Partial application of concepts in template arguments

Document #: P2970R0

Date: 2025-05-19

Programming Language C++

Audience: EWG

Reply-to: Corentin Jabot <corentin.jabot@gmail.com>

Gasper AZman <gasper.azman@gmail.com>

Abstract

Concept template parameters were introduced in C++26 by P2841R7 [3]. We propose to
extend this feature with partially applied concepts. This feature was introduced in P2841R0 [1]
and removed in R1 to reduce the scope of the initial paper, and because EWG initially found
this part of the feature less compelling.

It is presented again here, with added wording and notes on implementation experience.

Motivation

The first argument of a concept is the entity for which we are checking satisfaction. Concepts
can take additional arguments parameterizing the concept.

For example, invocable<T, int>checks whether an object of type T can be called with an int
argument.

In specific contexts, a type-constraint can appear in a template head or before auto to con-
strain — or assert — a type. In that case, the compiler injects the type to which the concept is
applied, rather than the user specifying this type.

For example, the following two declarations are equivalent:
template<invocable<int> T>

void f(Q);

template<typename T>
void f() requires invocable<T, int>;

Such shorthand is helpful because many concepts are binary or n-ary. In the concepts header,
half of the concepts are not unary.

When passing concepts as template arguments, this becomes quickly apparent. Let us
consider a range_of concept constraining the range’s value type with a concept template-
parameter:

template <typename R, template <typename> concept C>
concept range_of = std::ranges::range<R> && C<std::ranges::range_value_t<R>>;

mailto:corentin.jabot@gmail.com
mailto:gasper.azman@gmail.com
https://wg21.link/P2841R7
https://wg21.link/P2841R0
https://github.com/cplusplus/papers/issues/1546#issuecomment-1587401642
https://github.com/cplusplus/papers/issues/1546#issuecomment-1587401642

We can then have an algorithm taking a range of integral:

auto median(range_of<std::integral> auto&&);

We may want to be more specific. Can we accept a range of only ints? Given that our range_of
expects a concept (it should really accept a universal template parameter as described in
P2989R2 [2]!), perhaps we could use same_as, but same_as requires arguments. Can we make
something like that work?

auto f(range_of<same_as<int>> auto&&);

We can rewrite our range_of concept to take an extra argument pack forwarded to the concept
parameter:

template <typename R, template <typename...> concept C, typename... Args>
concept range_of = std::ranges::range<R> && C<std::ranges::range_value_t<R>, Args...>;
void f(range_of<std::same_as, int> auto &&);

This interface is not especially clear and, crucially, doesn't compose. For example, a range of
regular types also convertible to int is not expressible.

One workaround would be to lift the concept and its argument into a type:

template <template <typename...> concept C, typename... Args>
struct packed_concept {

template <typename T>

static constexpr bool apply = C<T, Args...>;
b

template <typename R, typename... PackedConcept>
concept range_of = std::ranges::range<R>
&& (PackedConcept::template apply<std::ranges::range_value_t<R>> && ...);
void f(range_of<packed_concept<std::convertible_to, int>,
packed_concept<std::regular>> auto &&);

This solution works, though it is not particularly usable or readable and loses all hope of
subsumption. Concepts cannot be class members for a very good reason: Doing so would
fundamentally break subsumption. So apply is a bool variable, an atomic constraint.

Can we still support making something similar in the language? Could we make something
like this work?

void f(range_of<concept convertible_to<int>> auto)

This is the kind of solution we are proposing.

We can indeed create a new kind of template argument that carries additional arguments
that are injected when the corresponding concept template-parameter is specialized:

// Given this declaration,
template <typename T, template <typename> concept C>
constexpr bool b = C<T>;

https://wg21.link/P2989R2

// this specialization
b<double, concept std::convertible_to<int>>;

// is rewritten by injecting the arguments passed to the concept argument.
template<>
constexpr bool b<double, concept convertible_to<int>> = convertible_to<double, int>;

Notice that in this example, C is a concept template-parameter that accepts exactly one
argument, even though convertible_to needs two. The other arguments will be filled in
automatically.

