
Generalised member pointers

Document #: P0149R3
Date: 2025-05-19
Project: Programming Language C++
Audience: Evolution
Reply-to: Jeff Snyder <jeff-isocpp@caffeinated.me.uk>

1 Introduction
C++ member pointers are currently limited to expressing the relationship between a
class type and one of its direct members. They are typically represented by storing
the offset of the member from the start of the class, since there is always a fixed offset
between the pointer to a class and a member of that class.

There are other objects that exist at a fixed offset from the start of the class, but
whose offsets cannot be represented by member pointers. These include non-virtual
bases, members of members, non-virtual bases of members, and so on. There is no clear
distinction between the use cases for offsets to members and the use cases for offsets to
other sub-objects, yet the language only permits the formation and use of the former, in
the form of “member pointers”.

Some of these limitations have been raised previously as deficiencies in the language,
giving us Core Issue 794 [CWG794] and Evolution Issue 94 [EWG94], and have also
been questioned on std-discussion, yielding the following explanation:

“The default state for a language feature is “not present”; this is not a natural
consequence of the existing rules, and no-one has proposed adding it.” —
Richard Smith, responding to “Why are member data pointers to inner
members prohibited?” [std-discussion-20150605]

In summary, the current constraints on member pointers unnecessarily limit the expres-
siveness of the language, and the abstractions that can be created with it. This paper
proposes extensions to the language to remediate this.

2 Revision History

2.1 R0: Summer 2016

Initial revision

1

mailto:jeff-isocpp@caffeinated.me.uk

2.2 R1: January 2025

The class-from-member pointers were removed from the proposal removed based on
EWG’s feedback. Wording for the remaining features has been added, along with a
section on implementability.

2.3 R2: February 2025 (as presented in Hagenberg)

The ‘->*’ and unary ‘*’ operators were added to the proposal section, having previously
only been mentioned in the wording. Various phrasing and formatting fixes and improve-
ments were made in proposal section. The wording was updated based on feedback from
Thomas Köppe.

2.4 R3: May 2025

Updated to reflect a clarifying poll in EWG that made E1->E2 equivalent to (*(E1)).E2
and E1->*E2 equivalent to (*(E1)).*E2 in all cases. Updated wording based on feedback
from Thomas Köppe and Brian Bi.

3 Proposal

3.1 Member type upcasts

Currently, the last line of the example below is not valid C++, even though the intent is
clear.

It should be possible to implement an upcast of the member type of a member pointer
without difficulty—it would result in applying the same fixed offset as a normal upcast, if
any. In the case of virtual bases, doing such an upcast requires runtime type information,
which makes implementing the corresponding upcast for a member pointer difficult. It
may also require a breaking change to some ABIs, so supporting upcasts to virtual bases
is not proposed here.

Proposal: Upcasts of the member type of member pointers to non-virtual bases of
the member type should be permitted. The corresponding downcasts should also be
permitted via static_cast.

struct A {};
struct B : A{};
struct C { B b; };

C c;
B* to_b = &c.b; // OK, Normal pointer
A* to_a = to_b; // OK, C++98 implicit upcast
B* to_b2 = static_cast<B*>(to_a); // OK, C++98 static downcast

B C::* c_to_b = &C::b; // OK, C++98 member pointer

2

A C::* c_to_a = c_to_b; // Valid under P0419
B C::* c_to_b2 = static_cast<B C::*>(c_to_a); // Valid under P0419

3.2 Forming pointers to members of members

To allow member pointers to reference members of members as well as direct members,
we need a syntax to form such member pointers. The most natural syntax for this is to
take the set of operators that can be applied to an object to get another object which
exists at a fixed offset from the first, and allow those operators to be applied to member
pointers as well as concrete objects. The three such operators currently in the language
are dot (.), subscript ([]) and member pointer application (.*).

