
Compile time resolved contracts
Document #: P3317R0
Date: 2024-05-22
Project: Programming Language C++
Audience: SG21 Contracts Working Group
Reply-to: Jonas Persson

<jonas.persson@iar.com>

Contents
1 Abstract 1

2 Motivation 1

3 Diagnostics 2
3.1 Known violation . 2
3.2 Unhandled conditions . 3
3.3 Runtime conditions . 3
3.4 Compilation modes . 3

4 Implementation requirements 3
4.1 Evaluation . 3
4.2 Propagation . 4

5 Suggested polls 4

6 Summary 4

7 References 4

1 Abstract
This paper tries to explore what is needed for static analysis of contracts how to ensure that all contract
mechanisms of [P2900R5] and beyond will be designed in a way that allows that.

2 Motivation
For some types of applications terminating would be disastrous. But they will still leave enforce in the release
build because incorrect data is even worse.

Others want their software checked, but there are no extra resources, memory or CPU, to run contract checks.

For these applications it is worth the effort to write the program in such a way that most contracts will be
checked at compile time and any runtime cost and effect is elided.

But even for less demanding applications it adds a lot of confidence to know that many of your contracts has
been proven correct already by the compiler.

Planned as a future extension is an assume mode that lets the optimizer assume that the contract is true and
optimize based on that. It is not part of the MVP because it has dangerous implications in case that assumption

1

mailto:jonas.persson@iar.com

is not true. When contracts is resolved at compile time the optimizer has the same opportunity but without all
the risks.

For all this to be an option we need to design contract so that static checks are possible and we need compilation
modes to help us find where static analysis fails.

This is an important feature that should be considered when we expand the design of contracts.

It may be argued that this is better left as an QoI for tools vendors, but it is an essential part of working with
contracts and it need to designed to play nice with the contracts in MVP and later extensions.

3 Diagnostics
In order to let the programmer know what the compiler finds out about potential failures and where it can
or cannot resolve contracts at compile time there need to be some diagnostics. We can define three types of
diagnostic that let the user know what needs to be done for resolving the contracts at compile time. They
all depends on the compilers analysis skills, and may differ from compiler to compiler. The first two detects
incorrect and insufficient contracts, the third reports on the compiler’s inability to resolve the truth at compile
time.

To support compile time resolution of contracts, All these diagnostics should be fixable without resorting to
global analysis.

3.1 Known violation
This contract will fail if current function is called
void f0()

post(false) // Diagnostic: Will fail
{
}

Ill formed
void f1()

pre(false) // OK. No one has called it yet
{
}

OK, but using it is not:
void f2()
{

f1(); // Diagnostic: Will fail
}

This is also ill formed
void f3()
{

contract_assert(false) // Diagnostic: Will fail
}

constexpr has_feature_x = false;
void f4()

pre(has_feature_x) // OK. No one has called it yet
{
}
void f5()

2

{
f4(); // Diagnostic: Will fail

}
void f5()

pre(has_feature_x) // OK. No one has called it yet
{

f4(); // OK. Will not be called
}

3.2 Unhandled conditions
There are valid input values to current function that trigger this contract.
int f0(int x)

post(r: r > 5) // Diagnostic: Invalid conditions exists
{

return x;
}

3.3 Runtime conditions
There may be valid input values to current function that trigger this contract, but the compiler is unable to
determine it at compile time. This is the fully static check warning.
void f0()

post(secret_check()) // Diagnostic: Correctness unknown
{
}

3.4 Compilation modes
These diagnostics report problem in increasing strictness and can be seen as the static analysis mode. The first
two of these diagnostics exposes incorrect code. Implementations should be allowed and encouraged to diagnose
these errors and they should be part of the default mode. Since the ability to detect these issues is dependent on
the compiler skill, it need to be possible to compile without as portability between compilers is not guaranteed.

The third is not always an error and may give different result on different optimization levels. Since Tuning
down the analyser will generate more errors, it should standardized as an opt in analysis mode.

4 Implementation requirements
Static analysis can be done in many ways. Static analyzer tools, compilers, human reviewer. Here we mainly
addresses compilers as one our main goals is to elide unnecessary contract checks. This means that we are bound
to the c++ compilation model. The compiler will only see a limited number, or even a single function at a
time, so each function must be independently checkable. It must also be given it’s called functions needs and
promises.

Preconditions, postconditions and invariants are all designed in a way that allows static checking according to
the criteria above. The runtime checking part is only a recognition of the limits of compiler’s symbolic evaluation
abilities. For a human reviewer it was always supposed to be be compile time checkable.

4.1 Evaluation
Contracts on incoming data: A function’s precondition and the postconditions of functions it call are compile
time facts. Using theses fact in symbolic evaluation can prove contracts local to the function to be true. If these

3

cannot be relied on and must be checked, compile time resolution will not be possible.

Contracts on outgoing data: The function’s postconditions, preconditions of functions that it calls and con-
tract_asserts are the facts that needs to be verified, Normally by a runtime check but it should always be
possible to turn them from runtime to compile time by changing only the local function or the incomming
contracts;

Since we are bound by local reasoning, only the caller knows the context around the call and has a possibility
to resolve preconditions in compile time.

Same goes for postconditions where only the callee side sees everything that is going on in the function and has
a chance of being compile time resolved.

4.2 Propagation
To get any type of static checking to work, facts needs to be passed between caller and callee. This is the purpose
of pre and post conditions. They defines what must be true on both sides of the call boundary. If a precondition
is checked caller side, it must still be true when we have entered the function. A pre condition can be weaker
on the callee side and still be true. Similarly, if a postcondition established but the implementation, the caller
must be able to rely on it still being true when returned. A post condition can be weaker on the caller side and
still be true.

5 Suggested polls
The first poll is if we should have standardized modes for compile time checking of contract.

Poll: The compile time diagnostics behaviour of contracts should be standardized.

The second poll is if the suggested diagnostics is a good enough specification for compile time needs.

Poll: The compile time enforcement should be one of ”None”, ”Known violations”, ”Unhandled condi-
tions”, ”Runtime conditions”

Last poll is about adopting compile time resolution as a design guideline for new (and existing) contract features

Poll: All contract semantics should be designed to not prevent compile time resolution

6 Summary
Compile time resolution of contracts is an important property for safety and performance, and we should add
the necessary mechanisms needed for it to be on par with the runtime semantics, and to commit to designing
future contract features that allows that.

7 References
[P2900R5] Joshua Berne, Timur Doumler, Andrzej Krzemieński. 2024-02-15. Contracts for C++.

https://wg21.link/p2900r5

4

https://wg21.link/p2900r5

	Abstract
	Motivation
	Diagnostics
	Known violation
	Unhandled conditions
	Runtime conditions
	Compilation modes

	Implementation requirements
	Evaluation
	Propagation

	Suggested polls
	Summary
	References

