
 P3637R0 Inherit
 std::meta::exception from
 std::exception
 2025-03-08

 Authors:
 Victor Zverovich
 Nevin Liber
 Michael Hava

 Audience:
 LEWG

 Project:
 ISO/IEC 14882 Programming Languages — C++, ISO/IEC JTC1/SC22/WG21

 Introduction
 P3560R1 “Error Handling in Reflection” introduced std::meta::exception as a new
 exception type for handling errors in C++ reflection but made the unconventional choice of not
 deriving it from std::exception . This decision, influenced by outdated encoding concerns,
 creates inconsistencies within the standard and complicates generic exception handling.

 This proposal aims to resolve the issue by inheriting std::meta::exception from
 std::exception , ensuring consistency with other exception types, including those used at
 compile time. This change simplifies error handling in generic code and aligns with existing
 exception design principles in C++.

 Problem
 P3560R1 “Error Handling in Reflection” was reviewed by LEWG in Hagenberg and forwarded to
 LWG for C++26. The paper introduces a new exception class, std::meta::exception and
 uses it for reporting errors from reflection.

 One novel design decision in this paper was not inheriting std::meta::exception from
 std::exception . To the best of our knowledge this is the first such case in the standard. There
 was interest in fixing this in LEWG but it narrowly didn’t get consensus.

 SF F N A SA

 4 3 5 1 3

 Per email discussion that followed, it turned out that the main motivation for this decision was an
 encoding concern based on outdated information in LWG4087 . Exception message encoding
 has been specified for the compile-time case ([exception]):

 constexpr virtual const char * what () const noexcept ;

 Returns : An implementation-defined NTBS , which during constant evaluation is encoded with the
 ordinary literal encoding ([lex.ccon]) .

 Encoding-wise this is compatible with the current design of P3560R1 which provides what() in
 the ordinary literal encoding which means that the motivation for not inheriting from
 std::exception no longer exists.

 Not inheriting from std::exception is also inconsistent with P3557 that was reviewed by
 LEWG shortly after and also provided a new compile-time exception class.

 Apart from consistency reasons, having a single exception hierarchy is beneficial for writing
 generic code. For example, consider tests for a facility that uses reflection and has other logic
 that may throw different exception types. You obviously want to see all failures in one
 compilation cycle. So test cases will be wrapped in a try-catch block that will catch exceptions
 and report them as test failures as it is normally done in test frameworks. And the common
 pattern of catching std::exception will no longer work, requiring users to catch both
 std::exception and std::meta::exception for no good reason.

 Unlike other standard library types derived from std::exception , std::meta::exception
 does not have a non-throwing exception specification for its copy constructor and its copy
 assignment operator. This does not violate [exception]p2 . Also, unlike the other standard
 library exception types, this type has a move constructor and a move assignment operator.

 Proposal
 The current paper proposes inheriting std::meta::exception from std::exception to make
 it consistent with other exceptions including ones exclusively used at compile time and making
 generic exception handling easier.

 Wording relative to P3560R1:

https://cplusplus.github.io/LWG/issue4087
https://eel.is/c++draft/exception#5
https://eel.is/c++draft/lex.ccon
https://eel.is/c++draft/exception#5.sentence-1
https://eel.is/c++draft/exception#2

 class exception : public std::exception

 {

 private:

 optional<string> what_; // exposition only

 u8string u8 what_; // exposition only

 info from_; // exposition only

 source_location where_; // exposition only

 public:

 consteval exception(u8string_view what, info from,

 source_location where = source_location::current()) noexcept;

 consteval exception(string_view what, info from,

 source_location where = source_location::current()) noexcept;

 exception(exception const&) = default;

 exception(exception&&) = default;

 exception& operator=(exception const&) = default;

 exception& operator=(exception&&) = default;

 constexpr const char* what() const noexcept override;

 consteval u8string_view u8what() const noexcept;

 consteval string what() const noexcept;

 consteval info from() const noexcept;

 consteval source_location where() const noexcept;

 };

 Reflection functions throw exceptions of type std::meta::exception to signal an error.
 std::meta::exception is a consteval-only type.

 consteval exception(u8string_view what, info from,

 source_location where = source_location::current()) noexcept;

 Effects : Initializes u8 what_ with what , from_ with from and where_ with where . If what can be
 represented in the ordinary literal encoding, initializes what_ with what , transcoded from UTF-8
 to the ordinary literal encoding.

 consteval exception(string_view what, info from,

 source_location where = source_location::current()) noexcept;

https://brevzin.github.io/cpp_proposals/3560_reflection_error_handling/p3560r1.html#pnum_1
https://brevzin.github.io/cpp_proposals/3560_reflection_error_handling/p3560r1.html#pnum_2
https://brevzin.github.io/cpp_proposals/3560_reflection_error_handling/p3560r1.html#pnum_3

 Effects : Initializes what_ with what , u8 what_ with what , transcoded from the ordinary literal
 encoding to UTF-8, from_ with from and where_ with where .

 consteval u8string_view u8what() const noexcept;

 Returns : what_.

 consteval string what() const noexcept;

 constexpr const char* what() const noexcept override;

 Constant When : what_ can be represented in the ordinary literal encoding.
 what_.has_value() is true .

 Returns : what_ , converted to the ordinary literal encoding. what_->c_str() .

 …

 In the common case of ordinary literal encoding being UTF-8, implementations can have a
 single representation for the error message and transcoding is a noop. The optimization likely
 doesn’t matter since it only affects error paths.

 Implementation
 The current proposal is trivially implementable on top of P3560R1 and the demo implementation
 is available at https://compiler-explorer.com/z/nq63z918T using a fork of clang that supports
 compile-time exceptions.

 References
 ● Eric Niebler. P3557 High-Quality Sender Diagnostics with Constexpr Exceptions.
 ● Peter Dimov, Barry Revzin. P3560R1 Error Handling in Reflection.
 ● Victor Zverovich. LWG4087 Standard exception messages have unspecified encoding.

https://brevzin.github.io/cpp_proposals/3560_reflection_error_handling/p3560r1.html#pnum_4
https://brevzin.github.io/cpp_proposals/3560_reflection_error_handling/p3560r1.html#pnum_5
https://brevzin.github.io/cpp_proposals/3560_reflection_error_handling/p3560r1.html#pnum_6
https://compiler-explorer.com/z/nq63z918T
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2025/p3557r0.html
https://brevzin.github.io/cpp_proposals/3560_reflection_error_handling/p3560r1.html
https://cplusplus.github.io/LWG/issue4087

