
Usage Experience for Contracts with BDE

Document #: P3336R0
Date: 2024-06-23
Project: Programming Language C++
Audience: EWG (Evolution), SG21 (Contracts)
Reply-to: Joshua Berne <jberne4@bloomberg.net>

Abstract

Initial implementations of the Contracts facility as specified in [P2900R7] are becoming available.
In this paper, we present the results of making use of one of those implementations on our
internal codebase — which is heavily instrumented with contract assertions — with particular
regard to how const-ification and repetition worked in practice.

Contents
1 Introduction 2

2 Target Libraries 2

3 Results 4
3.1 const-ification of assertions in a wide codebase 4
3.2 Repeating assertions in BDE 7

4 Conclusion 8

1

mailto:jberne4@bloomberg.net

Revision History
Revision 0

• Original version of the paper for discussion during an SG21 telecon

1 Introduction
The Contracts MVP produced by SG21, i.e., [P2900R7], provides a number of features that
differentiate its semantics from those of classic macro-based assertion facilities (such as <cassert>).
In particular, some of these features are designed to hinder writing contract-assertion predicates
that alter the correctness of a program.

• Any use of an automatic variable or *this within a contract-assertion predicate is treated as
const, preventing inadvertent mutation from within a contract assertion.

• The expression used with a contract assertion is a conditional-expression, which prevents
the use of an assignment expression in an assertion, both reducing the chance of unintended
modifications and the common typo of using = instead of ==.

• Because contract assertions may be evaluated multiple times, platforms can provide a mecha-
nism to identify destructive contract assertions.

At present, an in-progress implementation of [P2900R7] implements the first two bullets above —
const-ification and the grammar requirements of contract assertions. The third feature, arbitrary
repetition, can be easily replicated in a macro-based facility with a for loop.

To test the usability of the features above, we changed an existing macro-based contract-checking
facility — bsls_assert from the BDE libraries1 — to use contract_assert. In the rest of this paper,
we describe the specifics of this change and our experiences building some large libraries that make
use of contract_assert.

2 Target Libraries
The contract-checking facility we sought to modify is bsls_assert,2 which provides a family of
macros (alongside bsls_review) that are used for contract checking. The bsls_assert component
provides a suite of assertion macros that parallel the functionality of contract_assert in [P2900R7].
Each macro, based on the configuration macros defined in the translation unit, expands in a different
form based on whether the assertion should be enforced, observed, ignored, or assumed.

When enforced, each macro expands to the following:
#define BSLS_ASSERT_ASSERT_IMP(X,LVL) do { \

if (BSLS_PERFORMANCEHINT_PREDICT_UNLIKELY(!(X))) { \
BSLS_PERFORMANCEHINT_UNLIKELY_HINT; \
BloombergLP::bsls::AssertViolation violation(\

#X, \

1See [bde14].
2See bsls_assert.

2

https://github.com/bloomberg/bde/blob/main/groups/bsl/bsls/bsls_assert.h

BSLS_ASSERTIMPUTIL_FILE, \
BSLS_ASSERTIMPUTIL_LINE, \
LVL); \

BloombergLP::bsls::Assert::invokeHandler(violation); \
} \

} while (false)

Like contract_assert, the above code evaluates an expression and then, if that expression has a
value of false, invokes a contract-violation handler.

To test BDE and its dependent libraries with contract_assert, detection logic for the presence of
contracts, based on the feature-test macro __cpp_contracts, was added to expand the above macro
differently when contract_assert is available:

// ...
#ifdef __cpp_contracts
#define BSLS_ASSERT_ASSERT_IMP(X,LVL) contract_assert(X)
#endif
// ...

