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1 Abstract
Many types in C++ cannot be trivially moved or destroyed but do support trivially moving an object from one
location to another by copying its bits — an operation known as trivial relocation. Some types even support
bitwise swapping, which requires replacing the objects passed to the swap function, without violating any object
invariants. Optimizing containers to take advantage of this property of a type is already in widespread use
throughout the industry but is undefined behavior as far as the language is concerned. This paper provides a
mechanism to annotate types as having the appropriate properties to be eligible for these optimizations, along
with library interfaces to make use of them in a well-defined manner.
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2 Revision History
R8: October 2024 (pre-Wrocław mailing)

— Extracted Document Conventions to above the Introduction
— Added Basic Ideas, a higher-level introduction to the new features
— Listed example types for the different type categories defined by this paper
— Corrected implementation of several example functions
— Extended the FAQ

— What happens if a relocate operation throws?
— Why is there no is_trivially_replaceable trait?
— Is it UB to mark a nonconforming type as trivially relocatable?
— Is it UB to mark a nonconforming type as replaceable?

— Explained how to apply the new features to optimize vectors

R7: September 2024 (midterm mailing)
— Significant redrafting since [P2786R6] to better address EWG and LEWG concerns
— Simplified presentation and discussion of trivial relocatability (for detailed history, consult [P2786R6])
— Integrated discussion of swap; the present paper supersedes [P3239R0]
— Behavior changes since [P2786R6]

— User-provided move assignment now prevents a type from being implicitly trivially relocatable
— The contextual keyword

— gets a new name, memberwise_trivially_relocatable, to better reflect revised semantics
— is opt-in only
— deduces relocatability on bases and members

— No predicate follows the contextual keyword, so no mechanism for opting out is present
— A new relocate function additionally supports nontrivial types and constant evaluation

— Behavior changes since [P3239R0]
— Clarifies that trivial swappability is based on being replaceable and trivially relocatable
— Proposes a new contextual keyword, memberwise_replaceable
— Proposes optimizing std::swap, using the new properties, and the swap_value_representations

function

R1–6: January 2023 – April 2024
Early versions of this paper were careful to include comparison and contrast with other papers in this space.
That progress is archived by [P2786R6].

The evolution groups requested a clean draft that presents just our proposal and integrates our follow-up papers
such that a single coherent design is presented, and this revision, R7, is the response to that request.
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3 Document Conventions
3.1 Typography
Throughout this paper, a bold typeface will be used for terms defined herein and bold italicized typeface
for terms of art defined herein; the proposed wording, however, will use the conventions of the Standard.

3.2 Definitions
We define a relocation operation of a source object as one that ends the lifetime of that object and starts the
lifetime of a new object at a new location. Importantly, the destructor is not necessarily run by a relocation
operation. For types in which move construction and destruction are supported, a relocation can be accom-
plished by constructing an object in the new location from an xvalue referring to the source object, followed by
invoking the destructor of the source object.

We define a trivial relocation operation as a relocation operation accomplished by performing a bitwise
copy of its object representation to a new memory location that ends the lifetime of that source object — just as
if that (source) object’s storage were used by another object (6.7.3 [basic.life]p5) — and starts the life of a new
object at the new location. Importantly, nothing else is done to the source object; in particular, its destructor
is not run. This operation will typically be semantically equivalent to a nontrivial relocation operation
performed via move construction and destruction (though exceptions, while not encouraged, are not expressly
forbidden).

We define replacement of a target object by a source object as destroying the target object immediately followed
by move construction into the location of the target object from the source object. For many types, this operation
is semantically equivalent to a move-assignment operation from the source object to the target object.

3.3 Core-language additions
We propose a new Core-language definition for a trivially relocatable type. This new definition is inspired
by the recursive nature and handling of special member functions used in the definition of a trivially copyable
type. A trivially relocatable type is a scalar type, a trivially relocatable class, an array of such types, or a
cv-qualified version of such a type. A class will be implicitly trivially relocatable if all its bases and members
are trivially relocatable and none of its eligible special member functions are user provided; a contextual
keyword will signify that a class may still be trivially relocatable even if it has user-provided special member
functions.

We similarly propose a new Core-language definition for a replaceable type in which a class will be a replaceable
class if all its bases and members are replaceable and none of its relevant special member functions are user
provided; a contextual keyword will signify that a class may still be a replaceable class, even if it has those
user-provided special member functions.

Because replaceability is explicitly about the equivalence of assignment with destruction followed by construc-
tion, we do not decide that a type is implicitly replaceable when the special member functions selected for those
operations are user provided.

3.4 Library additions
The Standard Library APIs to support trivial relocation comprise

— a type trait to detect trivial relocatability
— a function, trivially_relocate, that performs relocation on a range of objects by moving their bytes

(similarly to memmove) while starting the lifetime of the destination objects and ending the lifetime of the
source objects

— a user-facing function, relocate, that emulates relocation by using the move-and-destroy idiom for types
that are not trivially relocatable and delegates to trivially_relocate for types that are trivially
relocatable

6
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To support common use cases, both trivially_relocate and relocate are specified to support overlapping
ranges.

Further, to take advantage of the ability to specify that a type is replaceable, we propose the following additional
changes to Standard Library APIs:

— A type trait to detect replaceability
— A new magic function, swap_value_representations, that swaps just the value representations of the

members of objects without impacting the dynamic types of the complete objects, typically by copying a
range of bytes that excludes the vtable pointers and tail padding bytes

— An update to the primary std::swap template to use replacement optimization when it is supported

Finally, we propose modifications to Standard Library wording to describe when Standard Library types are
allowed and expected to have various properties, including trivial relocatability and replaceability.

7



4 Introduction
Containers in C++, in particular those like std::vector and std::deque that manage objects within a range
of continuous storage, live and die by the efficiency with which they can move objects around. One of the most
common fundamental steps in many of the operations these types perform is that of relocation — taking an
element at one location in memory and creating a new element at a different location in memory with the same
value and then destroying that original value.

Many frequently used libraries have long recognized that, for many types, the two nontrivial steps of move
construction and destruction often combine into a single operation that can be accomplished by a simple bitwise
copy followed by discarding the source object instead of evaluating its destructor. Much of the work a move
constructor might do to the source object, such as setting pointers to owned data to nullptr, is done only
to make sure the destructor that will eventually run knows that no data is present that it is still responsible
for freeing. By taking advantage of the knowledge that certain types can be relocated by simply copying bits,
complex operations that can involve the invocation of many user-provided special members functions can be
replaced by single calls to memcpy, realizing huge benefits in performance.

The problem, of course, is that moving objects in this fashion that are not trivially copyable violates the C++
object model and is undefined behavior. In this paper, we propose a mechanism to fix that problem.

— Types with no user-provided special member functions are identified as trivially relocatable based on
whether their bases and nonstatic data members are trivially relocatable.

— Users are able to further identify those types whose user-provided special member functions compound into
a trivial operation by marking those types with a new class specifier, memberwise_trivially_relocatable.

— The Standard Library then provides tools to safely perform relocation operations, both trivial and non-
trivial.

Beyond containers, algorithms in C++ also build on a related basic operation, std::swap. While a first glance
might imply that std::swap could be optimized by simply performing a series of relocation operations, such an
approach would have major semantic differences from the std::swap we have today. Relocation is, by definition,
about creating one object while destroying another at the same time. std::swap, however, is an operation
composed of construction of a temporary and move assignment to the function’s operands and has no natural
and semantically equivalent definition in terms of relocation.

To solve this problem with swap, we identify the property that types require to have a std::swap implementation
with the same semantics yet be implemented in terms of just move construction and destruction. That property
is replaceability; i.e., a type declares that assignment from a source object is semantically equivalent to
destruction followed by move construction from that source object. We will show that the class of types that
have both trivial relocatability and replaceability is exactly the class of types for which we can safely
perform a swap operation by exchanging the bytes that make up the value representations of two objects.

To incorporate this concept of replaceability into the language, we propose further additional changes.

— Types are implicitly recursively replaceable if all their members and bases are.
— Through the use of the memberwise_replaceable specifier on a class, users can specify that their user-

provided constructors, destructors, and assignment operators still satisfy the appropriate equivalence spec-
ified by being replaceable as long as all members and bases also have this property.

— A new utility function, std::swap_value_representations, is provided for swapping the bytes of a type
that is both trivially relocatable and replaceable.

— The standard template std::swap is updated to make use of bitwise swapping when invoked with types
that have both properties.

Put together, we hope this proposal provides a complete picture of how to incorporate into the C++ Standard,
in an understandable and effective manner, bitwise operations that are already performed by many libraries in
the industry.

8



5 Basic Ideas
This paper introduces two new complementary but independent notions into C++.

5.1 Trivial relocatability
Relocation is the act of moving an object from one memory location to another and is typically achieved by
calling the move constructor to make a new object at the new location followed by the destructor on the original
object.

A type is trivially relocatable if it can be relocated by copying the bytes of its object representation from the old
location to the new and the lifetime of the original object can be ended without running its destructor. However,
C++ object lifetimes do not currently permit types (with the exception of those few types that meet the strict
requirements of trivially copyability) to be relocated by means of byte copying (trivial relocation).

If the object model were to allow it, most C++ types could safely be trivially relocated. The two known
exceptions are types that maintain an internal pointer to a data member and types that register their presence
in an external registry that must point back to the object.

This paper proposes adding

— a Core-language definition for trivially relocatable types
— a way to explicitly mark types trivially relocatable when that cannot be deduced by a compiler
— a type trait to report whether a type is trivially relocatable
— a “compiler-magic” function to perform trivial relocation, respecting object lifetimes
— a user-facing relocate function that can be safely used with types that are not trivially relocatable

All the features of trivial relocation have decades of experience in which code has relied on compilers not
reacting to the use of undefined behavior when copying nontrivial types breaks the C++ object lifetime rules.

5.2 Replaceability
Replaceability is a semantic property of a type, where move assignment is isomorphic to destroy then move-
construct. Just like in trivial relocatability, a compiler cannot deduce whether a type is replaceable if the
user provides a move-assignment operator, move constructor, or destructor without extra guidance from the
user.

In many cases, a library would like to require or assume replaceability, such as when moving elements around
a std::vector when inserting or erasing elements.

One important place where knowledge of replaceability can lead to performance improvements is in the imple-
mentation of std::swap, which is one of the most widely used library functions and is an implementation detail
of many standard algorithms.

If a type is both replaceable and trivially relocatable, then its swap operation could be simplified to swapping
the value representations of two objects. Note that the value representation is generally a subset of the bytes in
the object representation, and the difference matters when trying to call swap on potentially overlapping data
members in a class, which is discussed in more detail later in this paper.

This paper proposes adding

— a Core-language definition for replaceable types
— a way to mark types as replaceable if the compiler cannot deduce that property
— a type trait to report whether a type is replaceable
— a “compiler-magic” function to swap the value representation of two trivially relocatable, replaceable

objects

and then requiring std::swap functions to use this optimization for such replaceable types.
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5.3 Examples of trivially relocatable and replaceable types
If we assume the default template arguments, we would expect the following Standard Library types to be both
trivially relocatable and replaceable:

— std::shared_ptr
— std::future
— std::vector

We would expect the following types to be both trivially relocatable and replaceable if all their template
arguments are both trivially relocatable and replaceable:

— std::pair
— std::tuple

5.4 Examples of trivially relocatable types that are not replaceable
A variety of types, while trivially relocatable, do not maintain the invariants of replaceability:

— std::tuple<T &>
— std::pmr containers
— Any class with a const data member

In many contexts, relocation of such types is desirable, especially in user-defined data structures beyond the
reach of the Standard Library.