In effect, it's as if we created a new concept

template <typename T>
concept convertible_to_int = convertible_to<T, int>;

but did so inline, directly in the template argument. This feature, which we call partial applico-
tion, expresses intent very clearly and works with subsumption.

Syntax of partially applied concepts

Partially applied concepts can appear as template arguments matching a concept template-
parameter (and nowhere else). You might have noticed the concept keyword prefixing template
arguments in previous examples and wonder why range_of<concept convertible_to<int>>
rather than simply range_of<convertible_to<int>>?

Of course, an undeniable parallel exists with the syntax of concept declaration, which is nice,
but the keyword avoids ambiguity.

If the concept accepts a variable number of arguments (because it has defaulted or variadic
parameters), whether ConceptName<Args> is a partial application or a complete specialization
(which is then a boolean expression) can be ambiguous.

This situation has not been an issue with type-constraints because they appear only in a context
where the first parameter is always injected.

However, the ambiguity between a partial concept application and a boolean expression can
appear in a couple of cases.

1. In the presence of universal template parameters: Should a given argument matching a
universal template parameter be considered a bool or a concept template-parameter?

2. In an overload set, the concept could be matched to both a bool and a concept, as in
this example courtesy of Barry Revzin:
template <bool B> void f();

template <template <typename> concept C> void f();
f<invocable<int>>(); // boolean or partially applied concept?

We explored various solutions to this ambiguity, including always treating something that could
be a concept as a concept and forcing an explicit cast to bool to force a boolean expression or
making the concept keyword optional when the concept has a fixed number of arguments.

3

Both approaches suffer the same issue: They could change the meaning of code when the
concept is modified by adding defaulted or variadic parameters and could also break pre-
C++26 code, so they appear to be nonideal solutions.

We also refrained from any solution that would make the nature of template arguments
somehow deduced from the corresponding parameter during overload resolution, for this
would be madness and would not really solve the question for universal template parameters.

Ultimately, the concept keyword is a great way to show intent and mirrors concept declaration.
The following syntax would be valid:

some_template_name <
std::regular, /// can pass the name directly
concept regular<>, // no reason this should not work
invocable<int>, // That is a bool; it will get diagnosed.
// If no overload or specialization, expect a bool.
concept invocable<int> // ok

Can this feature be generalized to other kind of template template-parameters?

A question that arises when considering this partial application of concepts is whether it
generalizes to other kinds of template parameters.

Concepts are unique in that the first parameter has a special meaning. That we could pass
the first parameter at a different time than all other parameters does make a lot of sense for
other kinds of template names. After all, type-constraints exist for this purpose.

To generalize partial application to other template template-parameters, we would need the
ability to provide — or not — arbitrary parameters; we could imagine, for example, being able
to write some kind of code in which some but not all template arguments are provided.

Foo<std::map<?, ? , my_comparator>>;

However, this solution is more complicated than what we need for concepts, and its usefulness
is debatable. How arguments and parameters would be matched is less clear. Besides, unlike
concepts, aliases and variable templates can be created at class scope.

Therefore, the motivation for partially applied concepts does not necessarily generalize terribly
well. We did consider whether this sort of placeholder syntax would be a good fit for concepts
in isolation, but we think concept type-constraintis more consistent, less novel, and therefore
more teachable than a placeholder syntax.

Should we support packs of partial concepts
Arguably, one could imagine a scenario in which a pack of partial concepts could be
constructed:

template <typename T, template <typename> concept... Concepts>
concept ALLOf = (Concepts<T> && ...);

template <typename T, template <typename...> concept... Concepts>
concept Foo = AL1O0f<T, concept Concepts<double>...>;

But imagining a scenario in which this construction would be useful is difficult; i.e., when
do different concepts accept the same arguments (besides the first one)? Supporting that
solution seems like an unwise investment of time.

Implementation

A prototype was implemented last year in a branch of Clang. The branch is not actively main-
tained or available on compiler-explorer while we focus on both improving the implementation
of Clang and upstreaming an implementation of P2841R7 [3]. Note that this implementation
effort did not cover some aspects, particularly mangling.

