
Automatically Generate operator->
Document #: P3039R1
Date: 2026-01-12
Project: Programming Language C++
Audience: Evolution Working Group

Library Evolution Working Group
Reply-to: David Stone

<davidfromonline@gmail.com>
Andre Kostur
<andre@kostur.net>

Contents
1 Summary 1

2 Revision History 2
2.1 R1 January 2026 . 2
2.2 R0 November 2023 . 2

3 Design Motivations 2

4 Comparison with comparison rewrites 2
4.1 operator-> . 3
4.2 operator->* . 3

5 Design 3
5.1 operator-> . 3
5.2 operator->* . 3

6 Library impact 3
6.1 Types that will effectively gain operator-> and this is a good thing 4
6.2 Types that will technically gain operator-> but it is not observable 4
6.3 Types that will gain operator-> and it’s weird either way . 4
6.4 Types that have operator-> now and will need to be examined 4
6.5 iterator_traits . 5
6.6 to_address and pointer_traits . 5

7 Proposed Wording 6

8 Feature Test Macro 6

9 Acknowledgements 6

10 References 7

1 Summary
This proposal follows the lead of operator<=> (see Consistent Comparison [P0515R3]) by generating rewrite
rules if a particular operator does not exist in current code. This is a follow-up to Automatically Generate More
Operators [P1046R2], but includes only operator-> and operator->*.

1

mailto:davidfromonline@gmail.com
mailto:andre@kostur.net
https://wg21.link/p0515r3
https://wg21.link/p1046r2

— Rewrite lhs->rhs as (*lhs).rhs
— Rewrite lhs->*rhs as (*lhs).*rhs

2 Revision History
2.1 R1 January 2026
— Paper adopted by Andre Kostur andre@kostur.net
— Added a second motivation around applying operator-> to an rvalue
— Added proposed wording
— Rephrasing from “generating” an operator-> to describing a rewriting behaviour

2.2 R0 November 2023
— Initial publication, written by David Stone davidfromonline@gmail.com

3 Design Motivations
The first motivation of this paper is that users should have little or no reason to write their own version of
operator-> when they have already provided an appropriate operator*. It would be a strong indictment if
there are many examples of well-written code for which this paper provides no simplification, so a fair amount
of time in this paper will be spent looking into the edge cases and making sure that we behave correctly. At the
very least, types that would not have the correct behaviour generated should not generate an operator at all. In
other words, it should be uncommon for users to define their own versions (the default should be good enough
most of the time), and it should be extremely rare that users want to prevent operator-> from being available
(= delete should almost never appear).

This paper was split off from [P1046R2]. That paper proposed generating many operators, this paper is just the
arrow overloads. This is the part of that paper with the most motivation (as users cannot write the equivalent),
the feature that gained the most support from the previous EWG meeting, and one of the least complicated
changes.

This area has been well-studied for library solutions. This paper, however, traffics in rewrite rules (following
the lead of operator<=>), not in terms of function calls. Because of this, we have one more option that the
library-only solutions lack: we define lhs->rhs as being equivalent to (*lhs).rhs. This neatly sidesteps all of
the issues of library-only solutions (how do we get the address of the object? how do we handle temporaries?).
It even plays nicely with existing rules around lifetime extension of temporaries. This solves many long-standing
issues around proxy iterators that return by value.

The second motivation is that when one applies operator-> to an rvalue, at some point during the evaluation
invoking operator-> will return a raw pointer. Since one cannot have a pointer-to-reference, the rvalueness
is lost: which means that one would not be able to invoke an rvalue-qualified member function on that final
type. Which includes a potentially deleted rvalue-qualified member function. If the expression is rewritten
to use operator*, that operator can be reference-qualified to retain the rvalueness through to the end of the
expression.

4 Comparison with comparison rewrites
This change tries to follow the lead of the existing rewrite rules we have. However, unlike the comparison oper-
ators this change is significantly simpler and less likely to have all the corner cases we’ve seen with operator==
and operator<=>. Much of the complexity around the comparison operators has come from reversed candidates
and dealing with potentially multiple arguments. The specification of these operators should be significantly
simpler.

2

mailto:andre@kostur.net
mailto:davidfromonline@gmail.com
https://wg21.link/p1046r2

4.1 operator->
operator-> is the simplest. It cannot be defined outside of the class, so there is exactly one place to look for
whether it exists today. It is also a unary operator (it does not depend on the right-hand side). This makes
overload resolution and name lookup very simple.