5.5 Examples of replaceable types that are not trivially relocatable
The main example in this category is Standard Library containers with debug iterators that track their container
with a back-pointer or some other registry, although we can easily imagine user-supplied types with similar
constraints. Note that some implementations of std::basic_string fall into this category, where the short
string optimization maintains a pointer to its internal short buffer.

This category of types would meet preconditions for algorithms in which the semantics of replaceability are
important, and they might be enforced by the equivalent of Mandates, Constraints, or Preconditions in users’
libraries.

5.6 Examples of Standard Library types that must defer to the implementation
We would expect the quality of implementation would decide whether the following types are trivially relo-
catable and replaceable or are just replaceable:

— std::basic_string, depending on whether the short string optimization maintains an internal pointer
— std::list, depending on whether the sentinel node is a nonstatic data member

5.7 Independent features
From the variety of types and usage examples above, we see that while trivial relocation and replacement
are often used together, each has important use cases and neither can be built on top of the other.
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6 Technical Background
Some very specific uses of terminology from the C++ Standard are important to understand when reading this
proposal and are quickly summarized here.

For decades, C++ developers have been optimizing low-level data structures, such as their own vector-like
types, by byte-wise copying objects from one location to another, even though doing so is often UB; see earlier
papers1 for rationale.

Earlier revisions of this paper initially proposed language and library extensions, termed trivial relocation, to
make writing such code well defined and was forwarded to Core where it received a strong review that challenged
our assumptions about copying bytes. From the perspective of the C++ abstract machine, we should not be
making assumptions about in-memory representations — that is the compiler’s job — and should limit ourselves
to copying the object representation, leaving the compiler itself to optimize copying and moving the object
representations to efficient memory copying operations.

The Core review proceeded in parallel to the LEWG review, which subsequently sent the proposal back to EWG,
asking for a more complete handling of bitwise operations, notably optimizations for byte-wise swaps. While
single swaps are unlikely to see a realistic impact on performance, the many algorithms in the Standard Library,
such as std::rotate, that build on swap as a foundational operation increased interest in seeing swap benefit
from these efforts.

Implementing std::swap as a series of trivial relocation operations, however, must contend with the fact
that such operations will end the lifetimes of both parameters and create new objects in their place. In general,
this is incorrect for any type for which such destruction and recreation would not create a new object with the
same invariants, such as any type with a const or reference member, even though many such types could be
trivially relocatable.

Even for types for which recreating new objects in place would not violate the invariants of the old objects, such
as any replaceable type, our design must address complexities in the Core language. In general, turning a swap
operation into a sequence of trivial relocation operations is not possible due to the Standard’s specification
for transparent replacement, which handles the case of potentially overlapping members in a class, such as when
the compiler optimizes layout for empty base classes or members annotated [[no_unique_address]]. Since this
concern is not related to the type of the arguments but rather to the specific objects being passed to std::swap
and which complete objects they are members of, we must handle these edge cases correctly lest we risk breaking
much existing code at run time and without warning.

That is where we introduce our final term from the Standard: value representation. Where the object repre-
sentation comprises all the bytes that an object occupies (including all padding bytes, vtables, and so on), the
value representation denotes just the bytes that contribute to an object’s state. Therefore, an empty class has
a nonzero size but a zero-length value representation. Thus, the parts of this paper that allow optimization of
swap operations refer to value representations, while the parts that allow for trivial relocation optimizations
refer to object representation. Bearing this distinction in mind will be important.

1Much rationale related to trivial relocation can be found in [P2786R6], and early discussion of handling swap is covered in
[P3239R0].
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7 Basic Design Principles
7.1 Create a feature for users, not just the Standard Library
Efficient implementation of many data structures often needs a means to efficiently move and exchange objects
that those data structures are managing, especially for data structures that manage their elements in contiguous
storage or in some other location that is not a node at the end of a pointer. However, such object manipulation
is also a sharp tool that is not expected to see much use other than optimizing the internal management of data
structures.

Overall, our goal is to provide the needed — possibly sharp-edged — tools for use by container implementers,
while users are given a usable API to manage when these optimizations are safe and correct to apply to their
types.

7.2 A formal specification is built around object lifetimes
C++ has a well-specified object model that is important to optimizers, sanitizers, and analysis tools alike. Such
tools must reason about object lifetimes and, importantly, minimize the doubt created for developers regarding
that reasoning leading to false positives or false negatives when seeking to optimize or alert users.

7.3 Behavior must be reliable
No freedom for quality of implementation (QoI) in semantics is an important quality that builds on the well-
specified object model.

7.4 Guard against accidental undefined behavior
The new Library APIs support only types that would produce well-defined behavior. The specification prefers
Mandates clauses to Constraints: clauses since SFINAE behavior carries no expected benefit and is likely to
produce error messages with less useful information.
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8 Core Proposal
Our core proposal comprises two parts: trivial relocation and replaceability, each including the library
primitives that are necessary for well-defined use. Trivial relocation is a technique already widely used in the
industry, and replaceability is a more novel property that must be identified to apply bitwise copy optimizations
to std::swap.

8.1 Trivial relocatability
To ensure that libraries taking advantage of the trivially relocatable semantic do not introduce undefined
behavior, the model of lifetimes for objects must be extended to allow for relocation of trivially relocatable
types. Since the compiler cannot know if a specific memcpy or memmove call is intended to duplicate (or to
move) an object, we propose introducing a new function template, std::trivially_relocate, that is restricted
to trivially relocatable types. The purpose of the new function template is to efficiently move the object
representation, typically with a call to memmove that also signifies to the compiler (and other analysis tools)
that the lifetime of the new object(s) has begun — similar to calling start_lifetime_as on the destination
location(s) — and that the lifetime of the original object(s) has ended (without running destructors).

This design deliberately puts all compiler-magic and Core-language interaction dealing with the object lifetimes
into a single place, rather than into a number of different relocate-related overloads. Note that users are not
permitted to copy the bytes to perform a relocation themselves, unlike with trivial copyability, although byte
copies would continue to work for trivially copyable types.

8.1.1 New type category: Trivially relocatable

To better integrate language support, we further propose that the language can detect types as trivially relo-
catable where all their bases and nonstatic data members are, in turn, trivially relocatable: The constructor
selected for construction from a single rvalue of the same type is neither user provided nor deleted, the same
applies for the assignment operator for rvalues, and their destructor is neither user provided nor deleted. Con-
ceptually, this definition combines the rules we would follow if there was a new user-definable special member
function for relocation and when that operation would be trivial.

Note that our notion of relocation relies on being semantically equivalent to move construction of the target
followed by destruction of the source. Even though it is not involved in this definition, we still consider assignment
operations when deciding if a type is implicitly trivially relocatable for the same reasons that we consider
assignment when deciding if a type should have an implicitly declared move constructor; any existing type with
a particular set of user-provided special member functions should not begin to have new operations considered
valid for it if those operations might subvert expectations due to compiling with a new language Standard.

8.1.2 New keyword and explicit rule

Without an opt-in mechanism, the only types that would be implicitly trivially relocatable would be those that
are already trivially copyable, an important yet relatively small subset of the full universe of types in C++. To
enable trivial relocatability on the many more interesting types that have nontrivial special member functions,
explicitly marking such types must be possible. This marking is needed for only user-defined class types (including
unions); hence, we propose adding a new contextual keyword, memberwise_trivially_relocatable, as part of
the class definition, similar to how final applies to classes:
struct X; // Forward declaration does not admit `final`.
struct X final {}; // Class definition admits `final`.
struct Y memberwise_trivially_relocatable {}; // New contextual keyword placed like `final`.

We propose one new contextual keyword, memberwise_trivially_relocatable, that can be placed in a class-
head (on a class definition) to indicate that a type’s special operations do nothing that would violate the implicit
rule that would make a type trivially relocatable.
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By means of the memberwise_trivially_relocatable specification, a class will be determined to be trivially
relocatable if, according to the implicit rules for a trivially relocatable class, the class would be trivially
relocatable if the presence of user-declared special member functions were ignored.

Users considering whether to apply this keyword to a given type that has user-provided special member functions
must simply inspect their move constructor and destructor and decide if, when applied together as part of a
relocate operation, they have no net effect. Common examples include many types.

— For a resource-owning type, such as std::unique_ptr, the newly constructed object will have the same
bits as the source object, the source object will have its pointer member set to nullptr, and the source
object destructor will do nothing because, by the time it runs, that member will be nullptr. Simply
copying the bytes and discarding the source object achieves the same semantic effect.

— A reference-counting type, however, might increment a count by one when constructing the target object
and then decrement that same count by one when destroying the source object. Combining these operations
clarifies that the constructor and destructor negate one another.

8.1.3 New type trait: is_trivially_relocatable

To expose the relocatability property of a type to library functions seeking to provide appropriate optimiza-
tions, we propose a new trait, std::is_trivially_relocatable<T>, which enables the detection of trivial
relocatability:
template< class T >
struct is_trivially_relocatable;

template< class T >
constexpr bool is_trivially_relocatable_v = is_trivially_relocatable<T>::value;

The std::is_trivially_relocatable<T> trait has a base characteristic of std::true_type if T is trivially
relocatable and has std::false_type otherwise.

Note that the std::is_trivially_relocatable trait reflects the underlying property that a type has, and like
all similar traits in the Standard Library, it must not be user specializable. Compilers themselves are expected
to determine this property internally and should not introduce a library dependency such as by instantiating
this type trait.

We expect that the std::is_trivially_relocatable trait shall be implemented through a compiler intrinsic,
much like std::is_trivially_copyable, so the compiler can use that intrinsic when the language semantics
require trivial relocatability, rather than requiring actual instantiation (and knowledge) of the Standard
Library trait. The trait must always agree with the intrinsic since users do not have permission to specialize
standard type traits (unless explicitly granted permission for a specific trait).

We see no particular need to separately detect whether a type has attempted to make itself trivially relocatable
with memberwise_trivially_relocatable.

8.1.4 New relocation function: trivially_relocate

As stated in “Library additions,” we are proposing a new function, trivially_relocate, which is the unique
entry point into the core magic that tracks and manages object lifetimes in the abstract machine:
template <class T>
T* trivially_relocate(T* begin, T* end, T* new_location) noexcept;
{
static_assert( is_trivially_relocatable_v<T> && !is_const_v<T> );
// ... (platform-provided implementation)

}

This function template mandates that is_trivially_relocatable_v<T> && !is_const_v<T> is true and has
preconditions that end is reachable from begin. Its postcondition is that new objects in the range [new_location,

14



new_location + sizeof(T) * (end - begin)) have the same object representation as the objects originally
in the range [begin, end) and that the objects originally in the range [begin, end) have ended their lifetime, all
accomplished without running any destructors or other clean-up code. Overlapping ranges shall be supported.

On most platforms, this template is functionally equivalent to
memmove(new_location, begin, sizeof(T) * (end - begin));

However, unlike memmove on its own, this function template is restricted to trivially relocatable types rather
than to implicit lifetime types.