• Proposal: The operator ‘.’, when applied to an expression of type “Pointer to
member of T1 of class type T2” and an identifier naming a member of T2 of type
T3, should result in a value of type “Pointer to member of T1 of type T3”. The
expression E1.*(E2.identifier) should be equivalent to (E1.*E2).identifier , where
E1 and E2 have types T1 and pointer to member of T1 of type T2 respectively, and
the whole expression has type T3.

struct A { int i; };
struct B { A a; };
constexpr A B::* ap = &B::a;

B b;
constexpr int& i_1 = (b.*ap).i; // OK, C++98
constexpr int& i_2 = b.*(ap.i); // Valid under P0149
static_assert(&i_1 == &i_2); // Valid under P0149

• Proposal: The operator ‘[]’, when applied to an expression of type “Pointer to
member of T1 of type array of T2”, should result in a value of type “Pointer to
member of T1 of type T2”. The expression E1.*(E2[E3]) should be equivalent to
(E1.*E2)[E3], where E1 and E2 have types T1 and pointer to member of T1 of
type array of T2 respectively, E3 is a valid index for the array identified by E2, and
the whole expression has type T2.

struct A { int is[42]; };
constexpr int (A::*isp)[42] = &A::is;

A a;
constexpr int& is7_1 = (a.*isp)[7]; // OK, C++98
constexpr int& is7_2 = a.*(isp[7]); // Valid under P0149
static_assert(&is7_1 == &is7_2); // Valid under P0149

• Proposal: The unary operator ‘*’, when applied to an expression of type “Pointer
to member of T1 of type array of T2”, should result in a value of type “Pointer
to member of T1 of type T2”. The expression E1.*(*E2) should be equivalent to

3

*(E1.*E2), where E1 and E2 have types T1 and pointer to member of T1 of type
array of T2 respectively, and the whole expression has type T2.

The operator ‘->’, when applied to expressions E1 and E2, is equivalent to (*(E1)).E2
in cases that exercise the new functionality of unary operator ‘*’, just as it is for
existing use cases. Note that this applies both in the case of E1 being a pointer to a
pointer to member and in the case of E1 being a pointer to member of array type.

struct A { int is[42]; };
constexpr int (A::*isp)[42] = &A::is;

A a;
constexpr int& is0_1 = *(a.*isp); // OK, C++98
constexpr int& is0_2 = a.*(*isp); // Valid under P0149
static_assert(&is0_1 == &is0_2); // Valid under P0149

struct B { int i; }
struct C { B b; }
constexpr B C::*bp = &C::b;

C c;
constexpr int& i_1 = &(c.*bp)->i; // OK, C++98
constexpr int& i_2 = c.*((&bp)->i); // Valid under P0149
static_assert(&i_1 == &i_2); // Valid under P0149

struct C { int i; }
struct D { C cs[42]; };
constexpr C (D::*csp)[42] = &D::cs;

D d;
constexpr int& cs0i_1 = (d.*csp)->i; // OK, C++98
constexpr int& cs0i_2 = d.*(csp->i); // Valid under P0149
static_assert(&cs0i_1 == &cs0i_2); // Valid under P0149

• Proposal: The operator ‘.*’, when applied to an expression of type “Pointer to
member of T1 of class type T2” and an expression of type “Pointer to member of
T2 of type T3”, should result in a value of type “Pointer to member of T1 of type
T3”. The expression E1.*(E2.*E3) should be equivalent to (E1.*E2).*E3, where
E1, E2 and E3 have types T1, pointer to member of T1 of type T2, and pointer to
member of T2 of type T3 respectively, and the whole expression has type T3.

The operator ‘->*’, when applied to expressions E1 and E2, is equivalent to
(*(E1)).*E2 in cases that exercise the new functionality of operator ‘.*’, just
as it is for existing use cases. Note that this applies both in the case of E1 being a
pointer to a pointer to member and in the case of E1 being a pointer to member of
array type.

struct A { int i; };
struct B { A a{}; };

4

constexpr A B::*ap = &B::a;
constexpr int A::*ip = &A::i;

B b;
constexpr int& i_1 = (b.*ap).*ip; // OK, C++98
constexpr int& i_2 = b.*(ap.*ip); // Valid under P0149
static_assert(&i_1 == &i_2); // Valid under P0149

constexpr int& i_3 = (&(b.*ap))->*ip; // OK, C++98
constexpr int& i_4 = b.*((&ap)->*ip); // Valid under P0149
static_assert(&i_3 == &i_4); // Valid under P0149

struct C { int i; }
struct D { C cs[42]; };
constexpr int A::*ip = &A::i;
constexpr C (D::*csp)[42] = &D::cs;