Wording

o Names of template specializations [temp.names]

template-argument:
constant-expression
type-id
nested-name-specifier ,,, template-name
nested-name-specifier template template-name
partially-applied-concept-argument

o Template arguments [temp.arg]

o Template template arguments [temp.arg.template]

[Editor’s note: Add a subsection at the end of [temp.arg.template].]

o Partially applied concept arguments [temp.arg.concept.partial]

partially-applied-concept-argument:
concept nested-name-specifier ,,,, concept-name < template-argument-list,,; >

The component names of a partially-applied-concept-argument are its concept-name and those
of its nested-name-specifier (if any).

If concept-name denotes a template parameter pack, the program is ill-formed.

A partially-applied-concept-argument names an invented concept X defined as

template <Parameter Injected>
concept X = concept-name<Injected, template-argument-1ist>;

https://github.com/cor3ntin/llvm-project/commit/7fb869e9b6571629258081674de03279ad60ffd3
https://wg21.link/P2841R7

where Parameter is the first template-parameter in the template-head H of the concept desig-
nated by concept-name, without the ellipsis (if any).

If H declares a single non-pack template parameter or if the constraint-expression of X is not
valid, the program is ill-formed.

[Example:

template <typename T, template <typename> concept... Concepts>
concept all_of = (Concepts<T> && ...);

template <typename, auto>
concept A = true;

template <typename T, typename>
concept C = true;

template <typename... T>
concept D = true;

template <typename>
concept E = true;

void f(all_of<concept C<@>, concept C<int>, concept D<int>> auto); // ok
void f(all_of<concept E<int>> auto); // error: E declares a single non-pack template parameter

void f(all_of<concept C<int, int>> auto); // error: the constraint-expression of the invented
concept would be C<T, int, int>, which is not a valid expression.

—end example]

© Type equivalence [temp.type]

Two template-ids are the same if

their template-names, operator-function-ids, or literal-operator-ids refer to the same tem-
plate, and

* their corresponding type template-arguments are the same type, and

the template parameter values determined by their corresponding constant template
arguments [temp.arg.nontype] are template-argument-equivalent (see below), and

* their corresponding template template-arguments refer to the same template or are
partial-concept-argument-equivalent.

[Editor’s note: Add a subsection at the end of [temp.type].]
Two template template-arguments are partial-concept-argument-equivalent if
* they are both partially-applied-concept-argument,

* they have equivalent template-argument-list, and

6

* their concept-name refer to the same concept.

Feature test macro

[Editor’s note: In [tab:cpp.predefined.ft], bump the value of __cpp_template_parameters to the
date of adoption.]

Acknowledgments

Thanks to Lori Hughes for reviewing this paper and providing editorial feedback.

References
[1] Corentin Jabot and Gasper AZzman. P2841R0: Concept template parameters. https:
//wg21.1ink/p2841r0@, 5 2023.

[2] Corentin Jabot and GasSper AZzman. P2989R2: A simple approach to universal template
parameters. https://wg21.1ink/p2989r2, 6 2024.

[3] Corentin Jabot, GasSper Azman, James Touton, and Hubert Tong. P2841R7: Concept and
variable-template template-parameters. https://wg21.1ink/p2841r7, 2 2025.

[N5008] Thomas Képpe Working Draft, Standard for Programming Language C++
https://wg21.1ink/N5008

https://wg21.link/p2841r0
https://wg21.link/p2841r0
https://wg21.link/p2989r2
https://wg21.link/p2841r7
https://wg21.link/N5008

	1 Abstract
	2 Motivation
	2.1 Syntax of partially applied concepts
	2.1.1 Can this feature be generalized to other kind of template template-parameters?

	2.2 Should we support packs of partial concepts
	2.3 Implementation

	3 Wording
	4 Names of template specializations
	5 Template arguments
	5.1 Template template arguments
	5.1.1 Partially applied concept arguments

	6 Type equivalence
	6.1 Feature test macro

	7 Acknowledgments