Note that, consistent with its low-level purpose often tied to move semantics, this function is denoted with
noexcept despite having a narrow contract regarding valid and reachable pointers.

In addition to performing memmove, the function also has the following two important effects that matter to the
abstract machine but have no apparent physical effect (i.e., these effects do not change bits in memory), much
like std::launder.

1. The trivially_relocate function ends the lifetime of the objects *begin, *(begin+1), …, through to
*(end-1). This ending of the objects’ lifetimes means accessing these objects or attempting to run their
destructors will be undefined behavior.

2. The trivially_relocate function begins the lifetime of the objects *new_location, *(new_location+1),
…, through to *(new_location+end-begin-1). If any of the objects or their subobjects are unions, they
have the same active elements as the corresponding objects in the range [begin, end).

3. These operations are a single action, and for any locations where an overlap occurs between the source
and target ranges, an existing object will be destroyed and a new object will be created in its place.

The current library-level mechanism to start the lifetime of an object without invoking a constructor is
std::start_lifetime_as, a function that works for only implicit lifetime types that must have trivial default
constructors. Trivially relocatable types, however, include a much wider range of types, including many that
establish and maintain invariants in their special member functions and thus cannot be implicit lifetime types.

A tool for ending lifetimes is similarly unavailable in the Standard Library today. This task can be accomplished
by reusing the storage of an object, but that requires modifications of some sort.

The trivially_relocate function, therefore, is interacting with the abstract machine in ways that are not cur-
rently available. Importantly, for many of the types we are concerned with (e.g., std::vector, std::unique_ptr,
and so on), the component steps of the relocation operation are decidedly not trivial, so we are compelled to
make this single function responsible for the needed compiler magic.

To remove the need for a larger family of functions and avoid overly limiting cases in which trivial relocation
might be applied, the trivially_relocate function is intended to support overlapping source and destina-
tion ranges, just like memmove. If the ranges are overlapping, the implementation must take care around the
management of the lifetime of objects relocated out of or into the overlap.

Note that this initial proposal does not provide a single-object relocation function since our primary motivation
is to optimize relocating objects in bulk, which is expected to be the common use case. Adding single-object
trivially_relocate functions would be easy, but the effect can be achieved by calling the proposed function
with a range of a single object.

8.1.5 New library function: std::relocate

The function trivially_relocate is a sharp tool that requires compiler magic to implement, and the user must
write an alternative code path for types that are not trivially relocatable. General relocation that supports
both trivial and nontrivial relocation is, however, a subtle and tedious function to implement correctly, and we
do not want to force all users to reimplement this function.

Therefore, we propose an additional user-friendly, general-purpose relocation function, std::relocate, that will
use trivially_relocate for trivially relocatable types and otherwise relocate elements by calling the move
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constructor to move each object, followed by their destructor. This function must correctly order its moves to
support overlapping ranges, just like trivially_relocate.

In addition, std::relocate is constexpr to support easy implementation of constexpr containers like
std::vector. Adding such support means that in addition to checking whether a type is trivially relo-
catable before calling trivially_relocate, we must also have an if consteval path that does not call
trivially_relocate during constant evaluation:
template <class T>
constexpr
T* relocate(T* begin, T* end, T* new_location)
{
static_assert(is_trivially_relocatable_v<T>

|| is_nothrow_move_constructible_v<T>);

// When relocating to the same location or an empty range, do nothing.
if (begin == new_location) return end;
if (begin == end) return new_location;

// Then, if we are not evaluating at compile time and the type supports
// trivial relocation, delegate to `trivially_relocate`.
if ! consteval {
if constexpr (is_trivially_relocatable_v<T>) {

return trivially_relocate(begin, end, new_location);
}

}

if constexpr (is_move_constructible_v<T>) {
// For nontrivial relocatable types or any time during constant
// evaluation, we must detect overlapping ranges and act accordingly,
// which can be done only if the type is movable. Note that trivially
// relocatable types are allowed to have throwing move constructors, and
// any throwing move that occurs in this branch will cause constant
// evaluation to fail.

if ! consteval {
// At run time, when there is no overlap, we can, using other Standard
// Library algorithms, do all moves at once followed by all destructions.
if (less{}(end,new_location) || less{}(new_location + (end-begin), begin)) {
T* result = uninitialized_move(begin, end, new_location);
destroy(begin,end);
return result;

}
}

if (less{}(new_location,begin) || less{}(end,new_location)) {
// Any move to a lower address in memory or any nonoverlapping move can be
// done by iterating forward through the range.
T* next = begin;
T* dest = new_location;
while (next != end) {
::new(dest) T(move(*next));
next->~T();
++next; ++dest;

}
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}
else {

// When moving to a higher address that overlaps, we must go backward through
// the range.
T* next = end;
T* dest = new_location + (end-begin);
while (next != begin) {
--next; --dest;
::new(dest) T(move(*next));
next->~T();

}
}

return new_location + (end-begin);
}

// The only way to reach this point is during constant evaluation where type `T`
// is trivially relocatable but not move constructible. Such cases are not supported,
// so we mark this branch as unreachable.
unreachable();

}

8.2 Replaceability
In addition to trivial relocation, we introduce the orthogonal notion of replaceability. An object of type T
is replaceable by an object of type U if destroying the object of type T and reconstructing an object of type T
in its place from an xvalue of type U is equivalent to assigning to the original object of type T with an xvalue of
type U. Note that replacement updates an object’s value, so const-qualified objects are never replaceable.

Replaceability is an important property when we want to transform relocation into assignment or vice
versa. Containers such as std::vector already make a general assumption that all types are replaceable, but
std::swap does not make such an assumption, so we provide a mechanism to identify those types with this new
property.

8.2.1 New type category: Replaceable type

A type T is a replaceable type if every object of type T is replaceable by every other object of type T. Note
that replaceable types must be object types; function types, reference types, and void are never replaceable.

A cv-unqualified type T will implicitly be a replaceable type if all its bases and nonstatic members are re-
placeable types and if it has no user-provided move constructor, move-assignment operator, nor destructor.

8.2.2 New keyword and explicit rule

To enable replaceability to be useful for classes with user-provided special member functions, explicitly marking
class (including union) types as potentially replaceable must be possible (just like for trivially relocatable
types). To that end, we propose adding a new contextual keyword, memberwise_replaceable, as part of the
class definition (mirroring the design of memberwise_trivially_relocatable).
struct X; // Forward declaration does not admit `final`.
struct X final {}; // Class definition admits `final`.
struct Y memberwise_trivially_relocatable {}; // New contextual keyword placed like `final`.
struct Z memberwise_replaceable {}; // New contextual keyword placed like `final`.

A class can be marked with both memberwise_trivially_relocatable and memberwise_replaceable; in fact,
we expect many uses of memberwise_replaceable to also require memberwise_trivially_relocatable.
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8.2.3 New type trait: is_replaceable

To expose the replaceability property of a type to library functions seeking to provide appropriate optimizations,
we propose a new trait, std::is_replaceable<T>, that enables the detection of replaceable types:
template< class T >
struct is_replaceable;

template< class T >
constexpr bool is_replaceable_v = is_replaceable<T>::value;

The std::is_replaceable<T> trait has a base characteristic of std::true_type if T is replaceable and
std::false_type otherwise.

Note that the std::is_replaceable trait reflects the underlying property that a type has, and like all similar
traits in the Standard Library, it must not be user specializable. Compilers themselves are expected to determine
this property internally and should not introduce a library dependency such as by instantiating this type trait.

Note that we expect that the std::is_replaceable trait shall be implemented through a compiler intrinsic,
much like std::is_trivially_copyable, so the compiler can use that intrinsic when the language semantics
require replaceability, rather than requiring actual instantiation (and knowledge) of the Standard Library trait.
The trait must always agree with the intrinsic since users do not have permission to specialize standard type
traits (unless explicitly granted permission for a specific trait).

8.3 Optimizing std::swap
std::swap differs significantly from trivial relocation in several ways; std::swap is an existing well-specified
function with a wide contract, and it starts and ends with two valid objects and cannot end the lifetimes of
either without vastly changing its current expected behavior. We discuss such constraints and how they led to
our proposal of a new magic function based on notions of trivial relocation and replacement.

8.3.1 Swapping values rather than representations

std::swap exchanges values that are essentially defined by the move constructor and move-assignment operator.
Using operations to directly swap the bytes would result in swapping the whole object representations, which
are not always the same thing.

8.3.2 Object lifetime and invariants

Fundamental to the C++ object model is the ability for the structure of an object, including the types of its
members and its special member functions, to enable developers to maintain object invariants through an object’s
entire lifetime. Passing an object to a function by modifiable lvalue reference is never expected to invalidate
all such invariants. In addition, ending the lifetime of an object also invalidates pointers and references to that
object, a process colloquially known as pointer end-zap.

In certain cases, an object can be destroyed and a new object can be created in place without encountering
pointer end-zap or other issues, and those are cases in which an object can be transparently replaced. This
scenario occurs when the objects have the same type, are not const-qualified, and are complete objects or not
potentially overlapping subobjects.

Many of these situations are not, however, requirements for using std::swap today, so we must ensure that any
changes to std::swap will still work for objects that do not meet these criteria.

Note that whether one object can be transparently replaced by another is not a property of the type but depends
on the context of how that type is used, which is additional information that cannot be easily passed through a
function call.
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8.3.3 Object representation vs. value representation

The object representation of an object is the set of bytes the compiler uses to store that object. To allow for
alignment, this set of bytes is often larger than simply summing all the sizes of that object’s member subobjects
and introduces padding bytes. The value representation of an object is just those nonpadding bytes that store
information. For example, an empty class has an object representation of at least one byte, which is important
for several reasons, one of which is to correctly represent arrays of empty types. On the other hand, the value
representation of an empty type is zero bytes, i.e., there is no value representation.

8.3.4 Toward a well-defined function

If we specify a new library function to swap the value representations of the direct and indirect members (rather
than the object representations) of two objects of the same type, we expect to preserve the properties that matter
to the abstract machine that defines C++. In particular, for empty types, we will swap nothing, avoiding any
chance of interfering with potentially overlapping objects, and for polymorphic types, we will not swap vtable
pointers; thus we do not attempt to change the dynamic types of either parameter.

When swapping the value representations of corresponding members of the same complete type, however, there
is no concern about swapping vtable pointers that are not the same, and all other relevant parts of the value
will be exchanged. If a union member is present, we will swap any bytes that might contribute to the value
representation of any active member of the union.

8.3.5 Untyped nested subobjects

A complete object can store a variety of nested subobjects, the obvious case being all its member subobjects, yet
nested subobjects can be created in other ways too. For example, if a class has a nonstatic data member that is
an array of std::byte, a nested subobject with dynamic storage duration can be created in that storage.

Any new function that swaps value representations must support swapping two complete objects that might
have such nested subobjects created within their storage. The value representation of the array of std::byte is
all those bytes, which includes the full object representation of any nested subobjects. The easiest specification
would simply invoke pointer end-zap on all such nested subobjects, starting the lifetime of new nested subobjects
after the complete objects’ value representations have been exchanged. A stronger specification would not invoke
pointer end-zap if both complete objects are storing nested subobjects of the same complete object type.

