register, removing one or two levels of indirection compared to regular thread_local variables. For both Intel
and ARM architectures checking this variable then consists of loading one byte at an offset relative to the register
used for keeping track of thread_local data.

The highest risk of measurable overhead is probably when calling virtual functions in hot loops but this adds
rather little to the existing overhead, especially on advanced micro-architectures where branch predictors should
be extremely good at predicting the jumps in the thunks where the branch condition seldom changes.

5

4.4 Extra symbols for optimization
So far this proposal has discussed three different entry points for each function, the unchecked compile, the
checked compile and the thunk that selects between the two. Checked code calls the checked entry point but
this often causes unnecessary contract checks as the caller may be able to statically determine that preconditions
are not broken, or at least that within a loop the contract is either broken on every turn or never. In these
cases it would be advantageous to move the remaining precondition checks to the caller side. As evaluating
preconditions is the first thing that happens in a function it should be possible to provide an entry point after
this part of the function. Depending on the ABI and implementation of contract checks a function preamble
and a jump instruction may be required to implement this entry point. If the function has only preconditions
this entry point is the same as the entry point for the unchecked compile. In an actual implementation the jump
instruction would be more efficiently placed at the end of the precondition checking code and jump to after the
unchecked entry point’s preamble.

This is an optimization that ABIs can implement, but it does not seem it has to be mentioned in the standard
as long as the allowance for multiple checking of contracts is retained (along with the allowance to omit checks
that can be proven true under the as-if rule).

4.5 Debug builds and always checked contracts
In debug builds it may be desirable to check all contracts regardless of the current checking mode. The eas-
iest way to do this would be to have a compiler flag that disables generation of unchecked code and makes
unchecked_contracts ineffective. It is also possible to leave this choice to runtime, i.e. to be able to run a built
executable with all contracts checked or according to its unchecked_contracts blocks. In principle this consists
of blocking the setting of the checking mode to unchecked by some process wide setting. For this to work all calls
in unchecked_contracts blocks must call the checking mode selection thunks which carries a small overhead
even when this runtime checking enable feature is not used. This overhead should be negligible in debug builds.

4.6 Possible compiler controllability of dual code generation
While the intent of this proposal is that a regular build should do both compiles it is certainly possible to reduce
the overhead with knowledge about the use of the code. A compiler switch can be provided that only performs
one of the compiles (and sets the thunk to point at this compile). This results in missing symbol errors at link
time if calls are made to the non-existing code for a function.

Such compiler switches can be used to ensure that unchecked code of critical parts of a program can never be
called, as it doesn’t exist if suppressed by a switch. Another use case is to remove the small overhead that is
introduced by the thunks, but most really time critical code would not pass through thunks anyway as it is
well known that virtual function calls and calls through function pointers are expensive, and those are the only
situations that thunks would be executed.

As noted above providing a switch to only generate unchecked code presents a risk of accidentally calling
unchecked code. This risk can be mitigated by not providing the traditionally mangled function name in this
case, which means that to call such code you have to use a unchecked_contracts block even with an unchecked-
only compilation.

The main drawback with this type of switches is that it brings back the subdivision of enforcement at translation
unit borders, which is what this proposal wants to avoid.

4.6.1 Functions without contracts

A function without contracts may or may not call other functions which have contracts. As there may be
contract_assert type contracts in a called function without observable source code it is not always possible to
know if there are contracts in called functions. If it can be determined that there aren’t, both compiles of the
function will generate the same code so the differently mangled symbols for the function may refer to the same
compile (including the thunk name).

6

If it can’t be determined that there are no contracts in called functions the compiler can choose to compile for
both checking modes as if the function had contracts. An alternative which reduces code size but has a small
performance penalty is to compile functions without contracts with all outgoing calls calling the traditionally
mangled function name, thus ending up in thunks when calling functions with contracts. In this case all three
mangled names for the function refer to the same compile. This is to say that these compiles are exactly like
compiling with an earlier compiler version.

