
A Relocating Swap
A memory-based swap function that does not end object lifetimes

Document #: D3239R0
Date: 2024-05-01
Project: Programming Language C++
Audience: EWG, LEWG
Reply-to: Alisdair Meredith

<ameredith1@bloomberg.net>

Contents
1 Abstract 3

2 Revision History 3

3 Introduction 4

4 Open Design Issues and FAQ 5
4.1 Why would I want to swap object representations? . 5
4.2 Should we permit swapping representation with xvalues? . 5
4.3 Which Standard Library types are safe for the swap_representations function? 5
4.4 Can I mark a type as trivially relocatable but unable to swap representations? 5
4.5 Can I mark a type as able to swap representations but not trivially relocatable? 6
4.6 What is pointer end-zap? . 6

5 Basic Design Principles 7
5.1 Create a feature for users, not just the Standard Library . 7
5.2 A formal specification is built around object lifetimes . 7
5.3 Make the minimal necessary change . 7
5.4 Behavior must be reliable . 7
5.5 Guard against accidental undefined behavior . 7
5.6 Be consistent with existing similar facilities . 7
5.7 Do not review all Standard Library types to support swap_representations 7

6 Proposed Solution and Alternative Designs 8
6.1 Proposed solution . 8
6.2 Alternative design: trivial_swap . 8
6.3 Alternative design: Pointer parameters . 8

7 Implementation to Recursively Test Members for Support 10

8 Analysis 12
8.1 Swapping values rather than representations . 12
8.2 Object lifetime and pointer end-zap . 12
8.3 Object representation vs value representation . 12
8.4 Toward a well-defined function . 12
8.5 Nested subobjects . 12
8.6 Uninitialized subobjects . 13

1

mailto:ameredith1@bloomberg.net

9 Wording 14
9.1 Specify the swap_representations function . 14

10 Appendix A: Example Implementations 15
10.1 Implement using reflection . 15
10.2 Implement using compiler magic . 17

11 Acknowledgements 18

12 References 18

2

1 Abstract
This paper proposes a new Standard Library function, swap_representations, built upon the foundation of
trivial relocatability proposed by [P2786], that can be used to enable the optimizations of std::swap similar
to those described in [P1144] by swapping the in-memory representations of two objects without ending their
lifetimes.

2 Revision History
R0 May 2024 (pre-St Louis mailing)

Initial draft of this paper.

3

3 Introduction
We can define a swap semantic for C++ in a variety of ways. For example, most of the Standard Library
algorithms are specified using the notion of swapping object values using the public interface of an object; two
lvalues can be swapped if their move constructor, move-assignment operator, and destructor are all publicly
accessible with the final state being that of move-assigning each original object to the other.

Another notion for the swap semantic might be to exchange the object representations of two objects, as defined
by the core language. Such a swap semantic, much like the object relocation facility described by [P2786], could
be implemented efficiently using memcpy-like intrinsics and need not rely on a publicly accessible interface. Note
that for certain kinds of types, swapping their object representations could produce different results to swapping
their values using the assignment operators, e.g., std::tuple<int&>, or a container using allocators that do not
propagate on swap.

In [P1144], Arthur O’Dwyer demonstrates that significant runtime benefits can be achieved in the Standard
Library algorithms for types where swapping their object representations produces the same behavior as swapping
their values. However, swapping object representations using a facility like trivial relocation runs afoul of C++’s
object lifetime rules for nontrivial types.

This paper provides the missing library primitive that can safely swap objects’ value representations without
ending the lifetime of either object or any potentially overlapping subobjects, which can serve as the foundation
for [P1144]-style optimizations in the Standard Library.

It further provides, as a pure library extension, the necessary trait to distinguish types where swapping their
value representation is not the same semantic as swapping their values — enabling the key optimization of
std::swap.

4

4 Open Design Issues and FAQ
A variety of concerns are not addressed by this paper but are described here to simplify the design review, in
case reviewers feel strongly that this paper would be incomplete until some of or all these concerns are addressed.
FAQ are also answered here to provide further clarity.