In a separate test, we changed the enforced assertion macro to use a loop instead of a single if
statement:

#define BSLS_ASSERT_ASSERT_IMP(X,LVL) do { \
for (int bslsAssertRepeatCount = 0; \

bslsAssertRepeatCount < BSLS_ASSERT_REPEAT_COUNT; \
++bslsAssertRepeatCount) { \

if (BSLS_PERFORMANCEHINT_PREDICT_UNLIKELY(!(X))) { \
BSLS_PERFORMANCEHINT_UNLIKELY_HINT; \
BloombergLP::bsls::AssertViolation violation(\

#X, \
BSLS_ASSERTIMPUTIL_FILE, \
BSLS_ASSERTIMPUTIL_LINE, \
LVL); \

BloombergLP::bsls::Assert::invokeHandler(violation); \
break; \

} \
} } while (false)

This introduced a new configuration macro, BSLS_ASSERT_REPEAT_COUNT, which allowed us to run the
full suite of unit tests with assertion-predicate evaluation repeated an arbitrary number of times.

With these changes to bsls_assert, we then compiled and ran tests for BDE and four higher-level
internal libraries (see Table 1), all of which use bsls_assert extensively.

• Components are the number of .h and .cpp pairs, along with their associated test drivers.

• Lines and test lines are a count of lines of code, with a percentage of those lines that are
not comments or blank to give an approximate measure of the size of the library, separated
between production code (in the .h and .cpp files) and test driver code.

• Asserts and test asserts are the number of uses of the bsls_assert macros, with a percentage
of nonempty, noncomment lines of code that are assertions, again split between production

3

code and test driver code. This percentage gives an indication of how consistently assertions
are used in each individual library.

• Issues is the number of distinct issues to be addressed due to the switch to using contract_assert
in the implementation of bsls_assert.

Table 1: Tested Libraries
Library Components Lines Test Lines Assertions Test Assertions Issues
BDE 3330 1.32M (70.52%) 2.14M (76.02%) 7749 (0.83%) 4743 (0.29%) 7
Library #1 1814 368.30K (62.71%) 986.45K (79.18%) 6307 (2.73%) 981 (0.13%) 4
Library #2 165 45.49K (74.68%) 64.77K (75.86%) 231 (0.68%) 240 (0.49%) 0
Library #3 1084 352.58K (79.90%) 116.20K (88.73%) 1844 (0.65%) 138 (0.13%) 2
Library #4 240 86.61K (60.09%) 17.79K (85.48%) 1156 (2.22%) 5 (0.03%) 1

3 Results
Two different experiments were performed: one to see the impact of const-ification on a few large
libraries and another to verify that repeating assertions was sound for the BDE test-driver suite.

3.1 const-ification of assertions in a wide codebase

The first experiment was to compile all the above libraries with the experimental branch of gcc that
contains the ongoing implementation of [P2900R7].3

All unit tests for these libraries passed, with the exception of tests that depend on the ability to
specify the observe semantic in code and tests that failed due to code not yet ready to support
C++23, the latest version of gcc, or the latest version of libstdc++, .

To compile these libraries after the switch to contract_assert, a variety of changes had to be made,
and these modifications fall into a few broad categories. All names and specifics in the examples
below have been changed both for security and to capture, with brevity, the essential aspects of the
issues that were encountered.

• APIs not supporting const usage

Due to const-ification within contract predicates, any use of an API that is not const correct
will fail to compile.

– Two functions (size and empty) on one container-like type defined in a test driver in
BDE were not const qualified. Three member functions in Library #1 were not const
qualified. None of these functions actually modified any state, and adding const fixed
the (existing) issue in all of them.

– Eleven assertions in Library #3 made use of a non-const base-class function that returned
enable_shared_from_this(). This issue was by far the most involved to solve, requiring
the addition of a const-qualified overload (that returned shared_ptr<const T> instead
of shared_ptr<T>) to the base class that provided the original non-const function. With

3This branch is primarily a combination of the original C++20 Contracts implementation by Andrew Sutton, with
work to support the current syntax and semantics implemented by Ville Voutilainen and Nina Ranns.

4

that addition to support const correctness, all uses of the function still compiled, and
tests passed as expected.

• Nonmodifying, non-const usage Some predicates did not modify any essential program
state but still needed to make non-const use of local variables.