D d;
constexpr int& cs0i_1 = (d.*csp)->*ip; // OK, C++98
constexpr int& cs0i_2 = d.*(csp->*ip); // Valid under P0149
static_assert(&cs0i_1 == &cs0i_2); // Valid under P0149

3.3 Forming pointers to bases

With the extensions to member pointers introduced so far, we can form member pointers
to direct members, members of members, and bases of members. However, we cannot
form a member pointer to a base class. This may be useful in situations where a class
inherits multiple copies of a base class via non-virtual inheritance. For example:

struct A {};
struct B1 : A {};
struct B2 : A {};
struct C : B1, B2 {};

It may be useful to create a member pointer of type A C::*, which may point to either
of the instances of A that C contains.

We can extend the grammar to allow specifying a base rather than a member in order to
form such “member” pointers. However, there is a simpler way of achieving this, at least
from the perspecitve of the grammar: we can add a way of forming “identity” member
pointers, which would have a type of T T::*. Member pointers to bases could then be
formed via upcasts of the member type, just like member pointers to bases of members
are formed using earlier parts of this proposal.

Proposal: Expressions of the form &T::this have type “Pointer to member of T of
type T”. The expression E1.*&T::this should be valid if E1 has type T, and should be
equivalent to the expression E1.

5

B1 B1::* b1_to_b1 = &B1::this; // P0149 formation of ‘identity’ member pointer

B1 C::* c_to_b1 = b1_to_b1; // C++98 class type downcast
A B1::* b1_to_a = b1_to_b1; // P0149 member type upcast

A C::* c_to_b2_a = &B2::this; // Combo!

4 Implementation
Implementation of this proposal on most platforms (including all Itanium ABI platforms)
is believed to be straightforward. Member pointers are generally represented as offsets,
and the features in this paper adjust and combine those offsets in the same way that
corresponding parts of the language dealing with concrete addresses adjust those addresses.

For example, given an array A with element type T and an index I, calculating the address
of A[I] involves adding sizeof(T)*I to &A; whereas given a similar pointer to member
PTM of type “pointer to member of class C of type array of T”, the equivalent operation is
to add sizeof(T)*I to the offset that is PTM’s representation.

Finding the address of a member in a virtual base class requires far more than just an offset,
and for this reason the standard disallows formation of pointers to members in virtual
base classes. However, MSVC goes above and beyond in this regard to support pointers
to members of virtual bases, and as a result has a more complex pointer-to-member
representation.

In its most general form, the representation of a pointer to a data member is:

1. An offset from the object address to the relevant vtable pointer

2. A virtual base table index

3. An offset from the start of the virtual base to the member

The representation of a pointer to a member function is the same as the above, with the
addition of a function address or virtual function index.

This extension is fundamentally incompatible with using the .* operator to form transitive
pointers to members. If only the first operand involves a virtual base table index, we can
take the first operand and add the second operand’s offset to (3). Similarly, if only the
second operand involves a virtual base table index, we can take the second operand and
add the first operand’s offset to (1). However, if both operands involve a virtual base
index, we’re out of luck—the resulting pointer-to-member representation would have to
store three offsets and two virtual base table indices. To handle this, the implementation
would likely need a dynamically sized representation allocated in the free store, possibly
forcing an ABI break.

Instead, on the basis that use of pointers to members is fairly rare, use of virtual bases
is also rare, and combining them is especially rare (not to mention non-standard), the

6

easier path forward here would be to phase out support for this extension in MSVC.
Concretely, this would involve:

• Deprecating the formation of pointers to members in virtual bases in MSVC, with
a warning

• Disallowing formation of pointers to members in virtual bases when compiling with
/std:c++26

• Supporting the cases that are implementable with the current representation

• Trapping in the .* operator if both operands are pointers to members in virtual
bases

Disallowing formation of pointers to members in virtual bases when compiling with
/std:c++26 makes it hard to hit the trapping case. Doing so would require having new
C++26 code that uses the .* operator on two operands supplied from one or more
different translation units which were compiled with an older standard.