8.3.6 Uninitialized subobjects

By exchanging just the bytes of the value representation of members, we avoid touching bytes that have indeter-
minate values, which would be UB. However, if an object comprises any uninitialized member subobjects, then
the same issue arises. We note that special dispensation is given to reading and writing raw memory through
pointers to unsigned char or std::byte, and we intend to channel a similar dispensation, without addressing
specific implementation details in the formal wording.

8.3.7 New compiler-magic function: swap_value_representations

We propose, for the Standard Library, a new function, swap_value_representations, that exchanges the value
representations of all direct and indirect members of two objects of the same type that are passed by mutable
lvalue reference. This is a magic library function that achieves the postcondition without affecting the lifetime of
either object. Note that by swapping the value representation rather than the object representation, we intend
to support potentially overlapping empty subobjects since empty types have no value representation, i.e., a value
representation of zero bytes, regardless of the size of their object representation. Also note that no empty types,
but only objects of zero bytes, are mentioned in the Core language.

This function swaps just the value-representation bytes of members, so it is safe in case of overlapping subobjects
that would not be transparently replaceable if swapping the whole object representation. This function is safe
to use with polymorphic types since it swaps only the values of members and not the part of an object’s value
representation that defines its dynamic type, such as the vtable pointer.
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To maintain well-defined behavior in the C++ object model, we mandate that the type of the swapped objects
must be both replaceable and trivially relocatable. To understand why we need both, let us consider the
expected behavior of a simplified version of the definition of std::swap:
#include <utility> // for `std::move`

template <class T>
void swap(T& a, T& b)
{
T tmp(std::move(a)); // Move-construct a temporary.
a = std::move(b); // Move-assign to `a`.
b = std::move(tmp); // Move-assign to `b`.
return; // Destroy temporary at end of block.

}

On its surface, this combination of move construction, assignment, and destruction is clearly not an implemen-
tation in a completely, semantically identical way by relocation operations alone since those are equivalent
to only a combination of a move constructor and a destructor.

On the other hand, replacement is exactly what we need to transform a move-assignment operation into a
semantically equivalent series of move-construction and destruction operations. We can begin by rewriting our
swap implementation above to one that uses a temporary with dynamic storage duration to make the destruction
of the temporary an explicit (and not automatic) invocation:
#include <new> // for placement `new`
#include <utility> // for `std::move`

template <typename T>
void swap(T& a, T& b)
{
alignas(T) char tmp_buffer[sizeof(T)];
T* tmp = ::new(tmp_buffer) T(std::move(a)); // Move-construct a temporary.
a = std::move(b); // Move-assign to `a`.
b = std::move(*tmp); // Move-assign to `b`.
tmp->~T(); // Destroy temporary at end of block.

}

Now, for a replaceable type, we can take advantage of the semantic equivalence of move assignment with
destruction followed by move construction, once for the assignment to a and once for the assignment to b:
template <typename T>
void swap(T& a, T& b)
{
alignas(T) char tmp_buffer[sizeof(T)];
T* tmp = ::new(tmp_buffer) T(std::move(a)); // Move-construct a temporary.
a.~T();
new (&a) T(std::move(b)); // Replace `a` by `b`.
b.~T();
new (&b) T(std::move(*tmp)); // Replace `b` by `*tmp`.
tmp->~T(); // Destroy temporary at end of block.

}

But now, for any trivially relocatable type, something magic has happened: We have six operations, which
are three pairs of a move construction from a source object into uninitialized storage followed by destruction of
that source object. Therefore, because by definition they are semantically equivalent, we can reimplement swap
with the same semantics using std::trivially_relocate:
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template <typename T>
void swap(T& a, T& b)
{
alignas(T) char tmp_buffer[sizeof(T)];
T* tmp = reinterpret_cast<T*>(tmp_buffer);
std::trivially_relocate(&a, &a+1, tmp);
std::trivially_relocate(&b, &b+1, &a);
std::trivially_relocate(tmp, tmp+1, &b);

}

Now, this transformation is not going to do the right thing if a and b are not complete objects subject to
being transparently replaced; we’ve done nothing to avoid overwriting padding bytes or vtable pointers in the
footprints of a and b. For this reason, we instead need to use swap_value_representations, which performs
the same operations (copying all the bytes) on the member data of a and b without violating the aspects of a
and b that are unknowable in the type system within swap:
template <typename T>
void swap(T& a, T& b)
{
if consteval {
if constexpr(std::is_trivially_relocatable_v<T> &&

std::is_replaceable_v<T>) {
std::swap_value_representations(a,b)

}
}
T tmp(std::move(a)); // Move-construct a temporary.
a = std::move(b); // Move-assign to `a`.
b = std::move(tmp); // Move-assign to `b`.

}

Naturally, such a low-level facility that is close to the compiler should be supported in a freestanding implemen-
tation. Our proposed solution has no dependencies on dynamic memory, no exceptions, and no other concerns
that a freestanding implementation might raise.

8.3.8 Changes to std::swap

Once we have the notions of replaceability, trivial relocatability, and the swap_value_representations
function, we are in a position to optimize std::swap by using byte-wise operations for appropriate types. First,
such types must be replaceable to preserve the semantic requirement that move assignment and move construc-
tion produce the same end-state. Secondly, we will require that such types are also trivially relocatable to
ensure that copying bytes produces the expected valid state. Both properties are the necessary requirements
to call std::swap_value_representations. To provide portable and reliable behavior, we will mandate this
optimization rather than leave it as a QoI feature. In doing so, we will want to update every free-function
overload of std::swap in the Standard Library that should similarly use this optimization; the ADL overload
should be no less efficient than the primary template.

Finally, objects do not have a byte representation at compile time, and therefore, attempting to apply byte-
wise operations generally does not make sense during constant evaluation. Therefore, we should exclude this
optimized behavior during constant evaluation and can do so via a simple if consteval.

We observe that the swap overload for arrays is specified as equivalent to calling swap_ranges, which in turn calls
std::swap for each element. Therefore, the array swap is indirectly specified to use the byte-wise optimization.
Given the trivially relocatable requirement for swap_value_representations and following the as-if rule, an
ambitious implementation might further optimize swapping ranges by using the contiguous memory operations
over ranges that come from the trivially_relocate specification but only when the type is also replaceable
to thus assure the full equivalence of the operations.
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9 Plans for Library Update
We plan to enable the adoption of these new features in follow-up papers targeting LEWG.

9.1 Immediate updates
In addition to specifying the type traits and library functions that enable the facilities, we should update the
library frontmatter to indicate whether and how the Library is allowed to use these features to enhance their
QoI.

Clearly, under the as-if rule, the Library immediately gets permission to optimize algorithms and functions
for trivially relocatable and replaceable types where such optimizations are not observable. For example,
std::vector could optimize many of its operations for such types, given a suitable allocator, such as the default
std::allocator. No updates to the Library specification are needed for these optimizations, and follow-up
papers that suggest changing specifications to allow such optimizations that would be observable should be
properly directed to LEWG.

The other category of interest is whether Library types themselves can — or should — be trivially relocatable
or replaceable. For example, any implementation of std::vector should be able to satisfy the requirements to
be both trivially relocatable and replaceable for any element type as long as its allocator has those properties;
we might want to mandate that std::vector is relocatable and/or replaceable in such cases. Conversely, in
the two common implementation strategies for std::list, the sentinel node is either dynamically allocated
or stored directly in the footprint of the list. The dynamic node case is always trivially relocatable and
replaceable, but the in-place representation is neither; however, the in-place representation is nothrow-movable,
whereas the dynamic case must allocate a new node, which can potentially throw. In both cases, relocation
will never throw, but different trade-offs must be considered when choosing an implementation strategy, and
such cases are almost always better left for implementation QoI (especially since ABI concerns might require
consideration).

When granting permission for implementations to use keywords that are in addition to those specified by the
C++ Standard, we have taken two approaches that we will term the noexcept approach and the constexpr
approach. In the noexcept approach, an implementation is granted permission to add noexcept specifications
to functions as long as those specifications do not invalidate other aspects of the function contract; i.e., an
exception specification cannot be added to a virtual function or to a function that is specified to throw exceptions.
Conversely, the constexpr approach disallows adding constexpr to a function that is not declared as constexpr
in the C++ Standard.

For the purposes of this paper, we believe the minimal necessary specification should use the noexcept approach,
and we propose the appropriate wording to say so. That choice will allow implementations to experiment with
the feature and then provide clear recommendations for specific cases as follow-up LEWG papers.

9.2 ABI concerns
We believe no ABI concerns exist for libraries applying these new features throughout the Standard Library,
even as unspecified QoI improvements.

The name-mangling of a type should not depend on whether it is either trivially relocatable or replaceable.
While these properties can be determined through type traits, by definition of being a new feature, no existing
code will be SFINAE-enabled on these traits. Updating the internal layout of any Standard Library type to
accommodate optimizations using these traits should be unnecessary.

The main concern might be adding constraints to implementation-specific functions used to dispatch to optimized
algorithms, such as when growing a vector. In these cases, to avoid introducing new mangled names that would
affect link compatibility, if constexpr within the dispatching function could be used to enable a fully link-
compatible library.
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9.3 Specific follow-ups
In a followup paper, we intended to propose adding a new specification element, Class properties, for any
specification related to class properties 11.2 [class.prop]. The Standard Library already makes some effort to
specify whether a class must be trivially copyable, standard layout, and so on, and we believe tracking such
specification would be more maintainable with a consistent presentation and using a consistent form.

Once we have a Class properties element, we can then review all library classes and decide whether to specify
the trivial-relocatability behavior for that class, which might be conditional on its template arguments if it
is a class template. We might also deliberately defer specifying behavior to allow for implementations making
different choices, such as node-based containers allocating their end node vs. storing the pointers in the container’s
object representation.

Finally, once we have an easy way to document class properties, we might consider making stronger guarantees
on existing library components where such specification would be useful, e.g., clarifying which types are implicit
lifetime.

We would propose moving the specification for the following properties in this new element

— Trivially Copyable
— Standard Layout
— Implicit Lifetime
— Structural
— Aggregate
— Empty
— Bitmask

along with the two new properties specified in this paper

— Trivially Relocatable
— Replaceable

The following clauses in the Standard Library specification would then include additional notes regarding this
new element and updated specification:

— 16.3.2.4 [structure.specifications] — class properties as well as invariants
— 16.3.3.3.5 [customization.point.object] — may be mildly reformulated with the new specification element
— 16.3.3.5 [objects.within.classes] — may be constraining which members may be added
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10 Use Cases
10.1 Optimizing std::vector at run time
std::vector can optimize moving elements into a new buffer by relying strictly on trivial relocation when the
allocator does not implement construct and destroy. A library paper targeting the broader issue of optimizing
containers for allocators that use the construct and destroy customization points will follow since that is a
concern for more than just trivial relocation.

We find that the current specification allows for trivial relocation on insert and erase, although that use
might produce a change of semantics that implementations using assignment prefer to avoid. Hence, we will
leave the choice to implementers and their interpretation of the specification.

We expect to provide a library-specific paper to address the semantics of inserting into and erasing from a
std::vector that is independent of trivial relocation concerns.

10.2 Optimizing std::optional to be trivially relocatable and replaceable
If std::optional is implemented with a variant member (anonymous union) and a boolean flag to indicate if the
optional is engaged, then memberwise determination of both trivial relocatability and replaceability will
produce the correct property. Typical usage might be something like the following example, which clearly shows
that any optional implementation is going to provide implementations of all the special member functions and
thus require use of both contextual keywords.

