
char_traits: Stop the bleeding!
Document #: P3681R0
Date: 2025-05-19
Programming Language C++
Audience: SG-16
Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Abstract

We propose to deprecate the use of user-defined types for the Traits template parameter
of std::basic_string, std::basic_string_view and iostream-related types. More importantly,
we argue that std::zstring_view should not be encumbered by char traits.

Motivation

Classes such as basic_string, basic_string_view, and the stream types can be customized
with a user-provided CharTraits type. This customization has limited use cases, a non-negligible
impact on compile times, symbol sizes, and diagnostics messages.

It is also not designed to properly handle Unicode and Unicode character types.

While getting rid of char_traits or the Traits template parameters is unrealistic, we should
consider that this customization is not worth its cost, and unburden in-flight and future
proposals such as zstring_view P3655R0 [1].

Problems

CharTraits does not handle multi-bytes encodings

Every CharTraits requirement is specified to operate on single values, even for member func-
tions operating on sequences such as compare and copy. Consequently, using it to transform
multibyte strings will lead to incorrect results. Comparisons might also be incorrect for
shift-state encodings and other non-UTF multibyte encodings.

CharTraits provides functionalities unrelated to code units

It is hard to imagine use cases for a non-default implementation of assign, length, move, copy.
not_eof, eof and other functions are only useful for iostream-related facilities and conflate
byte reading and encoding concerns. It is also hard to see how they would be implemented
differently from std::char_traits. Presumably, a user-provided Traits type could circumvent
LWG2959 [3]. However, that this issue has not been fixed (which would be an ABI break),
illustrates the lack of interest in specializing the stream types for charN_t.

1

mailto:corentin.jabot@gmail.com
https://wg21.link/P3655R0
https://eel.is/c++draft/strings#tab:char.traits.req
https://wg21.link/LWG2959


CharTraits encourages bloat

Consider:

void f(std::unordered_map<std::zstring_view, std::zstring_view>);

The presence of char_traits would make the mangled name 25% larger using the MSVC
mangling scheme. Which, for widely used types, adds up. This would be justifiable if char_-
traits provided any value whatsoever... but it does not.

Note that this is less of a problem for the Itanium ABI, which compresses repeated type
names.

CharTraits worsen teachability of text-related notions

By being incompatible with modern encodings and with its design conflating text encoding,
CharTraits CharTraits is too often used to encourage incorrect text handling. This is also
inconsistent with the rest of std::string and string-like types, which expose an interface that
is otherwise only designed to manipulate sequences of values, without text semantics or
encoding considerations.

A plan of action

1. No Traits parameters in new types

zstring_view and any other such future types or interface should forgo the Traits customiza-
tion. The consistency argument is not a very strong one. Never acknowledging mistakes is
not useful for the teachability of the language. We have an opportunity for zstring_view to
produce diagnostics and be faster to compile.

There is, however, the question of the conversion from std::basic_string to std::basic_-
zstring_view (for example). For which, we have two adequate solutions:

• Silently drop the user-defined trait type, recognizing that case-insensitivity is a property
of a transformation and not an intrinsic property of the string (and any other use of
user-provided Traits would be equally assumed to not affect the invariant of the string).

• Make such conversion ill-formed (forcing users to manually construct the string_view
with, for example, zstring_view(str.data(), str.size() + 1).

2. char_traits should not be necessary

The one intrinsic value of char_traits is to provide the size of a null-terminated sequence.
char_traits<T>::length(str) is not the most intuitive way to spell std::strlen, so we should
add constexpr overloads of strlen for all character types. Note that the abandoned P1944R0
[2] proposed to make strlen constexpr, but that paper was abandoned, and it does not solve
the lack of strlen overloads for char8_t, char16_t, char32_t. To be clear, we are not proposing
to deprecate std::char_traits in this paper, but we also want to ensure its use is unnecessary.

2

https://wg21.link/P1944R0


3. Replacing off-label CharTraits use cases (Casing)

The one use case we often see purported for user-defined CharTraits types is to let string
classes do case-insensitive comparisons. Which, of course, only works for non-multibyte
encoding. This is partly because there is no easy way to do that in C++. Because case-
insensitive comparisons are a very reasonable thing to want to do, we should facilitate them.
[P3688R0] proposes facilities to compare ranges of ASCII characters. We could also add
function objects to ease use with associative containers. Independently, we should pursue
casing and folding Unicode views in the C++29 time frame (upper casing or lower casing are
not correct ways to compare Unicode sequences).

4. Deprecating user-provided Traits

We should deprecate specialization of any standard type that has a template parameter
defaulted to a specialization of char_traits, when the corresponding template argument
differs from the default value.

In other words, basic_string<char, MyTrait<char>> should be deprecated. This is something
that implementation can diagnose with depreciation warnings (at least as long as the special-
ization of basic_string is complete).

5. Longer-term prospects

We could, in a future version of C++, make basic_string<char, MyTrait<char>> ill-formed. This
would allow an implementation not to use Traits in its implementations.

Because the Traits parameter is often not the last parameter in standard types that use it, it
would be a serious breaking change to remove it. And because of ABI concerns, it’s unlikely
to ever be removed from implementations.

However, if it is neither used nor user-provided, we solve most problems created by char
traits, except that:

• Providing an allocator to string will remain a bit cumbersome (which we could solve by
adding an alias template)

• Symbol size will not improve.

However, if an implementation decided to change its ABI one day, or provide away to opt-out of
ABI stability, knowing the Trait parameter need not be mangled could lead to improvements.

References

[1] Peter Bindels, Hana Dusikova, and Jeremy Rifkin. P3655R0: zstring_view. https://wg21.
link/p3655r0, 3 2025.

[2] Daniil Goncharov and Antony Polukhin. P1944R0: Add constexpr modifiers to functions in
cstring and cwchar headers. https://wg21.link/p1944r0, 12 2019.

3

https://www.w3.org/TR/charmod-norm/#definitionCaseFolding
https://wg21.link/p3655r0
https://wg21.link/p3655r0
https://wg21.link/p1944r0


[3] Jonathan Wakely. LWG2959: char_traits<char16_t>::eof is a valid utf-16 code unit. https:
//wg21.link/lwg2959.

[P3688R0] Jan Schultke, Corentin Jabot ASCII character utilities
https://wg21.link/P3688R0

[N5008] Thomas Köppe Working Draft, Standard for Programming Language C++
https://wg21.link/N5008

4

https://wg21.link/lwg2959
https://wg21.link/lwg2959
https://wg21.link/P3688R0
https://wg21.link/N5008

	1 Abstract
	2 Motivation
	3 Problems
	3.1 CharTraits does not handle multi-bytes encodings
	3.2 CharTraits provides functionalities unrelated to code units
	3.3 CharTraits encourages bloat
	3.4 CharTraits worsen teachability of text-related notions

	4 A plan of action
	4.1 1. No Traits parameters in new types
	4.2 2. char_traits should not be necessary
	4.3 3. Replacing off-label CharTraits use cases (Casing)
	4.4 4. Deprecating user-provided Traits
	4.5 5. Longer-term prospects


