
Document Number: P3691R0

Date: 2025-05-19

Reply-to: Matthias Kretz <m.kretz@gsi.de>,

Abhilash Majumder <abmajumder@nvidia.com>,

Bryce Adelstein Lelbach <brycelelbach@gmail.com>,

Daniel Towner <daniel.towner@intel.com>,

Ilya Burylov <iburylov@nvidia.com>,

Mark Hoemmen <mhoemmen@nvidia.com>,

Ruslan Arutyunyan <ruslan.arutyunyan@intel.com>

Audience: LEWG

Target: C++26

Reconsider naming of the namespace
for “std::simd”

ABSTRACT

There has been negative feedback on the names we chose for std::datapar::basic_simd and

std::datapar::basic_simd_mask. The pushback is against the name of the namespace. This paper

does not reconsider the namespace itself, it only reconsiders our naming options. Much of the dis-

cussion revolves around the question of whether it is acceptable to repeat a namespace name for

an entity inside that namespace. This paper looks at this question and aims for a “policy-like” LEWG

answer (independent of SIMD). Among authors there was no clear consensus for one better alter-

native. We therefore invite reflector discussion, as we expect many strong opinions on the matter

(naming is hard and most importantly not always objective). For now, the paper recommends to

rename the namespace to simd and subsequently drop the simd_ part from basic_simd_mask and
simd_mask.

CONTENTS

1 Changelog 1
2 Straw Polls 1
3 Criticism and discussion on the current name 1
4 A survey of existing SIMD libraries 2



P3691R0 Contents

5 Names considered 4
6 Discussion 6
7 Main positions 8
8 Conclusion 8
9 Wording 9
A Bibliography 9

ii



P3691R0 1 Changelog

1 CHANGELOG

(placeholder)

2 STRAW POLLS

(placeholder)

3 CRITICISM AND DISCUSSION ON THE CURRENT NAME

It seems that the namespace name datapar doesn’t appeal to some because “datapar” appears as a

newly invented name and that’s not a good fit for a namespace in the standard library. A namespace

name should describe the contents of the namespace without requiring an explanation.

“Datapar” was orignally invented (and used for some time) for the simd<T> type leading up to

the Parallelism TS 2. The rationale behind the name “datpar” was that the simd<T> type does more

than just SIMD: it is an abstraction for expressing data-parallelism. As such “datapar” describes

a superset of what SIMD is. This is why the combination datapar::simd<T> may look strange to

some: SIMD is one concrete implementation of data parallelism, but the namespace name implies

there is more. The combination of “datapar” and “SIMD” is the strange part about the status quo.

Saying “data-parallel vector [of int]” / “data-parallel int” or a saying “SIMD vector [of int]” / “SIMD

int” is fine. But a “data-parallel SIMD [vector] [of int]” is a strange thing to say/hear/read.

In the last LEWG discussion on [P3287R2], an alternative spelling for datapar, dataparallel
was raised and voted on (with an even split on either). So what if we were to spell it out to

dataparallel or data_parallel? Thenwe still have the issue from above, that “data-parallel SIMD”

sounds strange because SIMD that is not data-parallel doesn’t exist, and data parallelism is more

than just SIMD. But more importantly, the term “data-parallel” is an adjective. We only ever used

an adjective for “experimental” APIs:

std::chrono std::contracts std::execution

std::experimental (the exception) std::filesystem std::linalg

std::literals std::numbers std::placeholders

std::pmr std::ranges std::regex_constants

std::rel_ops (deprecated) std::this_thread std::views
However, the intent for datapar (in [P3287R2]) was to be an abbreviation of “Data-parallel types”,

the subclause heading in the current working draft. There is precedent with e.g. the std::pmr and
std::linalg namespaces of using an abbreviation. The name “pmr” also needs an explanation.

Does that make “pmr” a bad name or does it help to justify “datapar”?

1



P3691R0 4 A survey of existing SIMD libraries

Consequently, the argument that std::datapar has to be spelled out in a longer form as the

adjective std::data_parallel, isn’t necessarily correct. If instead we were to spell it out as std::
data_parallel_types1 or std::dpt, that argument doesn’t hold anymore.

Thus, it appears that any argument for replacing the datapar status quo with simd has to be that

datapar is unclear and the clearer alternatives are too long.