4.2 operator->*
operator->* is slightly more complicated. It can be defined as a free operator, a member function, and a hidden
friend. However, we’ve already solved the problems associated with that for comparison operators. It is a binary
operator, but the order is meaningful and thus there are no complexities around reversed candidates. One of the
base operators for this, operator.*, also cannot be overloaded. This means that the only overloaded operator
that is relevant to operator->* is the same as for operator->: operator*, which is a unary operator. That
fact also eliminates much of the complexity of operator== vs. operator!=.

5 Design
If any of this conflicts with how operator!= is defined in terms of operator== and is not explicitly called out
as a difference, that difference is unintentional.

All of these examples assume there is a variable lhs of type LHS.

5.1 operator->
If the expression lhs->rhs is encountered:

— If overload resolution for operator-> would succeed, then that operator is called. This can also select a
deleted overload.

— If overload resolution does not succeed, but the expression *lhs is well-formed, then the expression is
rewritten to (*lhs).rhs

— Otherwise, the expression is ill-formed

5.2 operator->*
If the expression lhs->*rhs is encountered:

— If overload resolution for operator->* would succeed, then that operator is called. This can also select a
deleted overload.

— If overload resolution does not succeed, but the expression *lhs is well-formed, then the expression is
rewritten to (*lhs).*rhs

— Otherwise, the expression is ill-formed

6 Library impact
Simply removing the operator-> definition from classes could possibly cause a different member function to be
invoked. Specifically if the operator* that is chosen returns an rvalue reference and we are invoking a member
function that has been both lvalue and rvalue reference qualified: using operator-> would cause the lvalue
qualified form to be invoked but using operator* would cause the rvalue qualified form to be invoked. This
may cause subtle behaviour changes. Because of this consideration, this paper will not be removing any existing
declarations of operator-> in the standard library types. We will leave that discussion to happen in a follow-up
paper once this facility is made available in the language.

Even if we do not change the specification of the existing standard library types, there will still be new possibilities
that are exposed. I have surveyed the standard library to get an overview of what would change in response
to this, and to ensure that the changes would work properly. This covers every type that was in the standard
library as of early 2020.

3

6.1 Types that will effectively gain operator-> and this is a good thing
— move_iterator currently has a deprecated operator->
— counted_iterator
— istreambuf_iterator
— istreambuf_iterator::proxy (exposition only type)
— iota_view::iterator
— transform_view::iterator
— split_view::outer_iterator
— split_view::inner_iterator
— basic_istream_view::iterator
— elements_view::iterator

Most of these are iterators that return either by value or by decltype(auto) from some user-defined function.
It is not possible to safely and consistently define operator-> for these types, so we do not always do so, but
under this proposal they would all do the right thing.

6.2 Types that will technically gain operator-> but it is not observable
— insert_iterator
— back_insert_iterator
— front_insert_iterator
— ostream_iterator

The insert iterators and ostream_iterator technically gain an operator->, but operator* returns a reference
to *this and the only members of those types are types, constructors, and operators, none of which are accessible
through operator-> using the syntaxes that are supported to access the standard library.

6.3 Types that will gain operator-> and it’s weird either way
— ostreambuf_iterator

ostreambuf_iterator is the one example for which we might possibly want to explicitly delete operator->.
It has an operator* that returns *this, and it has a member function failed(), so it would allow calling
it->failed() with the same meaning as it.failed().

6.4 Types that have operator-> now and will need to be examined
All types in this section have an operator-> that is identical to what the rewrite would accomplish, if we do
not wish to support users calling with the syntax thing.operator->().

— optional
— unique_ptr (single object)
— shared_ptr
— weak_ptr
— basic_string::iterator
— basic_string_view::iterator
— array::iterator
— deque::iterator
— forward_list::iterator
— list::iterator
— vector::iterator
— map::iterator
— multimap::iterator
— set::iterator
— multiset::iterator
— unordered_map::iterator

4

— unordered_set::iterator
— unordered_multimap::iterator
— unordered_multiset::iterator
— span::iterator
— istream_iterator
— valarray::iterator
— tzdb_list::const_iterator
— filesystem::path::iterator
— directory_iterator
— recursive_directory_iterator
— match_results::iterator
— regex_iterator
— regex_token_iterator
— reverse_iterator
— common_iterator
— filter_view::iterator
— join_view::iterator

All of these types that are adapter types define their operator-> as deferring to the base iterator’s operator->.
However, the Cpp17InputIterator requirements specify that a->m is equivalent to (*a).m, so anything a
user passes to reverse_iterator must already meet this. common_iterator, filter_view::iterator, and
join_view::iterator were added in C++20 and require input_or_output_iterator of their parameter, which
says nothing about ->. Its operator-> is defined as the first in a series that compiles:

1) Try calling member operator-> on the base iterator
2) Try taking the address of the value returned from operator*
3) Create a proxy object that stores by-value returns and returns the address of that

If this paper were accepted, we have two options.

