Pack Indexing for Template Names

Document #: P3670R0

Date: 2025-04-16

Programming Language C++

Audience: EWG

Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Motivation

We added the ability to index packs of types and expressions in C++26 through P2662R3 [3].
(P2662R3 [3] is now implemented in Clang and GCC, and we got very positive feedback).

However, P2662R3 [3] does not allow the indexing of a pack of templates. There is no good
reason for that. The intent was always to be able to index all packs.

Both P2841R7 [2] and P2989R2 [1] were in flight, and it was not clear to me if either these
papers would impact the indexing of packs of template-names. So, I punt that question to
the present paper. It turns out that P2841R7 [2] has no impact on the design of this paper -
except that indexing a pack of concept template parameter just works - and P2989R2 [1] was
not approved for C++26.

In short, we are proposing to complete the design of pack indexing.

Design

The syntax for indexing a pack of template-name is similar to the syntax to the syntax used to
index a pack of types or expressions.

template < template <typename> typename... TT>
struct S {

using First = TT...[0];
Y

The indexed pack is a template-name and can be used anywhere any template-name would be
usable. All packs of template template parameters can be indexed (type, variable, concepts).

Implementation

This paper has not been implemented, but I am confident this can be implemented in Clang
without trouble. I can't comment on other implementations.

mailto:corentin.jabot@gmail.com
https://wg21.link/P2662R3
https://wg21.link/P2662R3
https://wg21.link/P2662R3
https://wg21.link/P2841R7
https://wg21.link/P2989R2
https://wg21.link/P2841R7
https://wg21.link/P2989R2

Wording

o Names of template specializations [temp.names]

A template specialization[temp.spec] can be referred to by a template-id:

simple-template-id:
template-name < template-argument-list,,; >
template-id:
simple-template-id
operator-function-id < template-argument-list,,,,; >
literal-operator-id < template-argument-list ., >

template-name:

simple-template-name
pack-index-template-name

pack-index-template-name:
simple-template-name . .. [constant-expression]

simple-template-name:
identifier
template-argument-list:

template-argument . . .
template-argument-list , template-argument . . .,

template-argument:
constant-expression
type-id
nested-name-specifier ., template-name
nested-name-specifier template template-name

The component name of a simple-template-id, template-id, or template-name is the first name
in it.

The simple-template-name P in a pack-index-template-name shall denote a pack.

The constant-expression shall be a converted constant expression [expr.const] of type std: : size_-
t whose value V, termed the index, is such that 0 <V < sizeof...(P).

A pack-index-template-name is a pack expansion [temp.variadic].

[Note: The pack-index-template-name denotes the type of the V" element of the pack. —end
note]

A <is interpreted as the delimiter of a template-argument-list if it follows a name that is not a
conversion-function-id and

+ that follows the keyword template or a ~ after a nested-name-specifier or in a class member
access expression, or

+ for which name lookup finds the injected-class-name of a class template or finds any
declaration of a template, or

* that is an unqualified name for which name lookup either finds one or more functions
or finds nothing, or

* thatisaterminal namein a using-declarator [namespace.udecl], in a declarator-id [dcl.mean-
ing], or in a type-only context other than a nested-name-specifier [temp.res].

o Variadic templates [temp.variadic]

In a template parameter pack that is a pack expansion [temp.param]:
* In a sizeof... expression[expr.sizeof]; the pattern is an identifier.
* In a pack-index-expression; the pattern is an identifier.
* In a pack-index-specifier; the pattern is a typedef-name.
* In a pack-index-template-name; the pattern is a simple-template-name.

* In a fold-expression [expr.prim.fold]; the pattern is the cast-expression that contains an
unexpanded pack.

+ In a fold expanded constraint[temp.constr.fold]; the pattern is the constraint of that fold
expanded constraint.

[Editor’s note: [...]]