4.1 Why would I want to swap object representations?
Swapping object representations is a low level operation that is useful when writing data structures that need
the full efficiency provided by the hardware a program is running on. It is a primitive semantic at the level of
the abstract machine, that is expected to be highly optimizable when it can be reduced to operations on raw
memory, although efficiency and semantics are separate properties.

4.2 Should we permit swapping representation with xvalues?
We are following the design of std::swap for now, but this is a lower-level facility.

4.3 Which Standard Library types are safe for the swap_representations function?
The Standard Library specification says nothing — or as little as possible — about the implementation of the
types that it specifies, so no guarantees are made regarding which types in the Standard Library users can safely
pass to trivially_swap.

The current [P2786] proposal similarly says nothing about which types in the Standard Library can be trivially
relocated, but even if we were to explicitly specify a set of library types that must be trivially relocatable, that
would be insufficient to guarantee that such types do not have laundry and thus may safely swap representations.
Similarly, no guarantees are made that swapping representations is consistent with swapping values.

We expect that something must be said, even if only to explicitly make all such concerns a choice deferred to
implementers’ quality of implementation (QoI). We would expect a more significant follow-up paper to review the
whole library and to make specific guarantees on a subset of types that do — or do not — offer such guarantees.

[P3262R0] is an initial draft of such a paper.

4.3.1 For what types can I swap representations but not values?

We can swap representations, but not values, for types without public destructors, move constructors, or assign-
ment operators, and for immovable types.

4.3.2 For what types can I swap values but not representations?

We can swap values, but not representations, for types in which move-assignment produces a different result to
move-construction.

4.3.3 For what types can I swap neither representations nor values?

We can swap neither representations nor values for types with data members that cannot be replaced, including
const-qualified nonstatic data members or nonstatic data members that are references. Note that a swap for
values may still be defined that does not change these members, such as swap for tuple<T&> that swaps the
referenced elements, but such semantics strictly go beyond swapping values.

4.4 Can I mark a type as trivially relocatable but unable to swap representations?
No. We have no use cases for such an annotation, and the cost of providing a further annotation to the Core
language to achieve such a minor effect outweighs any desire to do so.

Nothing would prevent a follow-up paper adding such functionality if it were deemed essential, but absent a
strong motivating use case, this proposal’s authors will spend no further time on this question.

5

4.5 Can I mark a type as able to swap representations but not trivially relocatable?
No. We have no use cases for such an annotation, and the cost of providing a further annotation to the Core
language to achieve such a minor effect outweighs any desire to do so.

Nothing would prevent a follow-up paper adding such functionality if it were deemed essential, but absent a
strong motivating use case, this proposal’s authors will spend no further time on this question.

4.6 What is pointer end-zap?
Pointer end-zap is the term used within WG21 to describe the effect of ending an object’s lifetime on pointers
and references to that object. In particular, all pointers to the original object at the address denoted by those
pointers become invalid, meaning that doing anything but ending their lifetime or assigning them a new valid
pointer value is undefined behavior (UB). In particular, even if a new object is constructed at the given address,
deferencing those old pointers or even comparing or copying them — such as passing by-value into a function
call — remains UB.

Mitigating some of the concerns arising from the end-zap behavior in C++26 has been attempted, notably in
paper [P2414R2]; however, replacing nontrivial object representations by overwriting their memory remains a
problem unless we create a new feature in the Standard to enable such behavior, such as a Library function with
“magic” wording for the compiler.

6

5 Basic Design Principles
5.1 Create a feature for users, not just the Standard Library
Swapping object representations is often needed for data structures that manage their elements in contiguous
storage or in some other location that is not a node at the end of a pointer.

However, it is also a sharp tool that is not expected to see much use other than optimizing the internal manage-
ment of data structures.

5.2 A formal specification is built around object lifetimes
C++ has a well-specified object model that is important to optimizers and analysis tools alike. Such tools
must reason about object lifetimes and, importantly, minimize the doubt created for developers regarding that
reasoning leading to false positives or false negatives when seeking to optimize or alert users.

5.3 Make the minimal necessary change
Small features tend to be more composable, with fewer constraints restricting their use and applicability. In
particular, we do not anticipate any need to add new vocabulary to the Core language to deliver this feature.

5.4 Behavior must be reliable
No freedom for QoI in semantics is an important quality that builds on the well-specified object model.