1) Get rid of the manual definition of operator-> from those new types, which is a breaking change for
iterator types with an operator-> that does something meaningfully different from what their operator*
does, or

2) Manually define it only when the wrapped type has a member operator->. This would keep step 1, but
eliminate steps 2 and 3.

6.5 iterator_traits
std::iterator_traits<I>::pointer is essentially defined as typename I::pointer if such a type exists,
otherwise decltype(std::declval<I &>().operator->()) if that expression is well-formed, otherwise
void. The type appears to be unspecified for iterators into any standard container, depending on how you
read the requirements. The only relevant requirement on standard container iterators (anything that meets
Cpp17InputIterator) are that a->m is equivalent to (*a).m. We never specify that any other form is supported,
nor do we specify that any of them contain the member type pointer. There are three options here:

1) Change nothing. This would make pointer defined as void for types that have a rewritten operator->
2) Specify a further fallback of decltype(std::addressof(*a)) to maintain current behavior and allow

users to delete their own operator-> without changing the results of iterator_traits
3) Deprecate or remove the pointer typedef, as it is not used anywhere in the standard except to define

other pointer typedefs and it seems to have very little usefulness outside the standard.

My recommendation is 2, 3, or both.

6.6 to_address and pointer_traits
20.2.4 [pointer.conversion] specifies to_address in terms of calling p.operator->(), so some thought will need
to be put in there on what to do.

5

https://wg21.link/pointer.conversion

The following standard types can be used to instantiate pointer_traits:

— T *
— unique_ptr
— shared_ptr
— weak_ptr
— span

However, none of them are specified to have member to_address.

Note that span does not have operator-> and is thus not relevant to the below discussion at all. unique_ptr,
shared_ptr, and weak_ptr are not iterators, and are thus minimally relevant to the below discussion.

std::to_address is specified as calling pointer_traits<Ptr>::to_address(p) if that is well formed, otherwise
calling operator-> with member function syntax. This leaves us with several options:

1) Leave this function as-is and specify that all of the types that currently have operator-> have a special-
ization of pointer_traits that defines pointer_traits<T>::to_address

2) Specify that all types that currently have operator->work with std::to_address
3) Define a second fallback if p.operator->() is not valid that would be defined as std::addressof(*p).

This is similar to the question for std::iterator_traits<I>::pointer.

1 and 2 feel like the wrong approach – they would mean that authors of iterator types still need to define their
own operator->, or they must specialize some class template (if we agree that the current semantics with regard
to iterators are correct), or they must overload to_address and we make that a customization point found by
ADL.

7 Proposed Wording
Add a second paragraph to 12.4.6 [over.ref]:

If a class member access operator function is not selected by overload resolution, proceed as described in
7.6.1.5 [expr.ref]/2. That is: For an expression of the form

postfix-expression -> templateopt id-expression

the unary operator * function is selected by overload resolution (12.2.2.3 [over.match.oper]), and the expres-
sion is interpreted as

(postfix-expression . operator * ()) . templateopt id-expression

Analogously, for an expression of the form

postfix-expression -> splice-expression

the operator function is selected by overload resolution, and the expression is interpreted as

(postfix-expression . operator * ()) . splice-expression

8 Feature Test Macro
#define __cpp_rewrite_arrow xxxxxxL

9 Acknowledgements
R0 was written by David Stone davidfromonline@gmail.com

6

https://wg21.link/over.ref
https://wg21.link/expr.ref
https://wg21.link/over.match.oper
mailto:davidfromonline@gmail.com

10 References
[P0515R3] Herb Sutter, Jens Maurer, Walter E. Brown. 2017-11-10. Consistent comparison.

https://wg21.link/p0515r3

[P1046R2] David Stone. 2020-01-11. Automatically Generate More Operators.
https://wg21.link/p1046r2

7

https://wg21.link/p0515r3
https://wg21.link/p1046r2

	Summary
	Revision History
	R1 January 2026
	R0 November 2023

	Design Motivations
	Comparison with comparison rewrites
	operator->
	operator->*

	Design
	operator->
	operator->*

	Library impact
	Types that will effectively gain operator-> and this is a good thing
	Types that will technically gain operator-> but it is not observable
	Types that will gain operator-> and it’s weird either way
	Types that have operator-> now and will need to be examined
	iterator_traits
	to_address and pointer_traits

	Proposed Wording
	Feature Test Macro
	Acknowledgements
	References

