
Exploring strict contract predicates

Timur Doumler (papers@timur.audio)
Lisa Lippincott (lisa.e.lippincott@gmail.com)

Joshua Berne (jberne4@bloomberg.net)

Document #: P3499R1
Date: 2025-02-09
Project: Programming Language C++
Audience: EWG

Abstract

The lack of support for so-called strict contracts — contract assertions that cannot have side
effects or undefined behaviour when evaluated — is the subject of sustained opposition to
[P2900R13], the Contracts facility proposed for C++26. In this paper, we explore an actionable

— i.e., specifiable and implementable — design for such a feature.

1 Context

It has been suggested in [P3173R0] and [P3362R0] that the Contracts facility as proposed in
[P2900R13] is not fit for standardisation unless it supports so-called strict contracts, i.e., contract
assertions that cannot have side effects or undefined behaviour when evaluated, as proposed in
[P2680R1] and [P3285R0]. Over the last three years, this idea has been discussed and polled multiple
times in SG21, SG23, and EWG; all of these groups consistently had consensus against pursuing it
(for a detailed history, see [P2899R0] Section 3.6.1). The most recent of these polls took place in
EWG in November 2024:

EWG Poll, Wrocław, 2024-11-19

As suggested in P3362R0 / P2680 / P3285, the contracts proposal in P2900’s Minimal Viable
Product shall be changed to incorporate stricter contracts in addition to regular contracts.
SF F N A SA
10 6 3 14 16

Result: Consensus against, but P2900 would be in danger of failure in plenary

EWG and LEWG have both approved the design of [P2900R13], without strict contracts, and
forwarded it to wording review for inclusion in the C++ Standard. However, as indicated by the poll
above, and stated in the more recent papers [P3506R0] and [P3573R0], the issue of strict contracts
remains a subject of sustained opposition against inclusion of [P2900R13] in the C++ Standard.
To address the concerns in [P3506R0] and [P3573R0], in this paper we explore how a possible design
for strict contracts could actually be specified, and what that would look like in practice.

1

mailto:papers@timur.audio
mailto:lisa.e.lippincott@gmail.com
mailto:jberne4@bloomberg.net

2 The problem

Strict contracts is an approach that restricts the predicates of contract assertions to expressions
that can be statically proven to not introduce undefined behaviour (excluding data races) and to
not have side effects outside of its cone of evaluation; predicates for which such a proof cannot be
constructed are ill-formed. When undefined behaviour cannot be prevented statically (e.g., integer
overflow), it is instead redefined to be some well-defined behaviour at runtime.
This approach necessarily constrains the set of expressions that are allowed in the predicates of
strict contracts. For example, in a strict predicate it is not possible to call any function that itself
has not been statically proven to satisfy the required properties.
Such strict predicates are too restrictive for general use as a runtime contract checking facility.
Therefore, [P2680R1] and [P3285R0] also allow the user to write predicates that do not satisfy
the constraints of strict contracts, called relaxed contracts. The semantics of relaxed contracts are
equivalent to the semantics of contract assertions as proposed in [P2900R13].
Unfortunately, the proponents of strict contracts have not produced a complete specification, and it
appears doubtful whether the approach is indeed specifiable and implementable.
Deeper analysis of the idea in [P3376R0] and [P3386R0] revealed that strict contracts, based on the
principles that can be gleaned from [P3285R0], result in only a very small number of predicates
that would be viable to express, with a huge amount of new language complexity needed to achieve
anything beyond the most basic arithmetic operations.
In particular, we do not yet know whether or how one could use pointers and references to objects,
and call member functions, in a strict contract predicate, as we are not aware of any technique
applicable to C++ that could prove that a pointer or reference points to a valid object.
It seems possible or even likely that no approach using local static analysis, such as the sketch for a
std::object_address facility provided in [P3285R0], could ever provide such a proof, and that
only the introduction of global language constraints on having mutable references to objects can
achieve this, such as a borrow checker ([P3390R0]), mutable value semantics ([Racordon2022]), or
outlawing mutation of objects altogether like in pure functional languages; see also [Baxter2024].

