return_value & return_void Are Not
Mutually Exclusive

Document Number: P3950R0

Date: 2025-12-21

Reply-to: Robert Leahy <rleahy@rleahy.ca>
Audience: EWG, SG1, SG17

Abstract

This paper proposes that the function-body of a function which is a coroutine be able to
simultaneously contain statements both of the form co_return; and co_return v;.

Background

The standard specifies the effect of co_return statements in terms of equivalent statements
within the context of a replacement body (§9.6.4 [dcl.fct.def.coroutine]). Like a regular return
statement co_return statements have two distinct forms: Those that return void and those that
return some value. These are specified as follows (§8.8.5 [stmt.return.coroutine]):

“If the operand is a braced-init-list or an expression of non-void type, S is
p.return_value(expr-or-braced-init-1list). [...] Otherwise, S is the compound-statement
{ expression,, ; p.return_void(); }.”

At first this appears to permit coroutines whose body contains co_return statements of void
and of non-void provided the promise type admits corresponding invocations of return_value
and return_void. Unfortunately the standard bans this by fiat (§9.6.4 [dcl.fct.def.coroutine]):

“If searches for the names return_void and return_value in the scope of the promise type
each find any declarations, the program is ill-formed.”

This restriction has been present in its current form since N4499 ([1] at §6.6.4):

“If the promise type defines both return_value and return_void member functions, the
program is ill-formed.”

A different form of this restriction was present in N4403 ([2] at §18.11.3):

“A promise type must contain at most one declaration of set_result.”

These early coroutine proposals contained the notion of a coroutine’s “eventual type.” This
concept was eventually dropped (there is no trace thereof in [3] or in the working draft).

There has previously been a paper by a different author with the same goal as this paper [4]. It
had no consensus in Cologne in 2019, however the author of this paper feels there is new
information [5][6].

Discussion

Implementing Promise Types
The restriction in the current working draft says (emphasis added):
“If searches for the names |[...] find any declarations, the program is ill-formed.”

Note the reference to “names” and “declarations.” This restriction can only be implemented by
the compiler. Regular C++ code cannot check for “names” or “declarations,” it can only check for
well-formed expressions. The above restriction does not require the expressions
promise.return_void() or promise.return_value(vs...) (for some/any invented vs) to be
(or not to be) well-formed, instead it says that if the names are found the program is ill-formed.

A consequence of the above is that promise types cannot be implemented using the following
strategy:

template<typename ReturnType>
struct some-promise-type {
void return_void() requires std::is _same v<void, ReturnType> { /* ... */ }
template<typename T = ReturnType>
requires std::is_same_ v<T, ReturnType>
void return_value(T t) { /* ... */ }
/...
}s

Because despite the fact expressions which invoke return_void and return_value will never
be simultaneously well-formed the names are declared.

Coroutines With Heterogeneous Return Types

C++ functions return in exactly one way, and they return exactly one type. This is the case
despite the irregularity of void [6] and the existence of [[noreturn]]. Importantly this means
that there is no way, as a first-class feature of the language, for a C++ function to:

e Return in zero ways (e.g. always throw) (note that despite the existence of
[[noreturn]] there is no generic way to inspect a function or invocable and ascertain
that it will never yield a value)

Return in multiple ways (e.g. int or double)
Return multiple types (e.g. both int and double)

The latter two have library solutions, but at the language level those library solutions present as
a single return modality with a single type (note that even where a function call expression is
immediately bound to structured bindings the function call expression still yields a single value
of a single type).

While the body of a C++ coroutine may syntactically resemble the body of a C++ function it is
nothing of the sort. The standard makes this clear:

e The function body of a function which is a coroutine is rewritten so that it is no longer a
function body, but instead a protocol by which the code interfaces with the promise
(§9.6.4 [dcl.fct.def.coroutine])

e When a coroutine is invoked the value yielded thereby is not determined by the function
body but instead by evaluating the get_return_object or
get_return_object_on_allocation_failure nullary invocable member functions of
the promise (ibid.)

e Allowing control to flow off the end of a coroutine is either undefined behavior, or
equivalent to promise.return_void() (ibid.)

e The statements by which regular functions end their execution are disallowed in the
function body of a coroutine (§8.8.5 [stmt.return.coroutine]) even if those statements are
discarded (ibid.)