5 Wording
Change 7.3.13 [conv.mem] paragraph 2 as follows:

A prvalue expression E of type “pointer to member of B of type cv T”, where
B is a class type, can be converted to a prvalue of type “pointer to member of
D of type cv TU”, where D is a complete class derived (11.7) from B, and T is
the same as or a complete class derived (11.7) from U.

If either B or U is an inaccessible (11.8), ambiguous (6.5.2), or transitively
virtual (11.7.2) base class (11.7.2) of D or T respectively, or a base class
of a virtual base class of D, a program that necessitates this conversion is
ill-formed.

If class D does not contain the original membersubobject and is not a base
class of the class containing the original membersubobject, the behavior is
undefined. Otherwise, the result of the conversion refers to the same member
as the pointer to member before the conversion took place, but it refers to
the base class member as if it were a member of the derived class. The result
refers to the member in D’s instance of Binstance of U that is the member
designated by E or is a base subobject thereof, as if it were a subobject of D.

Since the result has type “pointer to member of D of type cv T”, indirection
through it with a D object is valid. The result is the same as if indirecting
through the pointer to member of B with the B subobject of D.

The null member pointer value is converted to the null member pointer value
of the destination type.

7

Change 7.6.1.2 [expr.sub] paragraph 2 as follows:

With the built-in subscript operator, an expression-list shall be present,
consisting of a single assignment expression. One of the expressions shall be a
glvalue of type “array of T” or, a prvalue of type “pointer to T” or a prvalue
of type “pointer to member of class C of type array of T”, and the other shall
be a prvalue of unscoped enumeration or integral type.

TheLet E1 and E2 denote these two expressions, respectively. The type “T”
shall be a completely-defined object type. If E1 is of pointer to member type
and E2 is within the bounds of the member array identified by E1 and not
past its end, the result is a prvalue of type “pointer to member of class C
of type T” and E designates the element of the member array designated by
E1 at index E2 as if it were a subobject of C. If E1 is of pointer to member
type and E2 is not within the bounds of the member array identified by E1,
behaviour is undefined. Otherwise, the result is of type “T”, and. The type
“T” shall be a completely-defined object type. The expression E1[E2] is
identical (by definition) to *((E1)+(E2)), except that in the case of an array
operand, the result is an lvalue if that operand is an lvalue and an xvalue
otherwise.

Change 7.6.1.5 [expr.ref] paragraph 2 as follows:

For the first option (dot), if the id-expression names a static member or an
enumerator, the first expression is a discarded-value expression (7.2.3); if
the id-expression names a non-static data member, the first expression shall
be a glvalue or a prvalue having pointer-to-member type. For the second
option (arrow), the first expression shall be a prvalue having either pointer
type or pointer-to-member type. The expression E1->E2 is converted to the
equivalent form (*(E1)).E2; the remainder of 7.6.1.5 will address only the
first option (dot).

Change 7.6.1.5 [expr.ref] paragraph 5 as follows:

Otherwise, the object expression shall be of class type X or type “pointer to
member of class C of class type X”. The class typeIn either case, X shall be
complete unless the class member access appears in the definition of that
class.

Change 7.6.1.5 [expr.ref] paragraph 6 as follows:

If E1 does not have pointer-to-member type and E2 is a bit-field, E1.E2 is a
bit-field. The type and value category of E1.E2 are determined as follows. In
the remainder of 7.6.1.5, cq represents either const or the absence of const
and vq represents either volatile or the absence of volatile. cv represents an
arbitrary set of cv-qualifiers, as defined in 6.8.5.

Furthermore, let the notation vq12 stand for the “union” of vq1 and vq2 ;

8

that is, if vq1 or vq2 is volatile, then vq12 is volatile. Similarly, let the
notation cq12 stand for the “union” of cq1 and cq2 ; that is, if cq1 or cq2 is
const, then cq12 is const.