5.5 Guard against accidental undefined behavior
A Mandates: clause will restrict the new Library API to support only types that would produce well-defined
behavior.

5.6 Be consistent with existing similar facilities
The Standard Library specification historically uses type traits and “magic” functions that are understood by
the compiler for this kind of feature. Similarly, we should follow existing naming conventions where they make
sense.

5.7 Do not review all Standard Library types to support swap_representations
The Standard Library is huge, and specifying which types must support trivial relocation — and additionally
support swap_representations — is a task left to a follow-up paper, [P3262R0], assuming the Standard Library
groups feel such specification is needed.

Leaving such choices as a QoI concern for implementers should suffice for the initial release, and we will need
to canvas vendors to determine which types can support explicit guarantees in the future without invalidating
their implementations. Note that a large overlap occurs between which library types support trivial relocation
and which support optimizing swap by calling swap_representations, but the mapping is not one to one, e.g.,
std::tuple<int &>.

Note that while our proposal should just do the right thing for std::tuple without any work from Standard
Library implementers, we would still need to update the specification to say that.

7

6 Proposed Solution and Alternative Designs
We offer our proposed solution, and for reference, we include some alternative designs for the library interface
that were considered but rejected as we developed our proposed solution.

6.1 Proposed solution
We propose a new function for the Standard Library, swap_representations, that exchanges — passed by
reference just like std::swap— the value representations of two objects of the same type. This is a “magic” library
function that achieves the postcondition without ending the lifetime of either object. Note that by swapping the
value representation rather than the object representation, we intend to support potentially overlapping empty
subobjects since empty types have no value representation, i.e., a value representation of zero bytes, regardless
of the size of their object representation. Also note that no empty types are mentioned in the Core language,
only objects of zero bytes.

To maintain well-defined behavior in the C++ object model, we mandate that the type of the swapped objects
must be trivially relocatable, as proposed by [P2786].

As we are passing references, it would be too easy to accidentally swap two derived objects of different type that
share a polymorphic base class. This operation is not a problem when swapping representations of complete
objects, but will lead to undefined behavior in the case of swapping base classes with different vtables. Hence, we
will require a compile-time force parameter to allow use with polymorphic types when the caller knows they are
dealing with complete types, such as elements in a container, but that defaults to false producing a diagnosable
error otherwise.

Naturally, such a low-level facility that is close to the compiler should be supported in a freestanding implemen-
tation. Our proposed solution has no dependencies on dynamic memory, no exceptions, and no other concerns
that a freestanding implementation might raise.

In addition we provide a new user-customizable type trait, swap_uses_value_representations_v, that indi-
cates when std::swap can safely use the swap_representations function as an optimized implementation
without changing the observable behavior of the program. This trait is a pure library extension, and does not
rely on any further compiler work, or “magic”, beyond an implementation of both [P2786] and [P2996R2].

6.2 Alternative design: trivial_swap
Since operations at the level of moving bytes around memory are often defined only for types with trivial
properties, we considered including the term trivial in the proposed function name. After consideration, we
decided that such a name too literally addressed the notion of matching trivial to memory operations and opted
for a simple, clear name.

Among the names we considered were (listed alphabetically)

— trivial_swap
— trivially_relocate_swap
— trivially_swap
— trivially_swap_as_relocate
— trivially_swap_by_relocate
— trivially_swap_representations
— trivially_swap_reps
— trivially_swap_using_relocate
— trivially_swap_with_relocate

6.3 Alternative design: Pointer parameters
Since we are performing low-level operations that are essentially compiler primitives, we considered that passing
arguments as pointers might be more conventional.

8

template <class T>
void swap_representations(T* a, T* b);

In the end, we decided that the expected user interface should look more like std::swap.

9

7 Implementation to Recursively Test Members for Support
It is relatively straightforward to implement a trait that queries all nonstatic data members and base classes to
verify that all support the trait and that allows users to opt out by specializing the trait for their types that do
not follow the expected library semantic that swap and swap_representations produce identical results.

Assumptions that feed our algorithm include the following.

— Types that are not trivially relocatable are not supported due to the Mandates specification for the
swap_representations function.