C++ is sufficiently powerful that the library may be used to fill in for missing language features.
One instance of this is discussed above: Library features adding the ability for C++ functions to,
in effect, return multiple values and in multiple ways. std: :execution, which will ship in
C++26, provides “the [library] implementation of an async-function” ([8] at §6).

The library implementation of a function provided by std: :execution’s senders and receivers
is breathtakingly more powerful than C++’s language-level functions, being:

e Fundamentally asynchronous through the decoupling of initiation and completion
e Capable of:
o Abandoning forward progress via std: :execution: :set_stopped
o Completing with errors beyond an exception throw
o Expressing the concept of a function which:
m Completes successfully with no values without the use of an irregular type
m Does not complete successfully
m Completes successfully in multiple ways (obviating the need for a
separate sum type)

m Completes successfully with multiple values (obviating the need for a
separate product type)

The capabilities with respect to successful completion are expressed by an instantiation of
std: :execution::completion_signatures whose template arguments include, respectively:

std::execution::set_value_t()

No types of the form std: :execution::set_value_t(...)

Multiple types of the form std: :execution::set_value_t(...)

At least one type of the form std: :execution::set_value_t(T, U, ...)

Were coroutines C++ functions this would leave us in an awkward place: “[A] Standard C++
model for asynchrony” (i.e. std: :execution) which is library-based with capabilities wildly in
excess of the corresponding language feature (i.e. coroutines).

Fortunately, as discussed above, coroutines are not C++ functions. They are a protocol for
interacting with the promise. The shell of a C++ function which surrounds a coroutine exists only
to yield a return object from the promise.

The promise is simply an instance of a C++ type. C++ types may have member function
templates. Templates permit metaprogramming. Therefore promises can be authored which
expose the power of the std: : execution model:

e co_return statements need not accept an expression with the same type, or even with
a common type, provided return_value can be invoked with the result of that
expression, and therefore behind the scenes these can be plumbed through to different
std: :execution::set_value completion signatures

e The tuple-like protocol can be used to resolve individual values to
std: :execution::set_value completion signatures with multiple values

The above works. The author has implemented it.

Trying to accept std: :execution: :set_value_t() (i.e. successful completion with no values)
alongside any other std: :execution::set_value_t(...) form, on the other hand, does not
work. Not for any conceptual reason, but simply because the standard bans it by fiat.

For further support of the above consider: The author of such a promise type can accept a value
of a special tag type and map it to std: :execution: :set_value(rcvr) (the author has
implemented this), but cannot simply write a return_void member function which maps to the
same.

Conclusion

Disallowing return_void alongside return_value is fundamentally arbitrary, unnecessarily
making void a special case. The method by which it is disallowed unnecessarily restricts the

ways in which generic promise types can be implemented. Disallowing it either disadvantages
coroutines vis-a-vis std: :execution or necessitates library workarounds (e.g. the tag type
approach discussed in the preceding section). Said restriction should for all the preceding
reasons be removed.

Wording

[dcl.fct.def.coroutine]

Nete2—If the expression promise.return_void() is fedrdwell-formed, flowing off the end of
a coroutine is equivalent to a co_return with no operand. Otherwise, flowing off the end of a
coroutine results in undefined behavior——ene-rote}

Acknowledgements

The author would like to thank Lewis Baker for permission to continue pursuing a solution to this
problem.

References

[1] G. Nishanov et al. Draft wording for Coroutines (Revision 2) N4499

[2] G. Nishanov. Draft wording for Resumable Functions N4403

[3] Programming Languages — C++ Extensions for Coroutines N4680

[4] L. Baker. Allowing both co_return; and co_return value; in the same coroutine
P1713R0

[5] M. Dominiak et al. std: :execution P2300R10

[6] D. Kuhl et al. Add a Coroutine Task Type P3552R3

[7] M. Calabrese. Regular Void P0O146R1

[8] K. Shoop. async-object - aka async-RAIl P2849R0

	return_value & return_void Are Not Mutually Exclusive
	Abstract
	Background
	Discussion
	Implementing Promise Types
	Coroutines With Heterogeneous Return Types

	Conclusion
	Wording
	[dcl.fct.def.coroutine]

	Acknowledgements
	References