3 The approach

3.1 Set of allowed expressions

Given the fundamental problem described above, strict contracts in today’s C++ can necessarily
express only a very limited set of predicates; nevertheless, in order to make any progress on this
issue at all, it is useful to try and concretely define such a set.
As a starting point, we can specify strict contracts to only allow predicates for which we are confident
that absence of undefined behaviour (excluding data races) can indeed be accomplished with the
technology of today. Initially, this will be a very small set, but it provides an evolutionary path
towards further expansion. To this end, we have identified the following set of expressions:

— literals of arithmetic or enumeration type,

— id-expressions that denote a non-volatile variable with arithmetic or enumeration type
(notably, this excludes pointers and references),

— unary-expressions where the operator is one of the following: +, -, !,

2

— binary-expressions where the operator is one of the following: +, -, /, %, *, !, , ˆ, |, ||, &,
&&, <<, >>,

— conditional-expressions where the operator is ?!,

— relational-expressions where the operator is <, >, <=, >=,

— equality-expressions where the operator is ==, !=,

— compare-expressions where the operator is <=>,

— core constant expressions of arithmetic or enumeration type.

If we restrict strict predicates to just the above expressions, and make all other expressions in strict
predicates ill-formed, we exclude modifications of any variables and thus by extensions exclude any
side effects outside of the cone of evaluation of the predicate.
Further, we can enumerate all instances of undefined behaviour that can occur when evaluating
such a predicate according to the C++ Standard today (see [P1705R1]), excluding data races:

— Signed integer overflow or underflow,

— Converting a floating point value to a type that cannot represent that value,

— Division by zero,

— Shifting by a negative amount,

— Shifting by equal or greater than the bit-width of the type.

3.2 Redefining undefined behaviour

The next step is to redefine the above instances undefined behaviour to instead be well-defined
behaviour when encountered during the evaluation of a strict contract predicate. We see three
possible options for this:

1. Specify a concrete value that such an operation should produce, for example wraparound or
saturation arithmetics for integer overflow;

2. Specify that the operation should produce an unspecified erroneous value;

3. Specify that the behaviour is a contract violation; if the contract-violation handler is called,
the value returned by kind() is implicit, and the value returned by detection_mode() is
a newly introduced enumeration value arithmetic_error.

As discussed in more detail in [P3386R0], the first approach is actively user-hostile as it leads to
masking of bugs and false negatives. The second approach seems viable but suboptimal because it
does not tie in with the rest of the Contracts facility in case a defect in the predicate is detected.
We therefore recommend the third approach as it allows for more fine-grained contract-violation
handling and is fully consistent with the future direction towards a safer C++ laid out in [P3100R1]
and [P3229R0].

3

3.3 Syntax

Finally, we need to syntactically distinguish strict and relaxed contract assertions. The options are:

1. Specify the default syntax pre(x) to denote a relaxed contract, and require an additional
syntactic qualifier such as pre strict(x) for strict contracts;

2. Specify the default syntax pre(x) to denote a strict contract and require an additional
syntactic qualifier such as pre relaxed(x) for relaxed contracts;

3. Make the default syntax ill-formed and require an additional syntactic qualifier for both strict
and relaxed contracts.

Anything other than the first option would be a breaking change to [P2900R13]. On the other hand,
[P2680R1] argues for the second option. This design question was discussed and polled by EWG at
the November 2024 WG21 meeting in Wrocław. EWG decided against both the second and third
option:

EWG Poll, Wrocław, 2024-11-19

Change P2900 to either make strict the default behavior, or to force opt-in (no default).

SF F N A SA
6 7 9 20 7

Result: Consensus against

This leaves the first option (the default syntax should denote a relaxed contract, as it does in
[P2900R13] today) as the only remaining possibility. By choosing this option, we enable strict
contracts to be added to [P2900R13] as a non-breaking extension at a later time.

3.4 Limitations

While strict contracts as described above seem specifiable and implementable, it is worth highlighting
that they are severely limited. Remember that in such strict predicates:

— Any operation on values other than of built-in arithmetic or enumeration type is ill-formed;

— Dereferencing any pointers is ill-formed;

— Using any references to objects is ill-formed;

— Calling any existing member function on any object is ill-formed.

For example, we could not even check the size of a std::vector in a strict predicate, or whether it
is empty, not even if that std::vector is passed in by value, because we cannot construct a proof
that the this pointer is valid. It seems therefore that strict predicates are of little practical use for
adding contract assertions to any kind of real-world C++ codebase.

4

4 Summary

It is indeed possible to construct a subset of expressions in today’s C++ for which we can exclude
the possibility of side effects outside of the cone of their evaluation and eliminate all undefined
behaviour, and define strict contracts as contract assertions whose predicates are restricted to that
subset.
However, an attempt to actually construct a concrete such subset without major reinventions such
as the introduction of a Rust-like borrow checker to C++ leaves us with a set of expressions so
severely limited that it seems to be of no practical use. Therefore, we remain unconvinced that
strict contracts are an approach worth pursuing, and instead recommend the direction proposed in
[P3100R1].
We are certainly not opposed to exploring strict contracts further; however, given that EWG decided
that the default contracts syntax should denote relaxed contracts as proposed in [P2900R13], and
strict contracts should use an opt-in syntax, strict contracts can be added to [P2900R13] as a
non-breaking extension at a later time, and there is no reason why [P2900R13] should be blocked
by them.
In any case, we hope that the above description of what an actionable specification of such a feature
would actually look like in practice will be helpful towards increasing consensus on shipping the
initial Contracts facility proposed in [P2900R13] in C++26.