As there is a space/performance trade off a compiler switch and/or attribute on the function itself is advised.
This proposal revision does not standardize any attribute to control this for individual functions, but it would
be possible to add.

4.6.2 Dual entry vtables

It would be possible to get rid of the overhead of calling virtual functions via thunks by doubling the number
of function pointers in vtables. This is however an ABI break so it would require a compiler switch. To prevent
the linker from linking object modules with traditional and dual entry vtables together a flag in the object file
format can be used, but this requires the linker to know about this flag which can be problematic on some
platforms.

When loading dynamic libraries the loader would have to check a flag in the executable format to prevent loading
libraries linked with or without dual entry vtables. While possible this does not seem worth the effort and risks
to end up with a non-starting program in the field for such a miniscule time saving.

4.7 Interaction with P3400 or P3968
With [P3400R2] it becomes possible to individually control the evaluation semantic of each contract-assertion,
creating an effective evaluation semantic that may differ from the initial evaluation semantic from the build
system. If the effective evaluation semantic is something else than ignore for unchecked compiles (where the
initial semantic is ignore) the contract-assertion is checked even in the unchecked compiles.

With the alternative [P3968R0] proposal this is instead indicated by the ignorable data member of the assertion
object being false.

4.8 Interaction with library hardening
With this proposal in place it is obvious that library hardening should be based on contracts. This allows
using the standard library in programs that contain both performance critical code that can’t bounds check for
instance every vector element access and safety critical code which requires such bounds checking, even for
vectors of the same element type or even the same vector.

Presumably library hardening only affects functions defined in headers but some of these may not actually be
inlined which makes them susceptible to random selection by the linker if some TUs are compiled without library
hardening. This proposal solves that issue and also makes the idea of being able to turn off library hardening
less important. However, due to the vast amount of performance critical code relying on the performance of the
standard library out there we probably need to be able to turn off library hardening using a compiler define
for the near future even though modifying code bases by adding unchecked_contracts blocks and turning on
library hardening should be encouraged.

Note also that with this proposal there is no problem with distributing pre-compiled libraries, including the
standard library, as the same library file contains both the checked and unchecked code. For library users there
are no awkward choices to make when linking and no risk of selecting the wrong library file.

Implementing library hardening without using contracts makes standard library checking independent from
checked/unchecked code which would be bad in all cases. Also, much more preconditions could be checked in
the standard library with this proposal in place as there is no performance vs. safety trade-off, you can get both!

7

https://wg21.link/p3400r2

4.9 Interaction with implicit contract checks
The proposal [P3100R5] discusses checks for out of bounds accesses to local arrays and other checks which relate
to the core language functionality. Such checks are called implicit contract checks and with this proposal they
would be performed in the checked compilations only, which is consistent with how all other checks are handled.
As the built in operators for which such implicit contract checks would be done are almost always inlined there
is no need for name mangling or thunks. For some smaller architectures things like division may be delegated
to functions in a support library and then the same system as for all other functions can be used, checking for
such things as division by zero in checked compiles only.

5 References
[P3100R5] Timur Doumler, Joshua Berne. 2025-12-15. Implicit contract assertions.

https://wg21.link/p3100r5

[P3400R2] Joshua Berne. 2025-12-14. Controlling Contract-Assertion Properties.
https://wg21.link/p3400r2

8

https://wg21.link/p3100r5
https://wg21.link/p3100r5
https://wg21.link/p3400r2

	Introduction
	Example

	Motivation
	Proposal
	Checked and unchecked compiles
	Unchecked and checked code blocks

	Discussions
	Interfacing to code compiled without this proposal
	Global variable initializers
	Drawbacks
	Compiled code size
	Compile time
	Runtime overhead

	Extra symbols for optimization
	Debug builds and always checked contracts
	Possible compiler controllability of dual code generation
	Functions without contracts
	Dual entry vtables

	Interaction with P3400 or P3968
	Interaction with library hardening
	Interaction with implicit contract checks

	References

