Class template argument deduction (CTAD) for type template template parameters
Christof Meerwald
NVIDIA

Document Number: P3865R1

Date: 2026-01-13

Reply-To: Christof Meerwald <cmeerw@cmeerw.org>
Audience: EWG

Abstract

This paper proposes to update the core language wording to allow CTAD (class template argument
deduction) for type template template parameters and treat it as a DR, addressing both CWG 3003 and
LWG 4381.

Changelog

RO - R1
added discussion about constant template parameter conversion
added wording change for temp.dep.type from P3863R0

Introduction

CWG 3003 "Naming a deducible template for class template argument deduction” has been raised to
clarify that with the current core language wording, class template argument deduction does not work for
type template template parameters.

However, the library makes use of this feature in [range.utility.conv.to] (adopted in C++23):

template<template<class...> class C, input _range R, class... Args>
constexpr auto to(R&& r, Argsé&&... args);

Let DEDUCE_EXPR be defined as follows:
— C(declval<R>(), declval<Args>()...) ifthatisa valid expression,

and all current implementations actually accept it. There is no known fix for the library wording without
changes to the core language, see LWG 4381 "std::ranges::to specification using CTAD not supported by
core language".

In Re: [isocpp-core] Review of CWG3003 Naming a deducible template for class template argument
deduction it was pointed out that it was not the design intent of PO091R3 "Template argument deduction
for class templates (Rev. 6)" to disallow CTAD for template template parameters. It should therefore be
seen as fixing a wording defect instead of a new feature.

Examples

Simple case:

template<typename T>
struct C {

c(M;

};


mailto:cmeerw@cmeerw.org
https://cplusplus.github.io/CWG/issues/3003.html
https://eel.is/c++draft/range.utility.conv.to
https://cplusplus.github.io/LWG/issue4381
https://lists.isocpp.org/core/2025/03/17587.php
https://lists.isocpp.org/core/2025/03/17587.php
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html

-2-

template<template<typename> class X>
void T {

X x(1);
}

template void f<C>();
It seems reasonable for the type of X to be deduced as C<int>.

But since PO552R0 "DR: Matching of template template-arguments excludes compatible templates”, a
template template argument doesn’t have to match a template template parameter exactly; the template
template parameter just needs to be more specialized than the template template argument. For example:

template<typename ... T>
struct C {
C(r ...);
}:

template<template<typename> class X>
void T {

X x1{1};

X x2{1, 2%};
¥

template void <C>(Q);

Again, allowing the type of X1 to be deduced as C<int> seems reasonable, but what about x2? If we
just substitute C into the template and then perform class template argument deduction, we would get
C<int, int>, even though there is no way to actually specify those template arguments with X. That
seems unhelpful, so that should be ill-formed, similar to CTAD for alias templates (which adds a
deducible constraint).

How should default template arguments for the template template parameter be handled?

template<typename T = int>
struct C {

C(int);

}:

template<template<typename = long> class X>
void T {

X x(1);
¥

template void <C>(Q);

A simple substitution into the template would result in the type of X to be deduced as C<int>, but X<>
would use the default argument specified in the template template parameter (i.e., the type would instead
be C<long>).

Furthermore, looking at a case where there is a conversion for constant template parameters:

template<int>
struct A { };

template<int I>
struct C {
C(A<I>);
}:

template<template<short> class X>
void T {
X x1{A<1>Q};


https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0522r0.html

X x2{A<100000>()};
}

template void <C>(Q);

Once again, by simply substituting X with C, the type deduced for x2 would not be representable in terms
of X.

CWG 3003 shows another example where the alias template refers to a template template parameter.
template <typename T> struct A { A(T); };

template <typename T, template <typename> class TT = A>
using Alias = TT<T>;

template <typename T>
using Alias2 = Alias<T>;

void hQ) { Alias2 a(42); }
void h2() { Alias a(42); }

This currently crashes most implementations, but as the defining-type-id of Alias doesn’t denote a
deducible template, it should just be ill-formed.

Status Quo

Current implementations accept the above examples (except for the last one) with the "simple
substitution" semantics. This means that default template arguments specified on the template template
parameters are ignored during deduction and that types can be deduced that can’t otherwise be written
using the name of the template template parameter. This seems confusing.

Proposed Semantics

This paper proposes to respect the default arguments specified on template template parameters and any
restrictions resulting from a template template parameter being more specialized than the template
template argument. This is consistent with how CTAD for alias templates works, and the proposal is to
use those semantics instead of directly substituting the template template argument.

Placeholder deduction for a type template template parameter should be performed as if the type template
template parameter were replaced by an alias template (with the same template parameters) denoting the
type template template argument in its defining-type-id.