Revision History

R0 → R1:

— Fixed an incorrect poll citation

— Editorial changes

Bibliography

[Baxter2024] Sean Baxter. Why Safety Profiles Failed. https://www.circle-lang.org/
draft-profiles.html, 2024-10-24.

[P1705R1] Shafik Yaghmour. Enumerating Core Undefined Behavior. https://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2019/p1705r1.html, 2019-09-28.

[P2680R1] Gabriel Dos Reis. Contracts for C++: Prioritizing Safety. https://wg21.link/p2680r1,
2022-12-15.

[P2899R0] Joshua Berne, Timur Doumler, Rostislav Khlebnikov, and Andrzej Krzemieński. Con-
tracts for C++ — Rationale. https://wg21.link/p2899r0, 2025-01-13.

[P2900R13] Joshua Berne, Timur Doumler, and Andrzej Krzemieński. Contracts for C++. https:
//wg21.link/p2900r13, 2025-01-13.

[P3100R1] Timur Doumler, Gašper Ažman, and Joshua Berne. Undefined and erroneous behaviour
is a contract violation. https://wg21.link/p3100r1, 2024-10-16.

[P3173R0] Gabriel Dos Reis. P2900R6 May Be Minimal, but It Is Not Viable. https://wg21.
link/p3173r0, 2024-02-15.

5

https://www.circle-lang.org/draft-profiles.html
https://www.circle-lang.org/draft-profiles.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1705r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1705r1.html
https://wg21.link/p2680r1
https://wg21.link/p2899r0
https://wg21.link/p2900r13
https://wg21.link/p2900r13
https://wg21.link/p3100r1
https://wg21.link/p3173r0
https://wg21.link/p3173r0

[P3229R0] Timur Doumler and Joshua Berne. Making erroneous behaviour consistent with Con-
tracts. https://wg21.link/p3229r0, 2025-01-13.

[P3285R0] Gabriel Dos Reis. Contracts: Protecting The Protector. https://wg21.link/p3285r0,
2024-05-15.

[P3362R0] Ville Voutilainen and Richard Corden. Static analysis and ‘safety’ of Contracts, P2900
vs. P2680/P3285. https://wg21.link/p3362r0, 2024-08-11.

[P3376R0] Andrzej Krzemieński. Contract assertions versus static analysis and ‘safety’. https:
//wg21.link/p3376r0, 2024-10-14.

[P3386R0] Joshua Berne. Static Analysis of Contracts with P2900. https://wg21.link/p3386r0,
2024-10-15.

[P3390R0] Sean Baxter and Christian Mazakas. Safe C++. https://wg21.link/p3390r0, 2024-
09-11.

[P3506R0] Gabriel Dos Reis. P2900 Is Still Not Ready for C++26. https://wg21.link/p3506r0,
2024-11-19.

[P3573R0] Michael Hava, J. Daniel García Sanchez, Ran Regev, Gabriel Dos Reis, John Spicer,
Bjarne Stroustrup, J.C. van Winkel, and Daveed Vandevoorde. Contract concerns.
https://wg21.link/p3573r0, 2025-01-12.

[Racordon2022] Dimitri Racordon, Denys Shabalin, Daniel Zheng, Dave Abrahams, and Brennan
Saeta. Implementation Strategies for Mutable Value Semantics. https://www.jot.fm/
issues/issue_2022_02/article2.pdf, 2022-02.

6

https://wg21.link/p3229r0
https://wg21.link/p3285r0
https://wg21.link/p3362r0
https://wg21.link/p3376r0
https://wg21.link/p3376r0
https://wg21.link/p3386r0
https://wg21.link/p3390r0
https://wg21.link/p3506r0
https://wg21.link/p3573r0
https://www.jot.fm/issues/issue_2022_02/article2.pdf
https://www.jot.fm/issues/issue_2022_02/article2.pdf

	1 Context
	2 The problem
	3 The approach
	3.1 Set of allowed expressions
	3.2 Redefining undefined behaviour
	3.3 Syntax
	3.4 Limitations

	4 Summary