— Types with nonstatic data members of reference type need explicit handling because types with such
members that also support assignment typically assign through reference members rather than rebinding.

— Types with const-qualified nonstatic data members need special handling because types with such members
that also support assignment typically ignore their const members rather than trying to change their value.

— Polymorphic types need special handling because swapping representations is going to swap their vtables,
which is not the behavior expected from std::swap, but that is a concern only for the type of the complete
object; data members are always of a most-derived type.

— Types that comprise types for which this trait is false, either implicitly or because it has been deliberately
specialized, need special handling.

We do not call out types with virtual bases since they can never be trivially relocatable according [P2786] and
thus can never pass the Mandates for the swap_representations function.

Implementing this trait without any compiler magic is possible using just the reflection facilities proposed by
[P2996R2]. We present a sample implementation, and a primitive test driver for this trait implementation can
be found on Godbolt Compiler Explorer (https://godbolt.org/z/hP34YdxG9):
template <class T>
constexpr bool swap_uses_value_representations_v = !std::is_polymorphic_v<T> and [] {

if (!is_trivially_relocatable_v<T> or std::is_const_v<T>) {
// References are not trivially relocatable unless they are nonstatic
// data members, so they are covered by the is_trivially_relocatable_v test.
return false;

}

if (std::is_class_v<T>) {
for (std::meta::info mem : subobjects_of(^T)) {

std::meta::info ty = type_of(mem);
if (!test_type(^swap_uses_value_representations_v, ty)) {

// self-referential to support customization by specialized this
// variable template
return false;

}
}

}
return true;

}();

Note that we have chosen to not include is_swappable_v<T> in any part of this algorithm since the intent is to
determine that the result of swapping two objects is the same as swapping their value representation; if it is not
possible to swap the objects, then the question does not arise. However, an alternative formulation might note
that reference types and const-qualified types are not swappable and that users have no ability to customize
that situation. Hence, we might consider a more abstract approach and simply verify that each nonstatic data
member and base class is swappable.

Note that with this specification, a well-written class type should rarely need to specialize this trait. Let’s
consider the examples we have given from the Standard Library. std::tuple<int &> should be both triv-
ially relocatable and unable to optimize std::swap for existing implementations without further work, while

10

https://godbolt.org/z/hP34YdxG9

std::tuple<int> should be both trivially relocatable and swap optimized without even marking the class tem-
plate as trivially_relocatable. Similarly, a natural implementation of std::pmr::polymorphic_allocator
will internally store either a reference to a std::pmr::memory_resource or a const pointer (not a pointer-to-
const), implicitly deleting the assignment operators without the need to explicitly delete them. In doing so, the
implementation will disable the swap optimization while naturally being trivially relocatable, so we have no need
to use the mark-up from P2786, and the primary template of all the pmr containers will produce the correct
behavior too since the trait tests the members including the allocator data member. Finally, std::list is
trivially relocatable only if the implementation allocates the sentinel node rather than storing it in a data mem-
ber. As the swap optimization trait tests for trivial relocatability, it should pick up the correct default for both
implementation strategies without a need to explicitly specialize the trait. Note that for any container implemen-
tation to be trivially relocatable, it will need to use the trivially_relocatable markup from P2786. Finally,
note that that all three types, apart from the nontrivially relocatable std::list implementation, support the
swap_representations function directly.

Design note: We have chosen to use specializing the trait itself — or at least a variable template denoting the
trait — as the preferred form of user customization. An alternative might be to use some other method that is
similar to how we customize detecting allocator support by asking users to supply an identifier in their class if
they wish to support — or in this case, to disable support for — a particular library semantic.

11

8 Analysis
Here we analyse the problems that the C++ abstract machine raises that mean we cannot simply swap the
object representations of any two objects that bind to references of the same type.

8.1 Swapping values rather than representations
std::swap exchanges “values” that are essentially defined by the move constructor and move-assignment oper-
ator. Using operations to directly swap the bytes swaps the object representations, which are not always the
same thing.

8.2 Object lifetime and pointer end-zap
An object’s lifetime ends when its storage is released or is used to store another object. When its lifetime ends,
all pointers and references to that object are invalidated, which is colloquially known as pointer end-zap.