Original Optimized

template <class T>
class optional {

union {
T d_object;

};
bool d_engaged{false};

public:
using value_type = T;

...
};

template <class T>
class optional

memberwise_trivially_relocatable
memberwise_replaceable {

union {
T d_object;

};
bool d_engaged{false};

public:
using value_type = T;

...
};

Note that to support the constexpr operations required by the Standard, a union-based implementation
is the only known way to conform. However, if we were not concerned about constexpr evaluations,
then we might choose to store our active element in an array of bytes. Unfortunately, adding the
memberwise_trivially_relocatable or memberwise_replaceable properties to the class definition will
give our class that same property — even when the array member is used as storage for a type without those
properties — since an array of std::byte is both trivially relocatable and replaceable.

This problem can be resolved in several ways, but the key is to include a data member that is conditionally
trivially relocatable or replaceable. This resolution is most easily achieved by adding, to the class, an empty
data member that ideally can preserve the object layout and ABI.
template <bool = true>
struct OptionallyRelocatable {};
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template <>
struct OptionallyRelocatable<false> {

~OptionallyRelocatable(){}
};

static_assert( std::is_trivially_relocatable_v<OptionallyRelocatable<>>);
static_assert(!std::is_trivially_relocatable_v<OptionallyRelocatable<false>>);

static_assert( std::is_replaceable_v<OptionallyRelocatable<>>);
static_assert(!std::is_replaceable_v<OptionallyRelocatable<false>>);

Original Optimized

template <class T>
class optional {

alignas (T)
std::byte d_object[sizeof (T)];

bool d_engaged{false};

public:
using value_type = T;

...
};

template <class T>
class optional

memberwise_trivially_relocatable
memberwise_replaceable {

alignas (T)
std::byte d_object[sizeof (T)];
union {

bool d_engaged{false};
OptionallyRelocatable<

std::is_trivially_relocatable_v< T>
&&std::is_replaceable_v< T>> _;

};

public:
using value_type = T;

...
};

Note that in the above implementation, even though we have made a union to contain our empty conditionally
relocatable object, the d_engaged member will always be active. A similar conditional replaceable object would
have the same implementation and be simple to add as well.
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11 Implementation Experience
An implementation of this proposal is available as a fork of Clang and can also be accessed on Compiler Explorer.

In addition to the handling of the new keywords and class properties, the implementation relies on

— built-in type traits for is_trivially_relocatable and is_replaceable, which are not different than
other type traits of the same nature

— built-ins to return the range of the value representation (excluding the vpointer and trailing padding bytes)

Our Clang implementation of trivial_relocate is implemented in terms of memcpy. We did not add the
necessary machinery to end and start lifetimes since that task is unsupported by the Clang front end and the
LLVM optimizer (a known deficiency of LLVM rather than with our implementation). In general, starting and
ending lifetimes requires an implementation to add some optimization fences so that optimizers that perform
type-based alias analysis are not overly eager and inappropriately prune all code that depends on the new object
lifetimes. Either way, adding such fences to an implementation that supports start_lifetime_as would present
no notable challenges. We have not explored whether sanitizers would need to be made aware of these function
semantics.

swap_value_representation is implemented as a library function. The function, which is basically isomorphic
to some hypothetical memswap function, can be implemented in different ways. For our implementation, we chose
to perform all the offset computation at compile time such that swap_value_representation can benefit from
auto-vectorization.

For small objects that are trivial, we found no benefit to using swap_value_representation in the implemen-
tation of swap since optimizers can already produce optimal assembly in these cases.

Note that Clang already supports the notion of trivially relocatable types in production, although with no opt-
in mechanism. This property is used in the implementation of std::vector in libc++ (once again demonstrating
an industry need for this feature, as well as deployment experience with very similar ideas).

Clang also offers a [[clang::trivial_abi]] type attribute that allows a type to be passed in registers when its
destructor/constructor pair can be replaced by a memcpy. Types with that attribute can be passed in a register,
which affects calling convention, and therefore ABI.

26

https://compiler-explorer.com/z/5jMa4394n


12 FAQ
12.1 Is void trivially relocatable?
No, nor is it trivially copyable.

12.2 Are reference types trivially relocatable?
No, nor are they trivially copyable.

Taking the address of a reference to pass it to relocate is not possible. How the compiler implements references
is entirely unspecified and may not need physical storage if the reference never leaves a local scope. Asking
about copying or relocating a naked reference, rather than the entity it refers to, is not meaningful, so these
trivial properties are false.

12.3 Why can a class with a reference member be trivially relocatable?
A class with a reference member can be trivially relocatable for the same reason such a class can be trivially
copyable. Strictly speaking, reference members are not nonstatic data members, and we cannot create a pointer-
to-data-member to one; they deliberately escape the relevant wording by not appearing in the list of disallowed
entities, despite not being trivially copyable or trivially relocatable as a distinct type in their own right. This
wording is subtle and can entrap the unwary but has been standard practice for many years.

12.4 Are cv-qualified types, notably const types, trivially relocatable?
Yes, if the unqualified type is trivially relocatable.

12.5 Can const-qualified types be passed to trivially_relocate?
No. While const-qualified types are trivially relocatable and thus do not inhibit the trivial relocatability
of a wrapping type, they are typically not safe to relocate due to leaving behind a dead object that cannot be
replaced using well-defined behavior. Hence, the trivially_relocate function is constrained to exclude const-
qualified types. This exclusion can be skirted using const_cast if doing so would not introduce undefined
behavior.

12.6 Can types that are not implicit-lifetime types be trivially relocatable?
Yes, and our experience tells us to expect the majority of types, even those that own resources and have nontrivial
move constructors and destructors, to still be trivially relocatable.

12.7 Why are virtual base classes not trivially relocatable?
Because they are not trivially copyable and because the implementation of virtual base classes on some platforms
involves an internal pointer, virtual base classes are not trivially relocatable.

We believe that implementing virtual bases such that trivial copyability and relocatability would not be a concern
is possible since all the needed data for indirection could be stored as offsets instead of direct pointers. However,
whether all implementations could use such a layout or are able to switch to such a layout is unclear. Forcing
this support might also require an ABI break.

In our opinion, this low-level behavior should be kept consistent across platforms, rather than left as an unspec-
ified QoI concern, since our current experience has not yet turned up a usage of virtual base classes that would
also benefit from this feature.

We would be happy to remove this restriction, but consistency must be maintained with the corresponding
restriction on trivially copyable. If no current ABIs are affected, we might consider normatively allowing —
or even encouraging — such an implementation (for both trivialities) as conditionally supported behavior on
platforms that would not incur an ABI break.
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Note that no issues occur with virtual functions since virtual function-table implementations do not take a
pointer back into the class, so the vtable pointer can be safely relocated.

12.8 What happens if a relocate operation throws?
Relocation operations must be no-fail, so they do not permit exceptions; if a relocate operation were allowed
to fail, whether the failed state had 0, 1, 2, or more valid objects would be unknowable, essentially leaving the
program in an undefined state that cannot be cleaned up correctly, which is a significant problem with objects
holding resources like a locked mutex.

Our proposal makes clear that std::trivial_relocate cannot fail, and the nontrivial implementation of
relocate mandates that the object type is nothrow move constructible. Hence, neither of our operations can
fail by throwing an exception.

12.9 Why do deleted special members inhibit implicit trivial relocatability?
Initially, we considered allowing trivial relocation of types with these special members functions deleted,
based on a notion that we have been familiar with since C++17 when mandatory copy elision started prop-
agating noncopyable and nonmovable return values. However, relocation is not the same as copy elision, so
objections arose to the idea that, when a user deliberately removes an operation, we should not silently re-
enable it via a backdoor method. Note that this inhibition changes only the default, preventing accidental
relocation of noncopyable or nonmovable types for which relocatability was neither considered nor intended; if
trivial relocatability is desired, such classes can be made explicitly trivially relocatable by means of the
memberwise_trivially_relocatable keyword.

This design also follows that of the Core language for trivial copyability, which was changed by [CWG1734] to
exclude types that deleted all copying operations and which landed in C++17.

12.10 Can the compiler transform argument passing with trivial relocation?
As currently specified, we do not yet enable such support. We believe that this could be accomplished with the
appropriate allowances (which already exist for trivially copyable types), but significant work in platform ABIs
would be needed to make this happen, similar to what is needed to support Clang’s [[trivial_abi]] attribute.

To enable bitwise parameter passing, such as through registers, for trivially relocatable types, we would need
to enable the compiler to freely create extra instances of our objects when passing arguments and return results
from functions, which would then enable a compiler to pass the data itself via a register. Importantly and unlike
for trivially copyable types (which have trivial destructors), major changes would be needed to ensure that the
receiver of the final object is aware that it is now responsible for destruction of that object since currently the
creator of parameters is responsible for their destruction on many ABIs.

A separate proposal for argument passing by relocation was offered in [P2839R0] but was not reviewed favorably
on its initial presentation to EWG.

12.11 Can the Standard Library containers use this new feature internally?
Yes, where the current specification is permitted to use move construction to relocate an object (e.g., when
growing or when moving objects within a vector), this feature can be used instead for trivially relocatable
types.

A common misconception implies that vector is required to use assignment when inserting into or erasing from
a vector (other than at the back). This requirement is not, however, explicitly specified in the Standard. The
misunderstanding stems from a number of places, which are addressed individually in the subsections below.

12.11.1 Complexity constraints

The first source of this misunderstanding is that people incorrectly consider the requirement to be implied from
(24.3.12.5 [vector.modifiers]p5), which states for vector::erase:
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Complexity: The destructor of T is called the number of times equal to the number of the elements erased,
but the assignment operator of T is called the number of times equal to the number of elements in the vector
after the erased elements.

This complexity existed in C++98, and the only revision has been a change in C++11 where the text “assignment
operator” was updated to “move assignment operator.” Note that vector::insert has no such complexity
requirement; it is specified only for the vector::erase operation.

The misconception also comes from the following sentence in (16.3.2.4 [structure.specifications]p7):

Complexity requirements specified in the library clauses are upper bounds, and implementations that provide
better complexity guarantees meet the requirements.

This statement is not, therefore, a mandate from the Standard that calls to vector::erase shall use the
assignment operator as long as the implementation performs as well as or better than the specified complexity.
Given that the trivially_relocate function as specified in this paper is guaranteed to perform a copy of
bytes of the object representation, it must outperform the complexity requirement, and the Standard, therefore,
permits implementations to use the trivially_relocate function for vector::erase operations.

12.11.2 Precondition specifications

The second source of this misunderstanding stems from phrases such as the following in
(24.2.4 [sequence.reqmts]p29):

a.insert(p, rv)

Preconditions: T is Cpp17MoveInsertable into X. For vector and deque, T is also Cpp17MoveAssignable.

Effects: Inserts a copy of rv before p.

Although this specification requires that statements of the form t = rv be well-formed, it does not impose any
limitations on implementations to use assignment when moving objects around internally.

Although the requirement that a type be Cpp17CopyAssignable or Cpp17MoveAssignable does impose semantic
requirements on the assignment operator(s), the requirements are vague and specified in terms of a notion of
“value” that is not defined in the Standard; see (16.4.4.2 [utility.arg.requirements]tab:cpp17.moveassignable).
This requirement was added in C++11 and has not been revisited since then.