Add the following as new paragraphs following 7.6.1.5 [expr.ref] paragraph 6:

For a type “cq1 vq1 A” and the type “cq2 vq2 B” of E2, the merged type of
“cq1 vq1 A” and E2 is

• “vq12 B” if E2 is declared to be a mutable member,

• “cq12 vq12 B” otherwise.

If the type of E1 is “pointer to member of class C of type X”, E2 shall name
a non-static member of non-reference type. If E1 is the null member pointer
value, behaviour is undefined. If E2 is a member of an inaccessible (11.8),
ambiguous (6.5.2), or transitively virtual base class (11.7.2) of X, the program
is ill-formed. The expression E1.E2 is a prvalue of type “pointer to member
of class C of type M”, where M is the merged type of X and E2, and designates
the member E2 of X as if it were a subobject of C. [Note—If E2 names
an overload set, the expression E1.E2 can be used only in a context that
uniquely determines which function in the overload set is selected (see 12.3
[over.over])]

Change 7.6.1.5 [expr.ref] paragraph 7 as follows:

If E1 does not have pointer-to-member type and E2 is declared to have type
“reference to T”, then E1.E2 is an lvalue of type T. If E2 is a static data
member, E1.E2 designates the object or function to which the reference
is bound, otherwise E1.E2 designates the object or function to which the
corresponding reference member of E1 is bound. Otherwise, one of the
following rules applies.

• If E2 is a static data member and the type of E2 is T, then E1.E2 is an
lvalue; the expression designates the named member of the class. The
type of E1.E2 is T.

• If E2 is a non-static data member and the type of E1 is “cq1 vq1
X”, and the type of E2 is “cq2 vq2 T”X, the expression designates the
corresponding member subobject of the object designated by the first
expression. If E1 is an lvalue, then E1.E2 is an lvalue; otherwise E1.E2 is
an xvalue. Let the notation vq12 stand for the “union” of vq1 and vq2
; that is, if vq1 or vq2 is volatile, then vq12 is volatile. Similarly,
let the notation cq12 stand for the “union” of cq1 and cq2 ; that is,
if cq1 or cq2 is const, then cq12 is const. If E2 is declared to be a
mutable member, then theThe type of E1.E2 is the merged type of X
and E2“vq12 T”. If E2 is not declared to be a mutable member, then the
type of E1.E2 is “cq12 vq12 T”.

9

Change 7.6.1.9 [expr.static.cast] paragraph 2 as follows:

An lvalue of type “cv1 B”, where B is a class type, can be cast to type
“reference to cv2 D”, where D is a complete class derived (11.7) from B, if cv2
is the same cv-qualification as, or greater cv-qualification than, cv1. If B is a
virtual base class of D or a base class of atransitively virtual base class of D
(11.7.2), or if no valid standard conversion from “pointer to D” to “pointer to
B” exists (7.3.12), the program is ill-formed. An xvalue of type “cv1 B” can
be cast to type “rvalue reference to cv2 D” with the same constraints as for
an lvalue of type “cv1 B”. If the object of type “cv1 B” is actually a base class
subobject of an object of type D, the result refers to the enclosing object of
type D. Otherwise, the behavior is undefined. [Example: ...]

Change 7.6.1.9 [expr.static.cast] paragraph 12 as follows:

A prvalue of type “pointer to member of DA of type cv1 T” can be converted
to a prvalue of type “pointer to member of B of type cv2 TU”, where D
is aA and B are complete class types and B is a base class (11.7) of D, if
cv2 is the same cv-qualification as, or greater cv-qualification than, cv1. If
no valid standard conversion from “pointer to member of BA of type T” to
“pointer to member of DB of type T” exists (7.3.13), and no valid standard
conversion from “pointer to member of B of type T” to “pointer to member of
A of type T” exists, the program is ill-formed. If no valid standard conversion
from “pointer to member of A of type T” to “pointer to member of A of
type U” exists, and no valid standard conversion from “pointer to member
of A of type U” to “pointer to member of A of type T” exists, the program
is ill-formed. The null member pointer value (7.3.13) is converted to the
null member pointer value of the destination type. If class B contains the
original membersubobject, or is a base class of the class containing the original
membersubobject, and if U is either the same as T or is a base class of the
most derived type of the original subobject, the resulting pointer to member
points to the original membersubobject or one of its bases or derived classes,
according to the conversion from T to U. Otherwise, the behavior is undefined.