Special rules dictate when an object can be replaced directly without ending its lifetime and triggering pointer
end-zap. Notably, objects can be transparently replaced by another object of the same type as long as the
object being replaced is not a const-qualified complete object or a potentially overlapping subobject. Similarly,
a member subobject can be replaced by constructing a new object of exactly the same type in its place, with
problems arising only if that object genuinely does overlap with another member subobject.

8.3 Object representation vs value representation
The object representation of an object is the set of bytes the compiler uses to store that object. To allow for
alignment, this set of bytes is often larger than simply adding up all the sizes of that object’s member subobjects
and introduces padding bytes. The value representation of an object is just those nonpadding bytes that store
information. For example, an empty class has an object representation of at least one byte, which is important
for several reasons, one of which is to correctly represent arrays of empty types. On the other hand, the value
representation of an empty type is zero bytes, i.e., there is no value representation.

8.4 Toward a well-defined function
If we specify a new library function to swap the value representations (rather than the object representations)
of two objects of the same type, we expect to preserve the properties that matter to the abstract machine that
defines C++. In particular, since empty types have no value representation, we can safely exchange their value
representations even when they are actually overlapping subobjects because this new swap function would be a
no-op. Not touching the padding bytes is “magic” needed by the implementation to preserve all the outstanding
guarantees.

8.5 Nested subobjects
A complete object can store a variety of nested subobjects. The obvious case is all of its member subobjects, but
nested subobjects can be created in other ways too. For example, if a class has a nonstatic data member that is
an array of std::byte, a nested subobject with dynamic storage duration can be created in that storage.

Any new function that swaps value representations needs to support swapping two complete objects that might
have such nested subobjects created within their storage. The value representation of the array of std::byte is
all those bytes, which includes the full object representation of any nested subobjects. The easiest specification
would simply invoke pointer end-zap on all such nested subobjects, starting the lifetime of new nested subobjects
after the complete objects’ value representations have been exchanged. A stronger specification would not invoke
pointer end-zap if both complete objects are storing nested subojects of the same complete object type.

12

8.6 Uninitialized subobjects
By exchanging just the bytes of the value representation, we avoid touching bytes that have indeterminate
values, which would be UB. However, if an object comprises any uninitialized member subobjects, then the same
issue arises. We note that special dispensation is given to reading and writing raw memory through pointers
to unsigned char or std::byte, and we intend to channel a similar dispensation, without addressing specific
implementation details in the formal wording.

13

9 Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N4981], the latest draft at
the time of writing, with [P2786] applied.

9.1 Specify the swap_representations function
9.1.1 swap_representations

Add to the <memory> header synopsis in 20.2.2 [memory.syn]p3:

20.2.2 [memory.syn] Header <memory> synopsis

// 20.2.6, explicit lifetime management template<class T>
T* start_lifetime_as(void* p) noexcept; // freestanding

template<class T>
const T* start_lifetime_as(const void* p) noexcept; // freestanding

template<class T>
volatile T* start_lifetime_as(volatile void* p) noexcept; // freestanding

template<class T>
const volatile T* start_lifetime_as(const volatile void* p) noexcept; // freestanding

template<class T>
T* start_lifetime_as_array(void* p, size_t n) noexcept; // freestanding

template<class T>
const T* start_lifetime_as_array(const void* p, size_t n) noexcept; // freestanding

template<class T>
volatile T* start_lifetime_as_array(volatile void* p, size_t n) noexcept; // freestanding

template<class T>
const volatile T* start_lifetime_as_array(const volatile void* p,

size_t n) noexcept; // freestanding

template <bool force, class T>
void swap_representations(T& a, T& b); // freestanding

template <class T>
T* trivially_relocate(T* begin, T* end, T* new_location); // freestanding

20.2.6 [obj.lifetime] Explicit lifetime management

template <bool force, class T>
void swap_representations(T& a, T& b);

1 Mandates: T is a complete object type, and is_trivially_relocatable_v<T> is true. If is_polymorphic_v<T>
is true then force is true.