The above explanation refers to vector::insert(p, rv), but the same argument applies to similar preconditions
on other member functions. Observe that the postconditions are identical for all sequence containers, including
those, such as list, that do not require Cpp17MoveAssignable as a precondition.

12.11.3 Conclusion

In other words, although most implementations of vector::erase and vector::insert currently use assign-
ment, which is generally assumed the most efficient approach currently available, implementations are under no
obligation whatsoever to do so. The various member functions of vector guarantee only that values will be
moved around but grant implementations complete freedom as to how that action should be performed, whether
by means of (move) assignment, (move) construction, or any other mechanism. Implementations will, therefore,
be permitted to perform this move by means of trivially_relocate for types that are trivially relocatable.

In fact, some implementations avoid using assignment for some operations (for reasons of efficiency); see the
linked examples for GCC and LLVM.

Note that all the comments above apply equally to deque as well as to vector.

Note also that this lack of a clear requirement exposes an existing ambiguity for vector::insert and
vector::erase operations where, for the contained type, move-assign plus destroy is not equivalent to destroy
plus move-construct. That ambiguity is an issue that exists at the moment, and while we might address it
with a future, orthogonal proposal, a solution is not required for trivial relocation as specified by this paper.
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Similarly, we might choose to clarify the complexity and requirements clauses above at some point in the future,
but that clarification is not required by this proposal and has been left for another time.

12.12 Do implementations need to mark classes memberwise_trivially_relocatable
to benefit?

No, although some classes will need to be annotated to qualify as trivially relocatable. For example, the most
common implementations of std::array, std::pair, and std::tuple will be implicitly trivially relocatable
if all their members are trivially relocatable. std::vector can safely be marked as trivially relocatable if
its allocator and pointer types are trivially relocatable. std::list might be marked as trivially relocatable
if it allocates its tail node but not if the tail node is embedded in the object representation itself.

Once we establish a policy of how much we want to guarantee and how much we want to leave open to implementer
choice, a follow-up paper will address desired guarantees for trivial relocatability in the Standard Library.

12.13 Which Standard Library types are safe for the swap_value_representations
function?

The Standard Library specification says nothing — or as little as possible — about the implementation of the
types that it specifies, so no guarantees are made in this paper regarding which types in the Standard Library
users can safely pass to swap_value_representations.

We expect that something must be said, even if only to explicitly make all such concerns a choice deferred to
implementers’ QoI. We would expect a more significant follow-up paper to review the whole library and to make
specific guarantees on a subset of types that do — or do not — offer such guarantees.

12.13.1 For what types can I swap values but not representations?

For types in which move assignment produces a different result than move construction, we can swap values but
not representations. These types include, among other things, any type that has reference semantics, not value
semantics.

12.13.2 For what types can I swap neither representations nor values?

For types with data members that cannot be replaced, including const-qualified nonstatic data members or
nonstatic data members that are references, we can swap neither representations nor values. Note that a swap
for values that does not change these members — such as swap for tuple<T&> that swaps the referenced elements

— may still be defined, but such semantics strictly go beyond swapping values.

12.14 Can I mark as trivially relocatable a type that is not replaceable?
Yes! For example, this would be appropriate for types having data members that are references or using
std::pmr::polymorphic_allocator or any other type that does not propagate on swap.

12.15 Can I mark a type as replaceable but not trivially relocatable?
Yes! This proposal does not offer any immediate advantages for doing so, but we expect to build on replacement
to optimize other features, such as assignment, in the future.

12.16 What happened to the predicates for the contextual keywords?
An earlier version of this proposal included the option to add a predicate following each of the new contextual
keywords to activate or inhibit their behavior. This feature was dropped for introducing too much complexity,
including a new vexing parse to resolve, and having vague semantics when the predicate is false but the implicit
specification would have been true. Given the rarity of such cases and the relative simplicity of the library-based
workaround above, we chose to keep the core proposal as simple as possible, following EWG guidance.
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12.17 Why is copy-replacement unsupported?
In practice, only replaceability of objects of type T from xvalues of type T seems relevant to the operations we
are likely to optimize. We have, therefore, simplified the design to focus solely on such replacement (which
could be termed move-replacement were we being pedantic) and not overcomplicate the language or users’ lives
by adding even more properties to consider.

12.18 Why is marking a class that can never be trivially relocatable not ill-formed?
A class with a virtual base class can never be trivially relocatable, so why is adding the
memberwise_trivially_relocatable identifier to that class not ill-formed?

This case is still well-formed, but the class will indeed never be trivially relocatable, and the type trait will
deterministically always return false. However, this type may also be used as a base class or data member
when instantiating a class template, and we do not want to add complexity by considering such special-case
instantiations as well-formed when the original case need not be marked as ill-formed.

However, the deterministic case of a direct virtual base class would make for a useful compiler warning. The more
general case of a data member or nonvirtual base class not being relocatable (or replaceable) is deliberately not
an error since we want to support different implementations of the same type that have different properties; e.g.,
different implementations of std::list choose different trade-offs on how to store the sentinel node marking
the end of the list, yet some of those choices are trivially relocatable and some are not. We want to avoid the
inconsistency of deterministically flagging an error when compiling a class with a std::list data member in
some Standard Library implementations and not in others.

12.19 Why is there no is_trivially_replaceable trait?
A common use case is to require types that satisfy both is_trivially_relocatable<T> and is_replaceable<T>.
We could consider whether this use case occurs frequently enough that adding another trait that is the logical
conjunction of the two would be valuable.

We opted to omit this trait to our proposal since such a trait is not primitive to the Core-language design of
this paper and could easily be added as an amendment in an LEWG follow-up paper well within the timeframe
of C++26 if desired.

The lack of a core type category named trivially replaceable is another reason to defer to a follow-up paper, and
we would be consuming that potential for future vocabulary for a pure library extension. Making that choice
before advancing this paper is unnecessary.

Similarly, we deferred the idea of adding an is_relocatable trait that is the logical disjunction of
is_trivially_relocatable and is_nothrow_move_constructible, which is the precondition to call
std::relocate. We deliberately want to leave the vocabulary of nontrivial relocation available for any
potential future work in EWG beyond C++26.

12.20 Is it UB to mark a nonconforming type as trivially relocatable?
First, the compiler has no way to validate that our class’s constructors and destructor do not maintain an
invariant that is not relocatable, so the compiler will trust us and enable the type trait. This in itself is not UB,
but UB will likely follow when some library code makes a transformation that causes our invariant, such as an
internal pointer, to no longer hold. Such UB will occur in the subsequent library call, not in the class definition.

12.21 Is it UB to mark a nonconforming type as replaceable?
Just as erroneously marking a type as trivially relocatable can lead to undefined behavior in library calls, so
can marking a type as replaceable. However, where replaceability is used as a constraint without trivial
relocation, there remain reasonable implementations that do not incur UB. For example, if operations are
logged, then the act of writing to a log is typically an observable side effect. Library code that transforms
between assignment and destroy-then-construct will have an observable change of behavior, such as the suggested
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logging, but such changes do not in themselves constitute undefined behavior. The creator of the affected class
must decide whether a change of such logging behavior would be problematic and then choose whether to mark
their type as replaceable.
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13 Illustrative Examples
13.1 Unconstrained vector
Let us consider the case of a user-written container, similar to std::vector. Since std::relocate is a nofail
function that exploits trivial relocation where it is available, we have to consider only two kinds of elements:

— Types that are either trivially relocatable or no-throw move constructible
— All other types

An alternative summary of these two kinds are

— types that can be safely relocated
— types that cannot be safely relocated

The first case to optimize is relocating elements when the current capacity is exceeded by an insert operation. In
this case, we clearly can simply relocate for those element types that are safely relocatable and must manually
move-construct the second category, accounting for a possible thrown exception on move.

The next operation to consider is erasing an element. In this scenario, we will destroy the requested element(s)
and then, for types that can be safely relocated, relocate the tail of the vector to the lower address since
relocate is nofail and supports overlapping ranges. For the second category of types, we must perform the
manual relocation and clear the remains of the tail if an exception is thrown.

The final operation to consider is an insertion in the middle of this vector. Here, the first thing we do, assuming
capacity is not exceeded, is relocate all elements from the insertion point up by a distance to allow all the new
elements to be inserted. Then we construct all the new elements, which is a potentially throwing operation. If an
exception is thrown, we have several options for our custom vector. For the strong exception safety guarantee, we
can destroy the newly inserted items and then safely relocate the original elements back in place since relocate
is a nofail operation. Alternatively, we provide the basic guarantee by destroying the old tail — and potentially
the newly inserted items — before adjusting the vector’s size, or maybe we could even clear the whole vector.

Note that all these operations use only trivial relocation and never call for replaceability.

13.2 Standard vector
When we add the constraints that the Standard imposes on std::vector, we find that replaceability becomes a
useful property. For both insertion and erasure, the Standard likes to assume that elements are replaceable, i.e.,
assignment is interchangeable with destroy-then-move-construct. Within that guarantee, the Standard Library
vector can use relocation per our custom vector example, but for types that are relocatable but not replaceable,
matters become more complicated. That topic will be the subject of a separate paper specific to vector, which
is necessary regardless of whether we support relocation in C++26. Having the ability to detect replaceable
types would be extremely helpful for that follow-up paper.

13.3 Conforming implementation of a trivially relocatable std::optional
The following implementation of optional satisfies the C++ Standard specification for the members that it
implements and provides a minimal test driver. This implementation uses the new feature macro to ensure that
the code compiles with both C++23 and C++26 and is trivially relocatable if and only if its element type is
trivially relocatable.

To implement the constexpr members, the implementation is required to use a union to represent its internal
state when engaged2:
#include <cassert>
#include <iostream>
#include <memory>
#include <new>

2This implementation can be seen compiling on Compiler Explorer here: compiler-explorer.
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#include <type_traits>
#include <utility>

template <class T>
class optional

memberwise_trivially_relocatable
memberwise_replaceable

{
union {

T d_object;
};
bool d_engaged{false};

constexpr T const * address() const noexcept
{ return ::std::addressof(d_object); };

constexpr T * address() noexcept
{ return ::std::addressof(d_object); };

template<class... Args>
constexpr void do_emplace(Args&&... args) {

::new(address()) T(std::forward<Args>(args)...);
d_engaged = true;

}

public:
using value_type = T;

constexpr optional() noexcept {}

constexpr optional(optional const & other)
: d_engaged{other.d_engaged} {

if (d_engaged) {
::new(address()) T( other.value() );

}
}

constexpr optional(optional&& other)
noexcept(std::is_nothrow_move_constructible_v<T>)

: d_engaged{other.d_engaged}
{

if (d_engaged) {
::new(address()) T( std::move(other).value() );

}
}

template<class U = T>
requires (std::is_constructible_v<T, U>

&& !std::is_same_v<std::remove_cvref_t<U>, optional>)
constexpr
explicit(!std::is_convertible_v<U, T>)
optional(U&& arg) {

do_emplace( std::forward<U>(arg) );
}
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constexpr ~optional() {
static_assert(std::is_replaceable_v< optional>== std::is_replaceable_v< T>);
static_assert(

std::is_trivially_relocatable_v< optional>== std::is_trivially_relocatable_v< T>);

if (d_engaged) {
d_object.~T();

}
}

constexpr optional& operator=(optional const & rhs);

constexpr optional& operator=(optional && rhs)
noexcept(std::is_nothrow_move_assignable_v<T>