One argument that was used against std::simd::simd (and thus the only reason we considered

a different namespace name) is the ambiguity between namespace and class name and whether

one is looking at a constructor (T::T). What had not been mentioned in these discussions is that

simd is actually not a class template name but alias template.2 The default constructor, for exam-

ple, therefore is spelled std::simd::basic_simd::basic_simd().3 Nevertheless, the repetition of

“simd” looks odd and might be confusing to humans and simple tools. Examples of libraries that do

something similar are Boost.Flyweight and Boost.Histogram:

namespace boost
{

namespace flyweights
{

template </* ... */> class flyweight ;
}
using flyweights :: flyweight ;

namespace histogram
{

template < typename Axes , typename Storage > class histogram ;
}

}

So this has been done before and passed through Boost review. Some of us believe the fear, un-

certainty, and doubts about repeating the name of the namespace in the alias template are possibly

no more than that; and in reality the “problem” is little to non-existent.

4 A SURVEY OF EXISTING SIMD LIBRARIES

Interestingly, no C++ library uses the term “SIMD” in the name of the (unqualified) type. There are4

two libraries that used “SIMD” in the namespace. Rust, however, uses Simd for the type name and

1 Other variations: std::data_parallel_execution, std::data_parallel_algorithms, std::data_parallel_numerics,
std::data_parallelism

2 Granted, this makes little difference for some of us.

3 In diagnostic output it is typically spelled std::simd::basic_simd<T, Abi>::basic_simd() [with T = ..., Abi =
...]

4 “were”, boost::simd doesn’t exist anymore

2



P3691R0 4 A survey of existing SIMD libraries

just plain Mask for the mask type. Rust has no need for an additional namespace scope because all

operations on Simd are implemented as operators or member functions5.

4.1 agner fog’s c++ vector class library

The library does not define class templates but classes like Vec4f, Vec16c, Vec2uq, …The corre-

sponding mask types have an additional b suffix in their name.

class Vecf4; // ~simd <float , 4>
class Vecf4b; // ~simd_mask <float , 4>

4.2 “boost” simd

namespace simd
{

template <class T> struct pack; // ~simd
template <> struct pack <bool >; // ~ simd_mask

}

4.3 e.v.e

namespace eve
{

template <class T, /* Cardinal */> struct wide; // ~ simd
template <class T> struct logical ; // ~ simd_mask

}

4.4 highway

namespace hwy
{

template <class T, size_t N> class Vec128; // ~ simd
template <class T, size_t N> class Mask128 ; // ~ simd_mask
// ...

}

4.5 vc

namespace Vc
{

template <class T, class Abi > class Vector; // ~ basic_simd
template <class T, class Abi > class Mask; // ~ basic_simd_mask
using double_v = Vector <double >;

5 Rust does not enable SIMD-generic programming

3



P3691R0 5 Names considered

using double_m = Mask <double >;
using int_v = Vector <int >;
using int_m = Mask <int >;
// ...

}

4.6 xsimd

namespace xsimd
{

template <class T, class A> class batch; // ~ basic_simd
template <class T, class A> class batch_bool ; // ~ basic_simd_mask

}

4.7 other programming languages

• Rust’s experimental std::simd:

pub struct Simd <T, const N: usize > ...; // ~ simd
pub struct Mask <T, const N: usize > ...; // ~ simd_mask

• C#: System.Numerics.Vector<T>

• Java Panama Vector API:

jdk.incubator.vector.VectorSpecies<Float>
jdk.incubator.vector.VectorMask<Float>

• Swift SIMD module:

protocol SIMD<Scalar>
struct SIMD8<Scalar>
struct SIMDMask<Storage>

• Julia SIMD.jl: xs = Vec4,Float64(1)

5 NAMES CONSIDERED

The name of the namespace and the name of the class (and alias) templates need to be considered

as a whole. It is not helpful to consider a namespace name or class name in isolation. The names

of the class/alias templates also basically never appear without at least one template argument in

user code. Consequently, the following presentation will include the namespace, class template,

and first template argument.