– Four assertions in BDE used, as part of their predicates, functions that had output
parameters whose value was discarded. These functions included string formatting and
serialization functions that performed a trial serialization and whose output status was
then tested for validity. Another example was from a utility that produced human-readable
error messages into an output parameter that was subsequently discarded. In all cases,
these values were otherwise unused and conditionally compiled, for example:

int validate(bsl::ostream& errorStream) const;
// Validate this object's state. Return 0 if valid and a nonzero
// value otherwise. If not valid, populate the specified errorStream with
// a descriptive message.

void f()
{
#ifdef BSLS_ASSERT_IS_USED

bsl::osringstream oss;
BSLS_ASSERT(0 == validate(oss));

#endif
}

As we were fixing these issues, we saw the ease of making errors when spelling out the
correct type of the variable being referenced. To rectify this easy mistake and to reduce
the chance of misusing the needed const_cast operators, a simple utility macro was
added that removes the const that might have been applied to an id expression due to
const-ification:

#define BSLS_ASSERT_UNCONST(X) const_cast<decltype(X)&>(X)

A tool provided by the language itself for this purpose could certainly be more accurate
and give significantly better diagnostics if misused.

– One assertion in Library #1 used a dynamic_cast on the address of a reference parameter
to validate the precondition that a particular concrete type was passed to the function in
question via a reference to its base. This predicate needed to be changed from

void function(T& arg)
{

BSLS_ASSERT(0 != dynamic_cast<T*>(&arg))
}

to
void function(T& arg)
{

BSLS_ASSERT(0 != dynamic_cast<const T*>(&arg));
}

5

While the original assertion was not an error, it failed to compile because a dynamic_cast
may not remove a const. The updated predicate compiles with or without const-ification
and tests the same condition.

• Intentional Failures

Occasionally, tests of the contract-checking facility itself are written with the intent of failing,
and modifying a local variable is one way to accomplish this result.

– One contract assertion in BDE was of this form:
BSLS_ASSERT(x = x += y)

This assertion was intended to fail as part of testing the facility that integrates contract
checking with fuzz testing. This assertion was easily changed to an alternate expression
that failed in a similar fashion.

• Destructive Predicates

Certain predicates would, if they were not consistently evaluated with the same semantic,
cause themselves to no longer produce the correct result.

– One contract assertion in BDE was used within another macro to verify that all elements
of an enumeration were in sequential order when processed:

int ii = 0; (void)ii;
#define CHECK_ARG_COUNT(x,id) \

BSLS_ASSERT(ii++ == id); \
checkCount(x,id);

CHECK_ARG_COUNT(0,0);
CHECK_ARG_COUNT(0,e_ENUM_VAL_1);
CHECK_ARG_COUNT(1,e_ENUM_VAL_2);
CHECK_ARG_COUNT(1,e_ENUM_VAL_3);
CHECK_ARG_COUNT(0,e_ENUM_VAL_4);

Due to the nesting of macros within macros, properly transforming this assertion to
separate modification of assertion-supporting state from the macro was non-trivial but
was accomplished with the bsls_assert equivalent of NDEBUG — BSLS_ASSERT_IS_USED:

#ifdef BSLS_ASSERT_IS_USED
int ii = 0;
#define CHECK_ARG_COUNT(x,id) \

BSLS_ASSERT(ii == id); \
ii++; \
checkCount(x,id);

#else
#define CHECK_ARG_COUNT(x,id) checkCount(x,id);

#endif

Making this modification removed any future risk of using ii in the code below it when
assertions are not enabled and the variable’s value is not maintained properly.

6

• Bugs

Due to the ease of mistakenly writing assertions that modify state with the assignment operator
when an equality comparison was intended, both the improved grammar and const-ification
prevent such slips.

– One file in Library #3 contained 6 instances of assertions of this form:
BSLS_ASSERT(x->y = enum_value)

All of these assertions were obvious bugs, mistakenly using = instead of ==, that were
promptly fixed4 to use equality comparison (==) instead of assignment.

– One assertion in Library #4 invoked a function that did nothing and then returned
an error code if the target object was already in the correct state, asserting that this
error code was returned. This usage is highly questionable, and this design decision will
be revisited because the behavior when the object is not in the correct state is highly
surprising (and vastly different from the behavior when the assertion macro is disabled).