For example, for the pack example above:

template<typename ... T>
struct C {
C(T -...);
}:

template<template<typename> class X>
void fQ {

X x1{1};

X x2{1, 2};
}

template<typename T>
using XC = C<T>; // exposition only

template<> void <C>() {
XC x1{1}; // OK, deduces X<int>
XC x2{1, 2}; // error: class template argument deduction fails

}



Similarly, for default template arguments:

template<typename T = int>
struct C {

C(int);

}:

template<template<typename = long> class X>
void T {

X x{1%};
}

template<typename T = long>
using XC = C<T>; // exposition only

template<> void f<C>() {
XC x{1}; // OK, deduces X<long>

}
And finally, when a conversion is required for a constant template parameter, we would get:

template<int>
struct A { };

template<int I>
struct C {
C(A<I>);
}:

template<template<short> class X>
void T {

X x1{A<1>Q};

X x2{A<100000>Q)};
¥

template<short S>
using XC = C<S>; // exposition only

template<> void f<C>() {
XC x1{A<1>Q};
XC x2{A<100000>()};

}

Both cases would currently be ill-formed due to the current rules for CTAD for alias templates, i.e., they
would both fail the deducible check (at least with the direction for CWG 2467 "CTAD for alias templates
and the deducible check™). But this looks like something that should be addressed by a future revision of
P3579R0 "Fix matching of non-type template parameters when matching template template parameters”

Implementation Experience

None yet for the exact semantics specified in this paper, but all implementations already support the
simple case.

Wording (relative to N5032)

Change [dcl.type.simple] paragraph 3

A placeholder-type-specifier is a placeholder for a type to be deduced ([dcl.spec.auto]). A type-
specifier is a placeholder for a deduced class type ([dcl.type.class.deduct]) if either


https://cplusplus.github.io/CWG/issues/2467.html
https://open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3579r0.html
https://eel.is/c++draft/dcl.type.simple
https://eel.is/c++draft/dcl.spec.auto
https://eel.is/c++draft/dcl.type.class.deduct

-5-

— it is of the form typename,, nested-name-specifier,, template-name or

— it is of the form typename,, splice-specifier and the splice-specifier designates a class
template or alias template.

The nested-name-specifier or splice-specifier, if any, shall be non-dependent and the template-
name or splice-specifier shall designate a deducible template. A deducible template is either a
class template , a type template template parameter, or is an alias template whose defining-type-id is
of the form

typename,, nested-name-specifier,, template,, simple-template-id

where the nested-name-specifier (if any) is non-dependent and the template-name of the simple-
template-id names a deducible template other than a type template template parameter .

Insert a new paragraph before [over.match.class.deduct] paragraph 3

When resolving a placeholder for a deduced class type where the template-name designates a type
template template parameter P, let A be an alias template whose template parameter list is that of P
and whose defining-type-id designates the type template template argument with a simple-
template-id in which the template-argument-list consists of a list of identifiers naming each
template-parameter of P, with the argument being a pack expansion if the template-parameter is
a pack. A is then used instead of the original template-name to resolve the placeholder.

3 When resolving a placeholder for a deduced class type ([dcl.type.simple]) where the template-name
or splice-type-specifier designates an alias template A, ...

Add a new paragraph at the end of [over.match.class.deduct]

[Example:
template<typename ... Ts>
struct Y {

YO:

Y(Ts --.);

}:

template<template<typename T = char> class X>

void T {

X x0{}; // 0K, deduces Y<char>

X x1{1}; // OK, deduces Y<int>

X x2{1, 2}; // error: cannot deduce X<T> from Y<int, int>

}:
template void f<Y>(Q);

— end example]

Add a new bullet in [temp.dep.type] paragraph 8
A placeholder for a deduced class type ([dcl.type.class.deduct]) is dependent if
— it has a dependent initializer, or

— it refers to a template template parameter, or

— it refers to an alias template that is a member of the current instantiation and whose defining-
type-id is dependent after class template argument deduction ([over.match.class.deduct]) and
substitution ([temp.alias]).

Acknowledgements

Corentin Jabot has a very similar paper P3863R0 "Minimal fix for CWG3003 (CTAD from template
template parameters)”. | also like to thank James Touton for hallway discussions during breaks and
Matheus Izvekov for asking about the interaction with constant template parameters.


https://eel.is/c++draft/over.match.class.deduct
https://eel.is/c++draft/dcl.type.simple
https://eel.is/c++draft/over.match.class.deduct
https://eel.is/c++draft/temp.dep.type
https://eel.is/c++draft/dcl.type.class.deduct
https://eel.is/c++draft/over.match.class.deduct
https://eel.is/c++draft/temp.alias
https://open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3863r0.pdf

References

Thomas Koppe: N5032 Working Draft, Standard for Programming Language C++
Hubert Tong: CWG 3003 Naming a deducible template for class template argument deduction
Jens Maurer: LWG 4381 std::ranges::to specification using CTAD not supported by core language

James Touton, Hubert Tong: P0522R0 DR: Matching of template template-arguments excludes
compatible templates

Mike Spertus, Faisal Vali, Richard Smith: PO091R3 Template argument deduction for class templates
(Rev. 6)

Corentin Jabot: P3863R0 Minimal fix for CWG3003 (CTAD from template template parameters)

Matheus Izvekov: P3579R0 Fix matching of non-type template parameters when matching template
template parameters

paper issue 2443 CWG3003 Naming a deducible template for class template argument deduction


https://open-std.org/jtc1/sc22/wg21/docs/papers/2025/n5032.pdf
https://cplusplus.github.io/CWG/issues/3003.html
https://cplusplus.github.io/LWG/issue4381
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0522r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0091r3.html
https://open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3863r0.pdf
https://open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3579r0.html
https://github.com/cplusplus/papers/issues/2443

	Abstract
	Changelog
	Introduction
	Examples
	Status Quo
	Proposed Semantics
	Implementation Experience
	Wording (relative to N5032)
	Acknowledgements
	References

