
A more predictable unchecked semantic
Document #: P3316R0
Date: 2024-05-22
Project: Programming Language C++
Audience: SG21 Contracts Working Group
Reply-to: Jonas Persson

<jonas.persson@iar.com>

Contents
1 Introduction 1

2 Naming 1

3 The disappearing observer problem 2

4 Ignore considered harmful 3

5 Mixed mode applications 4

6 Proposals 4

7 Conclusion 4

8 References 4

1 Introduction
In [P2900R5] there are Ignore, Observe, Enforce and Quick_enforce contract semantic. If your company is
delivering libraries (static) this means you have to ship four times as many. This may be costly, so it is tempting
to ship a single version and let the linker strip away the unused elements.
Those elements are the check, the handler and the abort. Keeping everything leaves us with Enforce, removing
the handler leaves us with Quick_enforce, removing the abort leaves us with Observe and removing everything
leaves us with Ignore. Almost. We are still left with a compiled library where the optimizer saw that failed
checks would abort and hence optimize based on that.
That will not be the same had the library been compiled with Ignore semantics.

So what semantics is it then? It is not Ignore, but it is also not assume. Assume would have allowed the optimizer
to optimize as if the check was always true. In this case we have a semantic where a program not fulfilling the
contract is not expected to progress past the location of the check. This paper will call this semantic Promise,
where passing this location establish the condition as a truth.

2 Naming
In this paper Promise is used as a placeholder name since it relies on the programmer promising to follow the
contracts. The attribute is named establish as it makes something true. But I would appreciate some input
from native speakers on better words to use. Other suggestions are presume, barrier.

1

mailto:jonas.persson@iar.com

3 The disappearing observer problem
The current Observer semantic has a weakness in that potential UB in a function that would have been avoided
by an Enforced check is now subject to removal by the optimizer if the observer branch can be identified as not
occurring in a valid program.
Consider a contract_assert and how it’s expanded pseudocode for different contract semantics may look like
after the optimizer pass:

Source Enforce

bool f(int* p, int* q)
{
contract_assert(p != nullptr);

return *p == *q;
}

bool f(int* p, int* q)
{
if(not (p != nullptr)) {
invoke_handler();
die();

}
return *p == *q;

}

3.0.0.1 The unchecked variants then look like:

Remember that the dereference of pointers is undefined if the pointer is nullptr. This allows the compiler to
backtrack and remove any branch where that is true.
For an Observe based on Ignore this means the whole handler branch may be removed. For Observers based on
Promise from this proposal or the observable barrier from [P1494R2], the optimization is stopped from going
back and remove earlier branches.

Observe/Ignore Observe/Promise P1494

bool f(int* p, int* q)
{

return *p == *q;
}

bool f(int* p, int* q)
{

if(not (p != nullptr)) {
invoke_handler();
[[establish(p != nullptr)]]

}
return *p == *q;

}

bool f(int* p, int* q)
{
if(not (p != nullptr)) {
invoke_handler();
std::observable();

}
return *p == *q;

}

To see difference between Promise and std::observable we need to add another branch to the example. Since
dereferencing q gives that q is not null, the first branch will never be taken in a valid program. In Enforce mode
it may be removed.

2

Source Enforce

bool f(int* p, int* q)
{
if(q != nullptr);

puts("got null");

contract_assert(p != nullptr);

return *p == *q;
}

bool f(int* p, int* q)
{

if(not (p != nullptr)) {
invoke_handler();
die();

}
return *p == *q;

}

The same goes for Observe and Promise. But for std::observable all optimizations is blocked and the branch
must be kept.

Observe/Ignore Observe/Promise P1494/std::observable

bool f(int* p, int* q)
{

return *p == *q;
}

bool f(int* p, int* q)
{

if(not (p != nullptr)) {
invoke_handler();
[[establish(p != nullptr)]]

}

return *p == *q;
}

bool f(int* p, int* q)
{
if(q != nullptr);
puts("got null");

if(not (p != nullptr)) {
invoke_handler();
std::observable();

}

return *p == *q;
}

The same kind of effects also happens with pure Ignore checks and for pre and post conditions.

4 Ignore considered harmful
When writing code in the presence of contracts, one major benefit is that code outside contracts need not be
correct.

Defensive style Contract style

int& deref(int* p)
pre (p != nullptr)

{
if(!p) throw err;
return *p;

}

int& deref(int* p)
pre (p != nullptr)

{

return *p;
}

This will put us in one of two situations

3

1) Code is written in contract style. Compiling in Ignore mode because we are unsure if everyone follows the
contracts will cause lots of unpredictable UB when it happens.

2) Code written in defensive style. Lots of unnecessary defensive code will need to be written in case the code
is ever compiled with Ignore, and a lot of extra tests to make sure it works.

If the default unchecked mode was Promise, all code could be written in Contract style.

Ignore is still useful, but code around it must be in costly defensive style. Only code prepared for it should have
its contracts ignored.
New contracts on probation could be made as pre ignorable to make it clear in the code it is unreliable.
Further details on this is for another paper.

And as seen in previous examples Promise generates code identical to Enforce while Ignore behave differently in
many situations. Running tests with Enforce and then Ignore when releasing is unreliable.

5 Mixed mode applications
With mixed mode we mean an application linked using modules with different contract semantics.

When some modules is Ignore and some are Enforced, do we trust cross module calls? Why was that module
compiled with Ignore. With Ignore we do not know what to expect. Contracts may or may not be respected.
With Promise there is a promise that they will be followed even if no runtime check is done. Such mixed mode
applications can be considered safe.

6 Proposals
Promise semantics is generally more well behaved and let developers safely code in a cleaner contract style

Poll: Replace Ignore with Promise as the recommended unchecked mode.

An Observe with promise semantics will not risk having the handler optimized away.

Poll: Use Observe based on Promise as the recommended observe mode.

For completeness we want a new attribute similar to [[assume]]

Poll: Add a new attribute [[establish(expression)]] that declares expression to be true after but not
necessarily before

7 Conclusion
Ignore is unreliable and dangerous and should be replaced with the more reliable Promise semantics. It will
behave more in line with Enforce and it will make expectations on contract style code more clear. With this
change mixed mode builds will be well behaved as long when composed of modules using the four standardised
contract semantics. It will also allow contract mode selection to be defer to the linker with the same semantics
as if selected at compilation.

8 References
[P1494R2] S. Davis Herring. 2021-11-13. Partial program correctness. https://wg21.link/p1494r2

4

https://wg21.link/p1494r2

[P2900R5] Joshua Berne, Timur Doumler, Andrzej Krzemieński. 2024-02-15. Contracts for C++.
https://wg21.link/p2900r5

5

https://wg21.link/p2900r5

	Introduction
	Naming
	The disappearing observer problem
	Ignore considered harmful
	Mixed mode applications
	Proposals
	Conclusion
	References