2 Preconditions: If T is a polymorphic type, then T is the most derived type for the objects a and b.
3 Postconditions: a has the value representation that b had prior to this function call; b has the value representation

that a had prior the this function call.
4 Throws: Nothing.
5 [Note: A likely implementation will use compiler-specific functionality that simply swaps the bytes comprising

the value representation of both objects without affecting their lifetimes. —end note]

14

https://wg21.link/memory.syn
https://wg21.link/memory.syn
https://wg21.link/obj.lifetime

10 Appendix A: Example Implementations
10.1 Implement using reflection
Dan Katz, one of the authors behind the reflection proposal [P2996R2], has provided an implementation of a
swap_representations function that can deliver most of the semantics without resorting to compiler magic,
but that is not expected to provide the efficiency of a fully optimized implementation that leans entirely into
compiler magic.
#include <experimental/meta>

#include <print>
#include <tuple>
#include <type_traits>

namespace __impl {
template<auto... vals>
struct replicator_type {
template<typename F>

constexpr void operator>>(F body) const {
(body.template operator()<vals>(), ...);

}
};

template<auto... vals>
replicator_type<vals...> replicator = {};

} // namespace __impl

template<typename R>
consteval auto expand(R range) {
std::vector<std::meta::info> args;
for (auto r : range) {

args.push_back(std::meta::reflect_value(r));
}
return substitute(^__impl::replicator, args);

}

template <typename T>
void do_swap_representations(T& lhs, T& rhs) {
// This implementation cannot rebind references, and does not handle const
// data members --- still need to decide whether we support the latter

if constexpr (std::is_class_v<T>) {
// This implementation ensures that empty types do nothing
[: expand(bases_of(^T)) :] >> [&]<auto base> {
using Base = [:type_of(base):];
do_swap_representations<Base>((Base &)lhs, (Base &)rhs);

};

[: expand(nonstatic_data_members_of(^T)) :] >> [&]<auto mem>{
do_swap_representations<[:type_of(mem):]>(lhs.[:mem:], rhs.[:mem:]);

};
}
else if constexpr (std::is_array_v<T>) {

static_assert(0 < std::rank_v<T>, "cannot swap arrays of unknown bound");

15

using MemT = std::decay_t<decltype(lhs[0])>;
[:expand([] {

std::vector<size_t> result;
for (size_t idx = 0; idx < std::size(result); ++idx)
result.push_back(idx);

return result;
}()):] >> [&]<size_t Idx> {

do_swap_representations<MemT>(lhs[Idx], rhs[Idx]);
};

}
else if constexpr (std::is_scalar_v<T> or std::is_union_v<T>) {

// correct for unions without tail padding, including swapping active element
// will need compiler magic to eliminate tail padding though
// language ensures to not overwrite tail padding for scalars
// May be broken if union overloads `operator=`
T intrm = lhs;
lhs = rhs;
rhs = intrm;

}
else if constexpr (std::is_reference_v<T>) {

static_assert(false, "Does not yet rebind references");
}
else {

static_assert(false, "Unexpected type category");
}

}

template <bool enable = true, class T>
void swap_representations(T& lhs, T& rhs) {

// need to refactor the API so the user can force on the first argument
// and deduce the rest
static_assert(enable || !std::is_polymorphic_v<T>,

"Use swap_representations<true> to force swapping a polymorphic type");

do_swap_representations(lhs, rhs);
}

int main() {
std::tuple<int, int, int> a = {1, 2, 3}, b = {4, 5, 6};
std::println("a: <{}, {}, {}>", get<0>(a), get<1>(a), get<2>(a));
std::println("b: <{}, {}, {}>", get<0>(b), get<1>(b), get<2>(b));
std::println("");

swap_representations(a, b);
std::println("a: <{}, {}, {}>", get<0>(a), get<1>(a), get<2>(a));
std::println("b: <{}, {}, {}>", get<0>(b), get<1>(b), get<2>(b));
std::println("");

int arr0[] = {1, 2, 3}, arr1[] = {3, 2, 1};
std::println("arr0: <{}, {}, {}>", arr0[0], arr0[1], arr0[2]);
std::println("arr1: <{}, {}, {}>", arr1[0], arr1[1], arr1[2]);
std::println("");

16

swap_representations(arr0, arr1);
std::println("arr0: <{}, {}, {}>", arr0[0], arr0[1], arr0[2]);
std::println("arr1: <{}, {}, {}>", arr1[0], arr1[1], arr1[2]);

}

10.2 Implement using compiler magic
Corentin Jabot has provided a highly optimized version of this function in his Clang branch for trivial relocation
that would be available on Godbolt before the St Louis meeting.