4



P3691R0 5 Names considered

5.1 options for basic_simd

class template

alias template
obvious criticism

std::simd::basic_simd<int>
std::simd::simd<int>

repetitive and human-ambiguous

std::dpt::basic_simd<int>
std::dpt::simd<int>

what is “dpt”? (like what is “pmr”?)

std::datapar::basic_simd<int>
std::datapar::simd<int>

see Section 3

std::dataparallel::basic_simd<int>
std::dataparallel::simd<int>

see Section 3

std::data_parallelism::basic_simd<int>
std::data_parallelism::simd<int>

too long? also see Section 3

std::simd::basic_batch<int>
std::simd::batch<int>
std::simd::basic_number<int>
std::simd::number<int>

it’s not a number, but set of numbers

std::simd::basic_numbers<int>
std::simd::numbers<int>

we already have std::numbers::*
what are “SIMD numbers”?

std::simd::basic_pack<int>
std::simd::pack<int>

C++ already has parameter packs;

another existing meaning: packed structs

std::simd::basic_value<int>
std::simd::value<int>

too many variables are named value

std::simd::basic_vec<int>
std::simd::vec<int>

sounds like a container

std::simd::basic_vector<int>
std::simd::vector<int>

sounds even more like a container

std::simd::basic_wide<int>
std::simd::wide<int>

like in wchar_t?
“SIMD wide” and “SIMD basic wide” need an explanation

std::simd::basic_chunk<int>
std::simd::chunk<int>

this is not a chunk out of a SIMD register

std::datapar::basic_chunk<int>
std::datapar::chunk<int>

where did the “SIMD” name go?

std::dataparallel::basic_chunk<int>
std::dataparallel::chunk<int>

ditto

std::dataparallel::basic_numbers<int>
std::dataparallel::numbers<int>

long; any abbreviation becomes unclear

5



P3691R0 6 Discussion

5.2 options for basic_simd_mask

class template

alias template
obvious criticism

std::simd::basic_mask<4>
std::simd::mask<int>
std::simd::basic_simd_mask<4>
std::simd::simd_mask<int>

repetitive

std::dpt::basic_mask<4>
std::dpt::mask<int>

relation to dpt::simd only via namespace

std::dpt::basic_simd_mask<4>
std::dpt::simd_mask<int>

repetitive like dpt::simd

std::datapar::basic_mask<4>
std::datapar::mask<int>

LEWG already voted against this

std::datapar::basic_simd_mask<4>
std::datapar::simd_mask<int>

repetitive in a different way

std::dataparallel::basic_simd_mask<4>
std::dataparallel::simd_mask<int>

ditto

std::simd::basic_logical<4>
std::simd::logical<int>
std::simd::basic_batch_bool<4>
std::simd::batch_bool<int>
std::simd::basic_simd_bool<4>
std::simd::simd_bool<int>
std::simd::basic_boolean<4>
std::simd::boolean<int>

6 DISCUSSION

There seems to be a strong desire to have “SIMD” in the name somewhere. This desire seems to be

about findability and about trying not to invent a new name where the industry already recognizes

an existing name. (Potentially also about buzzword compliance and delivering on a name we have

been communicating before?)

If wewere to use a different name for the namespace and class/alias templates, is the namespace

or the class/alias name more important and thus needs to use the “SIMD” name? The class/alias

name is the identifier that will always appear in the source code so choosing a class name which is

ambiguous once the namespace is removed (e.g., with a using statement) may obscure the codes

intent.Wewould end upwith variableswith types like pack<int>, vec<int>, batch<int>, wide<int>,
and so on, and all hint of their SIMD behaviour is lost. The only viable alternative term that could

potentially stand on its own (in terms of hinting at behavior) is “vector”. But that train has left the

station decades ago.

6



P3691R0 6 Discussion

On the other hand, if we consider the group of types and functions in the “SIMD” namespace

to be a “SIMD-only” library (i.e., no other data-parallelism abstractions unrelated to the simd type),
then shouldn’t the namespace have the “SIMD” name? If we expect common practice to use fully

qualified names or use of a namespace alias (namespace simd = std::simd; there’s no other con-

ceivable abbreviation other than maybe namespace ss = std::simd), then simd is already always

part of the name. Consequently, we could then choose a name “SIMD <something>” to avoid the

perceived ambiguity of simd::simd.
On the topic of ambiguity, does anyone feel one of the following functions is problematic? Is

there any example that can create “visual confusion” to a human reader? I specifically combined

reduce and the static data member size into one line of (non-sensical) code because I suspect

that’s the most contentious syntax similarity.

int f1() {
std::simd :: simd v = std::array {1, 2, 3, 4};
return std::simd :: reduce(v) + std::simd ::simd <int >:: size ();

}

int f2() {
namespace simd = std::simd;
simd :: simd v = std::array {1, 2, 3, 4};
return simd :: reduce(v) + simd ::simd <int >:: size ();

}

int f3() {
using std::simd :: simd;
simd v = std::array {1, 2, 3, 4};
return std::simd :: reduce(v) + simd <int >:: size ();

