
Document number: 	 P3625R0

Date: 	 2025-02-11

Project: 	 Programming Language C++

Audience:	 LEWG

Reply-to:	 Michael Florian Hava <mfh.cpp@gmail.com>
1

either neither

Abstract
This paper proposes adding two usability concepts to more concisely express (not) matching a
list of types.

Tony Table

Revisions
R0: Initial version

Motivation
We’ve encountered the need to express a template type parameter matching one of multiple
types across several projects. Whilst we can’t provide sustained data on how widespread this
pattern already is, we want to point to both the documentation for same_as on cppreference as
well as stackoverflow for prior usage/requests to express this semantics.

Design Space
Given these facilities are simple wrappers around foldings of same_as, the only design decisions
pertain to naming. We’ve considered the following alternative names and discarded them for the
given reasons.

• oneof/noneof … only partially correct as one could assume that oneof expresses matching
exactly one given type.

• anyof/noneof … express the basic idea, but are unusual spellings to circumvent collisions with
the respective algorithms.

Before Proposed
template<typename T>
requires(same_as<T, char> or same_as<T, short>)
void func(T) { … }

template<either<char, short> T>
void func(T) { … }

// or just:

void func(either<char, short> auto) { … }

template<typename T>
requires(not same_as<T, short> and not same_as<T, int>)
void func(T) { … }

template<neither<short, int> T>
void func(T) { … }

// or just:

void func(neither<short, int> auto) { … }

 RISC Software GmbH, Softwarepark 32a, 4232 Hagenberg, Austria, michael.hava@risc-software.at1

1

mailto:mfh.cpp@gmail.com
https://en.cppreference.com/w/cpp/concepts/same_as
https://stackoverflow.com/questions/73377786/c-concept-that-a-type-is-same-as-any-one-of-several-types
mailto:michael.hava@risc-software.at

The best names we could come up with after excluding the above have been either/neither,
which admittedly look funky when used directly (either<T, U...>) but look fine when using the 2

“terse notation” (template<either<U...> T>, void f(either<U...> auto)).

Impact on the Standard
This proposal is a pure library addition.

Proposed Wording
Wording is relative to [N5001]. Additions are presented like this, removals like this and drafting
notes like this.

[version.syn]

[concepts]

Acknowledgements
Thanks to RISC Software GmbH for supporting this work. Thanks to Bernhard Manfred Gruber for
giving feedback on the draft of this paper.

#define __cpp_lib_concepts 202207LYYYYMML // freestanding, also in <concepts>, <compare>

[DRAFTING NOTE: Adjust the placeholder value as needed to denote the proposal’s date of adoption.]

??.? Header <concepts> synopsis [concepts.syn]

// all freestanding
namespace std {
 // [concepts.lang], language-related concepts
 // [concept.same], concept same_as
 template<class T, class U>
 concept same_as = see below;

 template<class T, class... U>
 concept either = (same_as<T, U> || ...);

 template<class T, class... U>
 concept neither = !either<T, U...>;

 // [concept.derived], concept derived_from
}

 Not more funky then already existing concepts (e.g. derived_from<Derived, Base>) though…2

2

https://eel.is/c++draft/concepts.syn#header:%3cconcepts%3e
https://eel.is/c++draft/compare.syn#header:%3ccompare%3e
https://eel.is/c++draft/concepts.lang
https://eel.is/c++draft/concept.same
https://eel.is/c++draft/concept.derived
http://wg21.link/N5001
https://www.risc-software.at/

	Abstract
	Tony Table
	Revisions
	Motivation
	Design Space
	Impact on the Standard
	Proposed Wording
	Acknowledgements