This implementation takes advantage of Clang intrinsics to determine the footprint of an object without any
tail padding, and swaps the bytes of the two value representations. This omits swapping tail padding, but does
swap internal padding, which is harmless but not something a non-intrinsic operation would be allowed to do.

We do not believe the Clang middle and back ends track the active member of a union in a form that would
cause this to be UB in that implementation, but need to verify with experts in those parts of the tool chain to
confirm that no further hints need to be passed lower into the compiler in such cases.

17

11 Acknowledgements
Thanks to Michael Park for the pandoc-based framework used to transform this document’s source from
Markdown.

Special thanks to Dan Katz, not only for the help figuring out the reflection API, but also for providing an
implementation on Godbolt Compiler Explorer that we can test against, and several metafunctions presented in
this paper!

Thanks to Brian Bi and Joshua Berne for reviews of early drafts of this paper, especially addressing concerns
with the C++ object model and the wording.

Thanks to Corentin Jabot for an implementation of the trivial relocation language facility that underpins this
proposal, and the optimized implementation of the proposed library API for Clang.

Thanks to Arthur O‘Dwyer for doing all the initial work to demonstrate the value of this optimization, even
though we have different ideas for how that optimization should be made available to our users.

And special thanks to Matt Godbolt for his amazing Compiler Explorer tool that makes possible so much of the
R&D that goes into papers like this.

12 References
[N4981] Thomas Köppe. 2024-04-16. Working Draft, Programming Languages — C++.

https://wg21.link/n4981

[P1144] Arthur O’Dwyer. std::is_trivially_relocatable.
https://wg21.link/p1144

[P2414R2] Paul E. McKenney, Maged Michael, Jens Maurer, Peter Sewell, Martin Uecker, Hans Boehm, Hubert
Tong, Niall Douglas, Thomas Rodgers, Will Deacon, Michael Wong, David Goldblatt, Kostya Serebryany,
and Anthony Williams. 2023-12-17. Pointer lifetime-end zap proposed solutions.
https://wg21.link/p2414r2

[P2786] Alisdair Meredith, Mungo Gill. Trivial Relocatability For C++26.
https://wg21.link/p2786

[P2996R2] Barry Revzin, Wyatt Childers, Peter Dimov, Andrew Sutton, Faisal Vali, Daveed Vandevoorde, Dan
Katz. 2024-02-15. Reflection for C++26.
https://wg21.link/p2996r2

[P3262R0] Alisdair Meredith. Specifying Class Properties.
https://wg21.link/p3262r0

18

https://wg21.link/n4981
https://wg21.link/p1144
https://wg21.link/p2414r2
https://wg21.link/p2786
https://wg21.link/p2996r2
https://wg21.link/p3262r0

	Abstract
	Revision History
	Introduction
	Open Design Issues and FAQ
	Why would I want to swap object representations?
	Should we permit swapping representation with xvalues?
	Which Standard Library types are safe for the swap_representations function?
	Can I mark a type as trivially relocatable but unable to swap representations?
	Can I mark a type as able to swap representations but not trivially relocatable?
	What is pointer end-zap?

	Basic Design Principles
	Create a feature for users, not just the Standard Library
	A formal specification is built around object lifetimes
	Make the minimal necessary change
	Behavior must be reliable
	Guard against accidental undefined behavior
	Be consistent with existing similar facilities
	Do not review all Standard Library types to support swap_representations

	Proposed Solution and Alternative Designs
	Proposed solution
	Alternative design: trivial_swap
	Alternative design: Pointer parameters

	Implementation to Recursively Test Members for Support
	Analysis
	Swapping values rather than representations
	Object lifetime and pointer end-zap
	Object representation vs value representation
	Toward a well-defined function
	Nested subobjects
	Uninitialized subobjects

	Wording
	Specify the swap_representations function

	Appendix A: Example Implementations
	Implement using reflection
	Implement using compiler magic

	Acknowledgements
	References