}

int f4() {
using std::simd :: simd;
simd v = std::array {1, 2, 3, 4};
return reduce(v) + simd <int >:: size ();

}

int f5() {
using namespace std;
simd :: simd v = std::array {1, 2, 3, 4};
return simd :: reduce(v) + simd ::simd <int >:: size ();

}

int f6() {
using namespace std::simd;
simd v = std::array {1, 2, 3, 4};
return reduce(v) + simd <int >:: size ();

7



P3691R0 7 Main positions

}

Naming the namespace of the reduce function after the type reinforces the connection between

function and type it operates on, which improves clarity and cohesion. Whereas the status-quo of

std::datapar::reduce used in isolation conveys less about its intended argument. The counter-

argument here is that simd::reduce looks like a call to a static member function inside simd. (It
can’t be, though, because simd is an alias template and thus requires a template argument.)

7 MAIN POSITIONS

There seem to be three main positions that we were able to identify. These positions inform where

the “over my dead body” and “any of these is fine” opinions originate.

7.1 acceptable to repeat name in namespace and type

People who take no issue6 with repeating the name of the namespace for a type inside that names-

pace tend to favor std::simd::simd<T> / std::simd::mask<T>. Those who take issue with such

repetition fall into one of the following two categories.

7.2 the namespace name carries more weight

People on this position expect the namespace name to always be visible in code and diagnostics

and therefore do the heavy lifting. Since there seems to be consensus on using the term SIMD,

the namespcae name thus should be “simd”. The name of the class/alias consequently needs to be

something that reads as “SIMD <foo>”, where “<foo>” must not contain “SIMD”. Favored outcomes

are std::simd::pack, std::simd::vec, std::simd::batch, std::simd::wide, …

7.3 the class/alias name carries more weight

Poeple on this position consider the namespace name optional in code. Therefore, the class/alias

name must stand on its own. Again, with the consensus on using “SIMD”, the class/alias name

should be “simd” and the namespace name should be something else. Favored outcomes are std
::datapar::simd, std::dpt::simd, std::data_parallelism::simd, …

8 CONCLUSION

We recommend to go back to the advertised “std::simd” name by naming the namespace std::
simd. In order to avoid the unnecessary duplication in std::simd::simd_mask we also recommend

to then rename std::simd::basic_simd_mask to std::simd::basic_mask and std::simd::simd_-
mask to std::simd::mask.

6 though, typically there’s still a preference for different names — if there’s an obvious set of names

8



P3691R0 9 Wording

Before further discussion or taking that poll, we would prefer a policy-like, general discussion

about whether name repetition between namespace and enclosed entities should be considered

bad practice (or outright banned). The outcome of that poll should inform us where std::simd can
or cannot go.

If LEWG decides to ban name repetition between namespace and enclosed type, then we need

to reconsider whether std::datapar::simd / std::datapar::simd_mask is really still better than

std::simd::pack7 / std::simd::mask.

9 WORDING

9.1 feature test macro

No feature test macro is added or bumped.

9.2 ordering constraints on lwg motions

TBD.

9.3 instructions to the editor

In 29.10 Data-parallel types [simd],

1. change every occurrence of namespace std::dataparsimd {;

2. change every occurrence of using dataparsimd::;

3. change every occurrence of basic_simd_mask;

4. change every occurrence of simd_mask.

A BIBLIOGRAPHY

[P3287R2] Matthias Kretz. Exploration of namespaces for std::simd. ISO/IEC C++ Standards Com-

mittee Paper. 2024. url: https://wg21.link/p3287r2.

7 or one of the other alternatives mentioned; to be discussed on the reflector

9

https://wg21.link/p3287r2

	1 Changelog
	2 Straw Polls
	3 Criticism and discussion on the current name
	4 A survey of existing SIMD libraries
	4.1 Agner Fog's C++ vector class library
	4.2 “boost” simd
	4.3 E.V.E
	4.4 Highway
	4.5 Vc
	4.6 xsimd
	4.7 Other programming languages

	5 Names considered
	5.1 Options for 
	5.2 Options for 

	6 Discussion
	7 Main positions
	7.1 Acceptable to repeat name in namespace and type
	7.2 The namespace name carries more weight
	7.3 The class/alias name carries more weight

	8 Conclusion
	9 Wording
	9.1 Feature test macro
	9.2 Ordering constraints on LWG motions
	9.3 Instructions to the editor

	A Bibliography