&& std::is_nothrow_move_constructible_v<T>) {
std::cout << "Assignment\n";
if (!d_engaged) {
if (rhs.d_engaged) {

do_emplace( std::move(rhs.value()) );
}

}
else if (!rhs.d_engaged) {

d_object.~T();
d_engaged = false;

}
else {
value() = rhs.value();

}
return *this;

}

template<class U = T>
constexpr optional& operator=(U && arg) {

std::cout << "Assignment\n";
if (!d_engaged) {
do_emplace( std::forward<U>(arg) );

}
else {

d_object = std::forward<U>(arg);
}
return *this;

}

constexpr T const * operator->() const noexcept
{ assert(d_engaged); return address(); }

constexpr T * operator->() noexcept
{ assert(d_engaged); return address(); }

constexpr T const & operator*() const & noexcept
{ assert(d_engaged); return d_object; }
constexpr T & operator*() & noexcept
{ assert(d_engaged); return d_object; }
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constexpr T && operator*() && noexcept
{ assert(d_engaged); return std::move(d_object); }
constexpr T const&& operator*() const&& noexcept
{ assert(d_engaged); return std::move(d_object); }

constexpr explicit operator bool() const noexcept
{ return d_engaged; }
constexpr bool has_value() const noexcept
{ return d_engaged; }

constexpr T const & value() const &
{ assert(d_engaged); return d_object; }
constexpr T & value() &
{ assert(d_engaged); return d_object; }
constexpr T && value() &&
{ assert(d_engaged); return std::move(d_object); }
constexpr T const&& value() const&&
{ assert(d_engaged); return std::move(d_object); }

};

consteval int number(int n) {
optional<int> x{n};
return x.value();

}

int a[number(5uz)];

int main() {
optional<int> x;
assert(!x);

std::cout << "Assignments to x\n";
x = 3;
auto y = x;

x = 4;
std::cout << "swap x\n";
std::swap(x, y);

assert(3 == *x);
assert(4 == *y);

optional<std::shared_ptr<int>> p1;

std::cout << "Assignments to p\n";
p1 = std::make_shared<int>(3);
auto p2 = p1;

p2 = std::make_shared<int>(4);
std::cout << "swap p\n";
std::swap(p1, p2);

}
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13.4 C++26 implementation using internal array
Using an internal array negates the ability to support constexpr, but this implementation strategy is used
frequently for similar types in other libraries. Managing both trivially relocatable and replaceable properties
with an empty member must be done with care since mistakenly disabling both properties is easy to do when
intending to disable only one or the other.3

#include <cassert>
#include <cstddef>
#include <iostream>
#include <memory>
#include <new>
#include <type_traits>
#include <utility>

template <bool triviallyRelocatable,
bool replaceable>

struct ConditionalProperties {};

template <>
struct ConditionalProperties<false,true> memberwise_replaceable {

~ConditionalProperties(){}
};
template <>
struct ConditionalProperties<true,false> memberwise_trivially_relocatable {

~ConditionalProperties(){}
};
template <>
struct ConditionalProperties<false,false> {

~ConditionalProperties(){}
};

static_assert( std::is_trivially_relocatable_v<ConditionalProperties<true,true>>);
static_assert( std::is_trivially_relocatable_v<ConditionalProperties<true,false>>);
static_assert(!std::is_trivially_relocatable_v<ConditionalProperties<false,true>>);
static_assert(!std::is_trivially_relocatable_v<ConditionalProperties<false,false>>);

static_assert( std::is_replaceable_v<ConditionalProperties<true,true>>);
static_assert(!std::is_replaceable_v<ConditionalProperties<true,false>>);
static_assert( std::is_replaceable_v<ConditionalProperties<false,true>>);
static_assert(!std::is_replaceable_v<ConditionalProperties<false,false>>);

template <class T>
class optional memberwise_trivially_relocatable memberwise_replaceable {

alignas (T)
std::byte d_object[sizeof (T)];
union {

bool d_engaged{false};
ConditionalProperties<std::is_trivially_relocatable_v<T>,

std::is_replaceable_v<T>> enforce_properties;
};

constexpr T const * address() const noexcept
{ return reinterpret_cast<T const *>(d_object); };

3This implementation can be seen compiling on Compiler Explorer here: compiler-explorer.
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constexpr T * address() noexcept
{ return reinterpret_cast<T *>(d_object); };

public:
using value_type = T;

// 22.5.3.2, constructors
constexpr optional() noexcept = default;

constexpr optional(optional const & other) : d_engaged{other.d_engaged} {
if (d_engaged) {
::new(address()) T( other.value() );

}
}

constexpr optional(optional&& other) noexcept(std::is_nothrow_move_constructible_v<T>)
: d_engaged{other.d_engaged}
{

if (d_engaged) {
::new(address()) T( std::move(other).value() );

}
}

template<class U = T>
requires (std::is_constructible_v<T, U>

&& !std::is_same_v<std::remove_cvref_t<U>, optional>)
constexpr
explicit(!std::is_convertible_v<U, T>)
optional(U&& arg) {

::new(address()) T( std::forward<U>(arg) );
d_engaged = true;

}

// 22.5.3.3, destructor
constexpr ~optional() {

static_assert(std::is_trivially_relocatable_v<optional> ==
std::is_trivially_relocatable_v<T>);

static_assert(std::is_replaceable_v<optional> ==
std::is_replaceable_v<T>);

if (d_engaged) {
address()->~T();

}
}

// 22.5.3.4, assignment
constexpr optional& operator=(optional const & rhs);

constexpr optional& operator=(optional && rhs)
noexcept(std::is_nothrow_move_assignable_v<T>

&& std::is_nothrow_move_constructible_v<T>)
{

std::cout << "Assignment\n";
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if (!d_engaged) {
if (rhs.d_engaged) {

::new(address()) T( std::move(rhs.value()) );
rhs.d_engaged = false;
d_engaged = true;

}
}
else if (!rhs.d_engaged) {

address()->~T();
d_engaged = false;

}
else {
value() = rhs.value();

}
return *this;

}

template<class U = T>
constexpr optional& operator=(U && arg) {

std::cout << "Assignment\n";
if (!d_engaged) {
::new(address()) T( std::forward<U>(arg) );
d_engaged = true;

}
else {

*address() = std::forward<U>(arg);
}
return *this;

}

// 22.5.3.7, observers
constexpr T const * operator->() const noexcept
{ assert(d_engaged); return address(); }
constexpr T * operator->() noexcept
{ assert(d_engaged); return address(); }

constexpr T const & operator*() const & noexcept
{ assert(d_engaged); return *address(); }
constexpr T & operator*() & noexcept
{ assert(d_engaged); return *address(); }
constexpr T && operator*() && noexcept
{ assert(d_engaged); return std::move(*address()); }
constexpr T const&& operator*() const&& noexcept
{ assert(d_engaged); return std::move(*address()); }

constexpr explicit operator bool() const noexcept
{ return d_engaged; }
constexpr bool has_value() const noexcept
{ return d_engaged; }

constexpr T const & value() const &
{ assert(d_engaged); return *address(); }
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constexpr T & value() &
{ assert(d_engaged); return *address(); }
constexpr T && value() &&
{ assert(d_engaged); return std::move(*address()); }
constexpr T const&& value() const&&
{ assert(d_engaged); return std::move(*address()); }

};

int main() {
optional<int> x;
assert(!x);

std::cout << "Assignments to x\n";
x = 3;
auto y = x;

x = 4;
std::cout << "swap x\n";
std::swap(x, y);

assert(3 == *x);
assert(4 == *y);

optional<std::shared_ptr<int>> p1;

std::cout << "Assignments to p\n";
p1 = std::make_shared<int>(3);
auto p2 = p1;

p2 = std::make_shared<int>(4);
std::cout << "swap p\n";
std::swap(p1, p2);

}
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14 Proposed Wording
Make the following changes to the C++ Working Draft. All wording is relative to [N4988], the latest draft at
the time of writing.

14.1 Add new identifiers with a special meaning
5.10 [lex.name] Identifiers

Table 4: Identifiers with special meaning [tab:lex.name.special]

final import
memberwise_replaceable memberwise_trivially_relocatable

module override

14.2 Specify trivially relocatable types
Editorial note: We have separated each sentence to improve clarity rather than trying to identify the definition
of so many terms as a single paragraph.

6.8.1 [basic.types.general] General
9 Arithmetic types (6.8.2 [basic.fundamental]), enumeration types, pointer types, pointer-to-member types (6.8.4

[basic.compound]), std::nullptr_t, and cv-qualified (6.8.5 [basic.type.qualifier]) versions of these types are
collectively called scalar types.

Scalar types, trivially copyable class types (11.2 [class.prop]), arrays of such types, and cv-qualified versions of
these types are collectively called trivially copyable types.

Scalar types, trivial class types (11.2 [class.prop]), arrays of such types, and cv-qualified versions of these types
are collectively called trivial types.

Scalar types, trivially relocatable class types (11.2 [class.prop]), arrays of such types, and cv-qualified versions
of these types are collectively called trivially relocatable types.

Scalar types, replaceable class types (11.2 [class.prop]), and arrays of such types are collectively called
replaceable types.

Scalar types, standard-layout class types (11.2 [class.prop]), arrays of such types, and cv-qualified versions of
these types are collectively called standard-layout types.

Scalar types, implicit-lifetime class types (11.2 [class.prop]), array types, and cv-qualified versions of these types
are collectively called implicit-lifetime types.

14.3 Address trivial relocation of lambdas
7.5.6.2 [expr.prim.lambda.closure] Closure types

2 The closure type is declared in the smallest block scope, class scope, or namespace scope that contains the
corresponding lambda-expression.

[Note 1: This determines the set of namespaces and classes associated with the closure type (6.5.4 [ba-
sic.lookup.argdep]). The parameter types of a lambda-declarator do not affect these associated namespaces and
classes. —end note]

3 The closure type is not an aggregate type (9.4.2 [dcl.init.aggr]); it is a structural type (13.2 [temp.param]) if and
only if the lambda has no lambda-capture. An implementation may define the closure type differently from what
is described below provided this does not alter the observable behavior of the program other than by changing:

(3.1) — the size and/or alignment of the closure type,
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(3.2) — whether the closure type is trivially copyable (11.2 [class.prop]), or
(3.x) — whether the closure type is trivially relocatable (11.2 [class.prop]), or
(3.y) — whether the closure type is replaceable (11.2 [class.prop]), or
(3.3) — whether the closure type is a standard-layout class (11.2 [class.prop]).

An implementation shall not add members of rvalue reference type to the closure type.

