
P3312R0

Overload Set Types

Bengt Gustafsson

Str Louis – June 2024

Synopsis

std::vector<float> in = getInputValues();

std::vector<float> out;

std::transform(in.begin(), in.end(), std::back_inserter(out), std::sin);

Presentation contents

• Introduction

• History

• Proposed solution

• Examples

• Issues with single overloads

Introduction

• Overloaded functions don’t have types.

• Unoverloaded functions have types.

• Giving overloaded functions type allows more usage.

• In template code you may not know how many
functions you have due to ADL.

• Operators don’t have a syntax representing all overloads

History

• P0119 Andrew Sutton proposes the basics.

• P0382 A rebuttal of P0119 due to ADL issues.

• P3312R0 This paper.

• P3312Rx Updates including discussion of P0382.

Proposed solution

• An overloaded function has an overload-set-type.

• Overloaded member functions, all constructors,
destructors and operators have overload-set-types.

• Like lambdas, different uses of the same function name
may create different overload sets.

• A quoting mechanism can force a function or operator
name to have its overload set type.

• A quoted function name allows ADL to find overloads.

• A quoted function name can check contracts.

Examples

std::vector<float> in { 1, 2, 3 };

auto out = std::ranges::transform(in, std::sin);

auto inv = std::ranges::transform(in, `-`);

class MyClass {
public:

MyClass(float (*fp)(float));
};

auto ptr = std::make_unique<MyClass>(std::sin);

CHECK(!check_preconditions<myOverloadedFunction>(1, "Hello")); // P3183

Features

• An overload-set-type is compile time only.
• It’s similar to a synthesized lambda.
• can be converted to its overloaded function pointers.
• Includes defaulted parameters.
• Includes function templates.
• Brings specifiers such as constexpr and noexcept with it.
• Works for free and member functions, constructors,

destructors and operators.
• For operators includes overloads for fundamental and

pointer types (just as a lambda would).
• Includes contracts.

Function template instantiations

• For function templates each use of the name is new.

• Unique addresses are however not guaranteed.
void f(float);

void use(auto fun) { fun(1); }

use(f); // f is a function pointer, for which use is instantiated

void f(const char*);

use(f); // f is an overload set type, a new use is instantiated

use(f); // This may cause another instantiation. (think lambda).

void f(std::string);

use(f); // As the same overload is selected instantiation may be reused.

void f(int);

use(f); // As another overload is selected by use a new instantiation is needed.

Class/variable template instantiations

• For class templates the overload set contents is for
when the instantiation is first done.

• If this differs between TUs it is an ODR violation.

• There is only one class template instance per fully
qualified function name.

• To ensure that an overload set type is used even if 0 or 1
overloads is visible quoting may be required.

What’s up with P0382?

• The example in P0382 does not show the problem.
• However, after adjustment there could be behavioral change.
• The rules can be set to avoid this.
class C1 {
};

bool empty(const C1&); // Exactly one declaration above remove_empty definition.

template<typename I>
I remove_empty(I first, I last)
{

return std::remove_if(first, last, empty); // P: point of checking of visible overloads of empty.
}

class C2 : public C1 { // Note inheritance!
};

bool empty(const C2&);

std::vector<cont::C2> vc2(10);

auto end = cont::remove_empty(vc2.begin(), vc2.end()); // Which empty overload does remove_if call?

Proposed solution to P0382 issue

• Mentioning a function name does not automatically add ADL lookup.

• Back-quotes add ADL lookup to the overload-set-type.
class C1 {
};

bool empty(const C1&); // Exactly one declaration above remove_empty definition.

template<typename I>
I remove_empty(I first, I last)
{

return std::remove_if(first, last, `empty`); // P: ADL enabled lookup for empty inside remove_if
}

class C2 : public C1 { // Note inheritance!
};

bool empty(const C2&);

std::vector<cont::C2> vc2(10);

auto end = cont::remove_empty(vc2.begin(), vc2.end()); // remove_if calls empty(const C2&).

Mental model for unquoted/quoted case.

struct __empty_overload_set_type_1 {

bool operator()(const C1& c) {

return empty(c);

}

operator bool (&)(const C1&) const { return empty; }

};

struct __empty_overload_set_type_1 {

decltype(auto) operator()(auto&&... as) {

return std::sin(std::forward<decltype(as)>(as)...);

}

magical set of conversion functions depending on
overload set including ADL.

};

empty `empty`

Complete back-quoting rules

• Mentioning a function name does not automatically add ADL
lookup even if the function is overloaded.

• Back-quotes add ADL lookup to the overload-set-type.

• Back-quotes required if function name is not declared.

• Back-quotes required around operator token to get both free
and member declarations.

• Back-quotes forces overload-set-type even if exactly one function
overload exists.

• Back-quotes never allowed with qualified function name.

	Slide 1: P3312R0
	Slide 2: Synopsis
	Slide 3: Presentation contents
	Slide 4: Introduction
	Slide 5: History
	Slide 6: Proposed solution
	Slide 7: Examples
	Slide 8: Features
	Slide 9: Function template instantiations
	Slide 10: Class/variable template instantiations
	Slide 11: What’s up with P0382?
	Slide 12: Proposed solution to P0382 issue
	Slide 13: Mental model for unquoted/quoted case.
	Slide 14: Complete back-quoting rules