Change 7.6.2 [expr.unary] paragraph 1 as follows:

Expressions with unary operators group right-to-left.

10

unary-expression:
postfix-expression
unary-operator cast-expression
++ cast-expression
-- cast-expression
& pm-identity
await-expression
sizeof unary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
noexcept-expression
new-expression
delete-expression

unary-operator: one of
* & + - !

Change 7.6.2.2 [expr.unary.op] paragraph 1 as follows:

The unary * operator performs indirection: Its operand shall be either a
prvalue of type “pointer to T”, where T is an object or function type, or a
prvalue of type “pointer to member of class C of type array of T”. If its operand
has pointer-to-member type, then the expression designates the first element
of the array as if it were a subobject of C, and operator yields a prvalue of
type “pointer to member of class C of type T”. Otherwise, theThe operator
yields an lvalue of type T. If, and if the operand points to an object or
function, the result denotes that object or function; otherwise, the behavior
is undefined except as specified in 7.6.1.8.

Add the following as a new section named [expr.unary.pmidentity] as a subsection of
7.6.2 [expr.unary]:

A expression of the form &pm-identity is used to form an identity pointer-to-member.
[Note—such member pointers can have their member type upcast and/or
class type downcast (7.3.13 [conv.mem]) to form a pointer-to-member that
identifies a base subobject.]

pm-identity:
nested-name-specifier this

The nested-name-specifier in a pm-identity shall name a class. The expression
& pm-identity is a prvalue of type “pointer to member of class T of type T”,
where T is the class named by the nested-name-specifier . The expression
designates an object of type T as if it were a subobject of itself.

Drafting note: the nested-name-specifier is assumed to name a class name in a dependent
context. Use of typename is intentionally not allowed.

Change 7.6.4 [expr.mptr.oper] paragraph 2 as follows:

11

The binary operator .* binds its second operand, which shall be a prvalue of
type “pointer to member of T of type M” to its first operand, which shall be a
glvalue of class Ttype U or of type “pointer to member of class C of type U”,
where U is either T or of a class of which T is an unambiguous and accessible
base class. TheIf the first operand is of class type, the result is an object
or a function of the type specified by the second operand. Otherwise, if
the first operand is of pointer to member type, T shall not be a transitively
virtual base class (11.7.2) of U, and the result is a prvalue of type “pointer
to member of C of type M”.

Change 7.6.4 [expr.mptr.oper] paragraph 3 as follows:

The binary operator ->* binds its second operand, which shall be a prvalue
of type “pointer to member of T” to its first operand, which shall be of type
“pointer to U” , “pointer to pointer to member of class C of type U” or “pointer
to member of class C of type array of U”, where U is either T or a class of
which T is an unambiguous and accessible base class. The expression E1->*E2
is converted into the equivalent form (*(E1)).*E2. The remainder of 7.6.4
will address only expressions of the form E1.*E2.

Change 7.6.4 [expr.mptr.oper] paragraph 4 as follows:

Abbreviating pm-expression .*cast-expression as E1.*E2, E1 is called the
object expression. If E1 is of class type and the result of E1 is an object whose
type is not similar to the type of E1, or whose most derived object does
not contain the member to which E2 refers, the behavior is undefined. The
expression E1 is sequenced before the expression E2.

Change 7.6.4 [expr.mptr.oper] paragraph 6 as follows:

If the result of .* or ->* is a function, then that result can be used only
as the operand for the function call operator (). [Example: ...] In a .*
expression whose object expression is an rvalue, the program is ill-formed if
the second operand is a pointer to member function whose ref-qualifier is &,
unless its cv-qualifier-seq is const. In a .* expression whose object expression
is an lvalue, the program is ill-formed if the second operand is a pointer
to member function whose ref-qualifier is &&. If E1 is of pointer to member
type or E2 is a pointer to a member function, the result of the expression
is a prvalue. The result of a .* expression whose second operandOtherwise,
if E1 is of class type and E2 is a pointer to a data member, the result of
the expression is an lvalue if the first operandE1 is an lvalue and an xvalue
otherwise. The result of a .* expression whose second operand is a pointer
to a member function is a prvalue. If the second operand is theE1 or E2 is a
null member pointer value (7.3.13), the behavior is undefined.