Altogether, the effort to perform the migration from bsls_assert to contract_assert was minuscule
(a few minutes of actual work), a small fraction of the many hours required to just compile an
experimental branch of GCC on a relatively underpowered virtual machine.

Table 2: Summary of Issues
Library Missing const Nonmodifying Intentional Destructive Bugs Total Issues

Support Usage Failures
BDE 1 4 1 1 0 7
Library #1 3 1 0 0 0 4
Library #2 0 0 0 0 0 0
Library #3 1 0 0 0 6 7
Library #4 0 0 0 0 1 1

3.2 Repeating assertions in BDE

The second test performed was to compile BDE with assertion macros configured to repeat the
evaluation of assertion predicates 64 times. This experiment was performed with BDE’s current
production compiler and is independent of the implementation work on [P2900R7] in gcc.

Running this experiment allowed us to make several observations.

• To improve quality of runtime behavior and avoid repeating violations once they have been
reported once, we decided that, when repeating evaluations, repetitions would stop after a
violation was detected even if that violation was only observed. This decision had no impact on
tests or on the code as written but is worth considering for compilers providing this feature.

• Two test drivers counted operations performed by the code they were testing, primarily to
detect that certain synchronization primitives did only exactly what was asked of them (with

4Note that none of these bugs would happen if the comparisons were consistently putting the constant — the
enumerator in this case — on the left side of the comparison operator rather than the right.

7

instrumented underlying implementations to facilitate the counting). In both cases, existing
code accounted for the evaluations within assertion macros, and in both cases, expected
operations needed to be multiplied by the number of expected repetitions.

Any testing strategy that required this level of detail or even that depended on whether
contract-assertion predicates were evaluated would need to be applied only when the testing
code is able to implement the appropriate logic to determine how many evaluations of contract-
assertion predicates there will be.

• The assertion that was intended to fail as part of testing fuzz testing utilities still failed on the
first repetition and was not detected as problematic with the repeated evaluation strategy.

• The assertion that was modifying a local counter failed spectacularly on repeated evaluations
and will be fixed.

The development effort to fix the above issues was, overall, small, especially compared to the time
required to perform a few compilation cycles of the entire BDE library (again as a background task
on an underpowered virtual machine).

4 Conclusion
Up to this point, using const-ification and repetition to improve the correctness of contract assertions
has been primarily a theoretical exercise guided by our own estimations of how such features would
apply to real-world code. With an implementation in hand, we have now applied these features to
millions of lines of code that have a 20-year history of making regular use of assertions. From this
experiment, we can take away some important lessons.

• The vast majority of assertions work correctly with no changes needed.

• Not a single assertion in our tested libraries behaved incorrectly due to the potential change
in overload resolution resulting from const-ification.

• Some real bugs and some questionable designs were uncovered by this experiment, and their
discovery has already led to improvements in the quality of our libraries.

As implementations of the Contracts facility evolve and more features are added in the future to
support the full range of functionality of bsls_assert, we will repeat these experiments to further
validate that the facility we are proposing for C++ is one that will prove useful in large-scale
real-world environments.

Acknowledgments
Thanks to Andrew Sutton and Jason Merrill for the effort that went into adding support for C++20
Contracts to gcc and to Ville Voutilainen and Nina Ranns for implementing [P2900R7] as an
iteration on that foundation.

Thanks to Mungo Gill, Rostislav Khlebnikov, John Lakos, and Lori Hughes for valuable feedback
on this paper.

8

Bibliography
[bde14] “Basic Development Environment”. Bloomberg

https://github.com/bloomberg/bde/

[P2900R7] Joshua Berne, Timur Doumler, and Andrzej Krzemieński, “Contracts for C++”, 2024
http://wg21.link/P2900R7

9

https://github.com/bloomberg/bde/
http://wg21.link/P2900R7

	1 Introduction
	2 Target Libraries
	3 Results
	3.1 const-ification of assertions in a wide codebase
	3.2 Repeating assertions in BDE

	4 Conclusion