The instantiation of a pack expansion considers items Eq, Es, ..., Ex, where N is the number of
elements in the pack expansion parameters. Each E; is generated by instantiating the pattern
and replacing each pack expansion parameter with its it element. Such an element, in the
context of the instantiation, is interpreted as follows:

« if the pack is a template parameter pack, the element is
- atypedef-name for a type template parameter pack,
- an id-expression for a constant template parameter pack, or
- a template-name for a template template parameter pack
designating the it corresponding type, constant, or template template argument;

« if the pack is a function parameter pack, the element is an id-expression designating the
it function parameter that resulted from instantiation of the function parameter pack
declaration;

+ if the pack is an init-capture pack, the element is an id-expression designating the variable
introduced by the it" init-capture that resulted from instantiation of the init-capture pack
declaration; otherwise

« if the pack is a structured binding pack, the element is an id-expression designating the
ith structured binding in the pack that resulted from the structured binding declaration.

When N is zero, the instantiation of a pack expansion does not alter the syntactic interpretation
of the enclosing construct, even in cases where omitting the pack expansion entirely would
otherwise be ill-formed or would result in an ambiguity in the grammar.

The instantiation of a sizeof ... expression[expr.sizeof] produces an integral constant with
value N.

When instantiating a pack-index-expression P, let K be the index of P. The instantiation of P is
the id-expression Ex.

When instantiating a pack-index-specifier P, let K be the index of P. The instantiation of P is
the typedef-name E .

When instantiating a pack-index-template-name P, let K be the index of P. The instantiation of
P is the simple-template-name E .

[Editor’s note: [...]]

© Typeequivalence [temp.type]

Two template-ids are the same if

* their template-names, operator-function-ids, or literal-operator-ids refer to the same tem-
plate, and

* their corresponding type template-arguments are the same type, and

the template parameter values determined by their corresponding constant template
arguments[temp.arg.nontype] are template-argument-equivalent (see below), and

+ their corresponding template template-arguments refer to the same template.
Two template-ids that are the same refer to the same class, function, or variable.
[Editor’s note: [...]]

If an expression e is type-dependent [temp.dep.expr], decltype(e) denotes a unique depen-
dent type. Two such decltype-specifiers refer to the same type only if their expressions are
equivalent[temp.over.link]. [Note: However, such a type might be aliased, e.g., by a typedef-
name. — end note]

For a type template parameter pack T, T. . . [constant-expression] denotes a unique dependent
type.

If the constant-expression of a pack-index-specifier is value-dependent, two such pack-index-
specifier s refer to the same type only if their constant-expression s are equivalent [temp.over.link].
Otherwise, two such pack-index-specifier s refer to the same type only if their indexes have the
same value.

If the constant-expression of a pack-index-template-name is value-dependent, two such pack-
index-template-names refer to the same template only if their constant-expressions are equiv-

alent [temp.over.link]. Otherwise, two such pack-index-template-names refer to the same
template only if their indexes have the same value.

© Keywords [gram.key]

New context-dependent keywords are introduced into a program by typedef[dcl.typedef],
namespace[namespace.def], class[class], enumeration[dcl.enum], and template[temp] declara-
tions.

typedef-name:
identifier
simple-template-id
namespace-name:
identifier
namespace-alias
namespace-alias:
identifier
class-name:
identifier
simple-template-id
enum-name:
identifier
template-name:
. . o
simple-template-name
pack-index-template-name

Feature test macros

[Editor’s note: Bump __cpp_pack_indexing to the date of adoption].

[1] Corentin Jabot and GaSper Azman. P2989R2: A simple approach to universal template
parameters. https://wg21.1ink/p2989r2, 6 2024.

[2] Corentin Jabot, GaSper Azman, James Touton, and Hubert Tong. P2841R7: Concept and
variable-template template-parameters. https://wg21.1ink/p2841r7, 2 2025.

[3] Corentin Jabot and Pablo Halpern. P2662R3: Pack indexing. https://wg21.1ink/p2662r3,
12 2023.

[N5008] Thomas Képpe Working Draft, Standard for Programming Language C++
https://wg21.1ink/N5008

https://wg21.link/p2989r2
https://wg21.link/p2841r7
https://wg21.link/p2662r3
https://wg21.link/N5008

	1 Motivation
	2 Design
	3 Implementation
	4 Wording
	5 Names of template specializations
	5.1 Variadic templates

	6 Type equivalence
	7 Keywords
	8 Feature test macros