Add the following as new paragraph following 7.6.4 [expr.mptr.oper] paragraph 6:

12

If the type of E1 is “pointer to member of class C of type U”, the object
expression refers to the member of T designated by E2 within the subobject
of C designated by E1 as if it were a subobject of C. Otherwise, the object
expression refers to the member of T designated by E2 within the object
referred to by E1. If the subobject denoted by E1 does not contain the
subobject denoted by E2, behaviour is undefined.

Change 11.7.2 [class.mi] paragraph 4 as follows, and add a paragraph break before the
example:

A base class specifier that does not contain the keyword virtual specifies
a non-virtual base class. A base class specifier that contains the keyword
virtual specifies a virtual base class. For each distinct occurrence of a non-
virtual base class in the class lattice of the most derived class, the most derived
object (6.7.2) shall contain a corresponding distinct base class subobject of
that type. For each distinct base class that is specified virtual, the most
derived object shall contain a single base class subobject of that type. A
transitively virtual base class of a class C is a virtual base class of C or a base
class of a virtual base class of C.

Change 12.2.4.3 [over.ics.rank] paragraph 4:

...

• If class B is derived directly or indirectly from class A and class C is
derived directly or indirectly from B,

...

• If pm1, pm2 and pm3 are pointer-to-member types, where pm1 can be
converted to pm2 and pm2 can be converted to pm3 (7.3.13 [conv.mem]),

– conversion of pm1 to pm2 is better than conversion of pm1 to pm3,
and

– conversion of pm2 to pm2 is better than conversion of pm1 to pm3

Change 12.3 [over.over] paragraph 1 as follows:

[...]

If the target type contains a placeholder type, placeholder type deduction
is performed ([dcl.type.auto.deduct]), and the remainder of this sub-
clause uses the target type so deduced. If the id-expression is the second
operand of a class member access expression where, the first operand has
pointer-to-member type after its conversion to the dot form, the class member
access expression can be preceded by &. Otherwise, tThe id-expression can
be preceded by the & operator.

Add an entry to 15.11 [cpp.predefined] table 22 [tab:cpp.predefined.ft]:

13

__cpp_pointer_to_subobject 202502L

Acknowledgements
Many thanks to Richard Smith for his feedback on this proposal and the ideas behind
it, to Jens Maurer, Thomas Köppe and Brian Bi for their help and guidance with its
wording, and to Jonathan Caves for his help with answering the question of MSVC
implementability.

References
[CWG794] Detlef Vollman. C++ Standard Core Language Issue 794, Base-derived

conversion in member type of pointer-to-member conversion, March 2009.
http://wg21.link/cwg794.

[EWG94] Detlef Vollman. C++ Standard Evolution Issue 94, Base-derived conversion
in member type of pointer-to-member conversion, March 2009.
http://wg21.link/ewg94.

[std-discussion-20150605] Richard Smith and “Myriachan”. [std-discussion] Re: Why
are member data pointers to inner members prohibited?, June 2015.
https://groups.google.com/a/isocpp.org/d/msg/std-discussion/
8tehjvbLEWQ/1oPQyuYw2k8J.

14

http://wg21.link/cwg794
http://wg21.link/ewg94
https://groups.google.com/a/isocpp.org/d/msg/std-discussion/8tehjvbLEWQ/1oPQyuYw2k8J
https://groups.google.com/a/isocpp.org/d/msg/std-discussion/8tehjvbLEWQ/1oPQyuYw2k8J

	1 Introduction
	2 Revision History
	2.1 R0: Summer 2016
	2.2 R1: January 2025
	2.3 R2: February 2025 (as presented in Hagenberg)
	2.4 R3: May 2025

	3 Proposal
	3.1 Member type upcasts
	3.2 Forming pointers to members of members
	3.3 Forming pointers to bases

	4 Implementation
	5 Wording