14.4 Update grammar to support memberwise contextual keywords
11.1 [class.pre] Preamble

1 A class is a type. Its name becomes a class-name (11.3 [class.name]) within its scope.

class-name :
identifier
simple-template-id

A class-specifier or an elaborated-type-specifier (9.2.9.5 [dcl.type.elab]) is used to make a class-name. An object
of a class consists of a (possibly empty) sequence of members and base class objects.

class-specifier :
class-head { member-specificationopt }

class-head:
class-key attribute-specifier-seqopt class-head-name class-virt-specifieropt class-property-specifier-seqopt

base-clauseopt
class-key attribute-specifier-seqopt base-clauseopt

class-head-name :
nested-name-specifieropt class-name

class-property-specifier-seq:
class-property-specifier class-property-specifier-seqopt

class-property-specifier:
final
memberwise_replaceable
memberwise_trivially_relocatable

class-virt-specifier :
final

class-key :
class
struct
union

A class declaration where the class-name in the class-head-name is a simple-template-id shall be …
4 [Note 2: The class-key determines whether the class is a union (11.5 [class.union]) and whether access is public

or private by default (11.8 [class.access]). A union holds the value of at most one data member at a time. —end
note]

5 If a class is marked with the class-virt-specifier final and it appears as a class-or-decltype in a base-clause (11.7
[class.derived]), the program is ill-formed. Whenever a class-key is followed by a class-head-name, the identifier
final, and a colon or left brace, final is interpreted as a class-virt-specifier.
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5 The same class-property-specifier shall not appear multiple times within a single class-property-specifier-seq.

Whenever a class-key is followed by a class-head-name, one of the identifiers final, memberwise_replaceable, or
memberwise_trivially_relocatable, and a colon or left brace, the identifier is interpreted as a class-property-
specifier.

[Example 2:
struct A;
struct A final {}; // OK, definition of struct A,

// not value-initialization of variable final

struct X {
struct C { constexpr operator int() { return 5; } };
struct B finalmemberwise_trivially_relocatable : C{}; // OK, definition of nested class B,

// not declaration of a bit-field
// member finalmemberwise_trivially_relocatable

};

—end example]
u If a class is marked with the class-virt-specifierclass-property-specifier final and itthat class appears as a class-

or-decltype in a base-clause (11.7 [class.derived]), the program is ill-formed.
6 [Note 3: Complete objects of class type have nonzero size. Base class subobjects and members declared with

the no_unique_address attribute (9.12.12 [dcl.attr.nouniqueaddr]) are not so constrained. —end note]

14.5 Specification for trivially relocatable classes
Design note:
Declaring a class as trivially relocatable is possible, by means of the memberwise_trivially_relocatable
specifier, even if that class has user-provided special members. Note that such a declaration is not permitted
to break the encapsulation of members or bases and allow for their trivial relocation when they, themselves,
are not trivially relocatable.

11.2 [class.prop] Properties of classes
2 A trivial class is a class that is trivially copyable and has one or more eligible default constructors (11.4.5.2

[class.default.ctor]), all of which are trivial.

[Note 1: In particular, a trivially copyable or trivial class does not have virtual functions or virtual base classes.
—end note]

a A class is eligible for trivial relocation unless it has

— any virtual base classes, or
— a base class that is not a trivially relocatable class, or
— a non-static data member of a non-reference type that is not of a trivially relocatable type.

b A class C is eligible for replacement unless it has

— a base class that is not a replaceable class, or
— a non-static data member that is not of a replaceable type,
— no constructor that would be selected when an object of type C is direct-initialized from an xvalue of type

C,
— no assignment operator that would be selected when an object of type C is assigned from an xvalue of type

C,
— no destructor.
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c A class C is a trivially relocatable class if it is eligible for trivial relocation and

— has a class-trivially-relocatable-specifier, or
— is a union with no user-declared special member functions, or
— satisfies all of the following:

— when an object of type C is direct-initialized from an xvalue of type C, overload resolution would select
a constructor that is neither user-provided nor deleted, and

— when an xvalue of type C is assigned to an object of type C, overload resolution would select an
assignment operator that is neither user-provided nor deleted, and

— it has a destructor that is neither user-provided nor deleted.
d [Note 2: Accessibility of the special member functions is not considered when establishing trivial relocatability.

—end note]
e [Note 3: A type with non-static data members that are const-qualified or are references can be trivially relocat-

able. —end note]
f [Note 4: Trivially copyable classes are trivially relocatable unless they have deleted special members. —end

note]
g A class C is a replaceable class if it is eligible for replacement and

— has a class-replaceable-specifier, or
— is a union with no user-declared special member functions, or
— satisfies all of the following:

— when an object of type C is direct-initialized from an xvalue of type C, overload resolution would select
a constructor that is neither user-provided nor deleted, and

— when an xvalue of type C is assigned to an object of type C, overload resolution would select an
assignment operator that is neither user-provided nor deleted, and

— it has a destructor that is neither user-provided nor deleted.
h [Note 5: Accessibility of the special member functions is not relevant. —end note]
i [Note 6: Trivially copyable classes are replaceable unless they have deleted special members. —end note]
3 A class S is a standard-layout class if it:

(3.1) …

14.6 Add feature macros
Add a __cpp_trivial_relocatability feature-test macro to the table in 15.11 [cpp.predefined], set to the date
of adoption.

…

14.7 Library wording
Design note: The first paragraph explicitly captures the status quo that these class properties — the whole
set specified in 11.2 [class.prop] — are deliberately left as a quality of implementation feature.

The second paragraph addresses permission to add the new annotation wherever an implementation might
find it useful, without being constrained by its absence from the library specification, much like we grant
permission to add noexcept specifications to functions of the implementation’s choosing. The specification
really needs only the second paragraph, but adding a section with the first paragraph gives us somewhere to
hang the wording.
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16.4.6.X Properties of library classes [library.class.props]
1 Unless clearly stated, it is unspecified whether any class described in Clause 17 through Clause 34 and Annex

D is a trivial class, a trivially copyable class, a trivially relocatable class, a standard-layout class, or an implicit-
lifetime class (11.2 [class.prop]).

2 An implementation may add the class-property-specifier memberwise_trivially_relocatable to any class
whose implementation is eligible for trivial relocation.

3 An implementation may add the class-property-specifier memberwise_replaceable to any class whose imple-
mentation is eligible for replacement.

14.8 Add new type traits
21.3.3 [meta.type.synop] Header <type_traits> synopsis

template< class T >
struct is_replaceable;

template< class T >
struct is_trivially_relocatable;

template< class T >
inline constexpr bool is_replaceable_v = is_replaceable<T>::value;

template< class T >
inline constexpr bool is_trivially_relocatable_v = is_trivially_relocatable<T>::value;

21.3.5.4 [meta.unary.prop] Type properties

Template Condition Preconditions
template<class T> struct
is_replaceable;

T is a replaceable type (6.8.1
[basic.types.general])

remove_all_extents_t<T> shall
be a complete type or cv void

template<class T> struct
is_trivially_relocatable;

T is a trivially relocatable type (6.8.1
[basic.types.general])

remove_all_extents_t<T> shall
be a complete type or cv void

14.9 Specify the compiler-magic functions
Add to the <memory> header synopsis in 20.2.2 [memory.syn]p3.

20.2.2 [memory.syn] Header <memory> synopsis

// 20.2.6, explicit lifetime management
template<class T>
T* start_lifetime_as(void* p) noexcept; // freestanding

template<class T>
const T* start_lifetime_as(const void* p) noexcept; // freestanding

template<class T>
volatile T* start_lifetime_as(volatile void* p) noexcept; // freestanding

template<class T>
const volatile T* start_lifetime_as(const volatile void* p) noexcept; // freestanding

template<class T>
T* start_lifetime_as_array(void* p, size_t n) noexcept; // freestanding
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template<class T>
const T* start_lifetime_as_array(const void* p, size_t n) noexcept; // freestanding

template<class T>
volatile T* start_lifetime_as_array(volatile void* p, size_t n) noexcept; // freestanding

template<class T>
const volatile T* start_lifetime_as_array(const volatile void* p,

size_t n) noexcept; // freestanding

template <lass T>
void swap_value_representations(T& a, T& b); // freestanding

template <class T>
T* trivially_relocate(T* begin, T* end, T* new_location); // freestanding

template <class T>
constexpr T* relocate(T* begin, T* end, T* new_location); // freestanding

20.2.6 [obj.lifetime] Explicit lifetime management

template <class T>
void swap_value_representations(T& a, T& b);

1 Mandates: T is a complete object type, and is_trivially_relocatable_v<T> && is_replaceable_v<T> is
true.

3 Postconditions: a has the value representation that b had prior to this function call; b has the value representation
that a had prior to this function call; both objects and all their base class subobjects retain their original dynamic
types.

— For every non-base object c within a with a corresponding object d within b, c has the value representation
that d had prior to this function call and d has the value representation that c had prior to this function
call. If c and d are unions, the active member of each is the member that was the active member of the
other one prior to this function call.

— For every trivially relocatable object x within a or b, create a new object y at the same relative location
within the other enclosing object having the value x had prior to this function call and end the lifetime of
x. If y is a union, its active member is the same member that x had prior to this function call.

— End the lifetime of all other non-base objects within a and b.
4 Throws: Nothing.
h Remarks: No constructors, destructors, or assignment operators are invoked.

template <class T>
T* trivially_relocate(T* begin, T* end, T* new_location);

a Mandates: T is a complete type, and is_trivially_relocatable_v<T> && !is_const_v<T> is true.
c Preconditions:

(c.1) — [begin, end) is a valid range.
(c.2) — [new_location, new_location + (end - begin)) denotes a region of storage that is a subset of the region

of storage reachable through (6.8.4 [basic.compound]) new_location and suitably aligned for the type T.
d Postconditions:

No effect if new_location == begin.

Otherwise, the range denoted by [new_location, new_location + (end - begin)) contains objects (including
subobjects) whose lifetime has begun and whose object representations are the original object representations of

46

https://wg21.link/obj.lifetime
https://wg21.link/basic.compound


the corresponding objects in the source range [begin, end). If any of the aforementioned objects is a union, its
active member is the same as that of the corresponding union in the source range. If any of the aforementioned
objects has a non-static data member of reference type, that reference refers to the same entity as does the
corresponding reference in the source range. The lifetime of the original objects in the source range has ended.

e Returns: new_location + (end - begin).
f Throws: Nothing.
g Complexity: Linear in the length of the source range.
h Remarks: No constructors or destructors are invoked.

template <class T>
constexpr T* relocate(T* begin, T* end, T* new_location);

w Mandates: is_trivially_relocatable_v<T> || is_nothrow_move_constructible_v is true
x Effects: If not called during constant evaluation and T is trivially relocatable, then has effects equivalent to

trivially_relocate(begin, end, new_location); otherwise, for each element in [begin, end), move con-
structs that object to the corresponding location in [new_location, new_location + (end - begin)) and then
runs that element’s destructor.

y Remarks: Overlapping ranges are supported.
e Returns: new_location + (end-begin).
z Throws: Nothing.

14.10 Require the optimization for std::swap
22.2.2 [utility.swap] swap

template<class T>
constexpr void swap(T& a, T& b) noexcept(see below);

1 Constraints: is_move_constructible_v<T> is true, and is_move_assignable_v<T> is true.
2 Preconditions: Type T meets the Cpp17MoveConstructible (Table 31) and Cpp17MoveAssignable (Table 33)

requirements.
3 Effects: Exchanges values stored in two locations.

If not called during constant evaluation and is_trivially_relocatable_v<T> && is_replaceable_v<T> is
true, then this function has effects equivalent to swap_value_representations(a, b).

4 Remarks: The exception specification is equivalent to:
is_nothrow_move_constructible_v<T> && is_nothrow_move_assignable_v<T>

14.10.1 Feature-test macro

Add a new __cpp_lib_trivially_relocatable feature-test macro in [version.syn]:
#define __cpp_lib_trivially_relocatable 20XXXXL // also in <memory>, <type_traits>
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