
1

P3707R0 – A std::is_always_exhaustive trait
Document number: P3707R0

Date: 2025-05-18

Authors:

• Patrice Roy: patricer@gmail.com

• Gregoire Angerand: gregoire.angerand@gmail.com

Reply to: patricer@gmail.com

Target audience: LEWG, SG14

Introduction
C++17 introduced a trait named std::has_unique_object_representations<T>

that lets code ensure that a type is uniquely represented by its values. Informally, this can be

seen as a way to verify that objects of that type are exempt of padding bits, but the

requirements are stricter than this: T has to be TriviallyCopyable and any two objects of type

T with the same value have to have the same object representation.

This definition disqualifies types with data members of floating point types because NaNs do not

have a unique object representation. For this reason, this trait cannot be used in practice to

ensure an object that has floating point data members is exempt of padding bits.

Sadly, this is a limiting factor for programs that can ensure their floating point numbers are not

NaNs or that, if they are NaNs, they have the same canonical representation. There are use

cases for programs that want to statically ensure that some types can be used on a GPU without

fear of padding bits having indeterminate values and complicating the bitwise comparison of

otherwise identical objects.

This proposal is for a trait that provides this missing facility. This trait is tentatively named

std::is_always_exhaustive<T>.

Motivation for the proposed name
The intent is to provide a type trait which describes types that have no “padding”. Discussions

with Mark Hoemmen indicate that mdspan layout uses is_always_exhaustive().

Quoting the esteemed Mr. Hoemmen from private conversation:

« "Exhaustive" means that the layout mapping is surjective, that is, that every index in

the mapping's codomain has a corresponding multidimensional index in the mapping's

domain. To say that a type has no "padding" means that every byte of an object of that

type corresponds to some member of the type. That is, the mapping from member

name to bytes of the object is surjective. »

Thus, we tentatively propose std::is_always_exhaustive<T> as name for this trait,

and will adjust in time if that name is found to be problematic.

mailto:patricer@gmail.com
mailto:gregoire.angerand@gmail.com
mailto:patricer@gmail.com

2

Motivation for the proposed traits
Consider the following Int16 and Float16 types:

#include <type_traits>

struct Int16 { // note: 16 bytes, not bits

 int i0, i1, i2, i3;

};

static_assert(std::is_trivially_copyable_v<Int16>);

static_assert(

 sizeof(Int16) == sizeof(std::declval<Int16>().i0) +

 sizeof(std::declval<Int16>().i1) +

 sizeof(std::declval<Int16>().i2) +

 sizeof(std::declval<Int16>().i3)

);

struct Float16 { // note: 16 bytes, not bits

 float f0, f1, f2, f3;

};

static_assert(std::is_trivially_copyable_v<Float16>);

static_assert(

 sizeof(Float16) == sizeof(std::declval<Float16>().f0) +

 sizeof(std::declval<Float16>().f1) +

 sizeof(std::declval<Float16>().f2) +

 sizeof(std::declval<Float16>().f3)

);

struct Chunk {

 alignas(16) Int16 i16;

 alignas(16) Float16 f16;

};

int main() {

 static_assert(sizeof(Int16)==16);

 static_assert(sizeof(Float16)==16);

 // Ok

 static_assert(

3

 std::has_unique_object_representations_v<Int16>

);

 // Sad

 static_assert(

 !std::has_unique_object_representations_v<Float16>

);

}

Supposing that the various static_assert expressions in the above example succeed, we

know that:

• An Int16 object is trivially copyable.

• An Int16 object’s representation is entirely made of its data members and there are

no padding bits between these members.

• A Float16 object is trivially copyable

• A Float16 object’s representation is entirely made of its data members and there

are no padding bits between these members.

An application that seeks to use an Int16 object in a situation that requires bitwise copies

and bitwise comparisons could do so.

An application that seeks to use a Float16 object in a situation that requires bitwise copies

and bitwise comparisons could do so as long as its data members are not NaNs or, if they are

NaNs, that they have the same canonical representation.

For type Int16, we could have inferred that information through the use of the

std::has_unique_object_representations_v<Int16> trait. We could not have

done so with std::has_unique_object_representations_v<Float16>.

Intended usage
Users of trait std::is_always_exhaustive<T> are looking for a compile-time

guarantee that type T is exempt of padding.

If T has data members of floating point types, these users can guarantee that these data

members are either (a) not NaN or (b) are NaN that share a canonical representation such that

for two objects t0, t1 of type T and some data member T::m, the underlying

representation of t0.m and t1.m would compare equal.

Possible approach
The text for std::has_unique_object_representations<T> found in

[meta.unary.prop] p10 states (emphasis mine):

« The predicate condition for a template specialization

has_unique_object_representations<T> shall be satisfied if and only if

(10.1) T is trivially copyable, and

4

(10.2) any two objects of type T with the same value have the same object

representation, where

(10.2.1) two objects of array or non-union class type are considered to have the same

value if their respective sequences of direct subobjects have the same values, and

(10.2.2) two objects of union type are considered to have the same value if they have

the same active member and the corresponding members have the same value.

The set of scalar types for which this condition holds is implementation-defined.

[Note 9: If a type has padding bits, the condition does not hold; otherwise, the

condition holds true for integral types. — end note] »

This text mostly seems to meet the expectations for std::is_always_exhaustive<T>.

A non-exhaustive (!) list of approaches to adjust the wording would include:

• adding a phrase to the boldface text to accept floating point scalars (with a caveat that

undefined behavior will ensue if at least one such scalar is a NaN, unless said NaN

representations compare equal),

• adding (10.2.3) to provide a provision for floating point scalars (which could be

preferable if the text required for this provision is more complicated), or

• adding a note such as “[Note: If NaN is avoided, T can be a floating-point type. —end

note]” as can be found in [alg.clamp].

Prior art
We have a very similar trait in std::has_unique_object_representations<T>. It

just slightly misses the mark for some real-life applications. Hopefully, adding a trait such as

std::is_always_exhaustive<T> would be a useful complement.

FAQ
Question 00: have you considered alternative spellings?

Answer: of course, but let’s work with this for now. If this name seems unsatisfying, we will

examine alternatives in more detail.

Question 01: the potential of adding undefined behavior through a trait is a source of

discomfort. Is this necessary?

Answer: well, the occurrence of a NaN in an object of some floating point type is a possibility.

Users of this trait would have to be aware of this obligation of avoid NaN or ensure that the

underlying representations can be compared. In practice, what can be expected is that two

objects of type T for which std::is_always_exhaustive<T>::value is true

will be used in ways where their representation will be compared bitwise, and as such failure to

conform to the comparability requirement of floating point data members will lead to such

comparisons producing erroneous results. It’s unclear to us whether erroneous behavior is an

option here (we are under the impression that it isn’t).

5

Question 02: would it be sufficient to simply change the behavior of

std::has_unique_object_representations<T>?

Answer: we fear this could lead to bad surprises for existing usages of that trait. This explains

why we are proposing a new trait instead.

