
Implication for C++

Document #: WG21 P2971R0
Date: 2023–09–14
Audience: EWG ⇒ CWG ⇒ LWG
Reply to: Walter E. Brown <webrown.cpp@gmail.com>

Contents

1 What Is Implication? 1
2 What Isn’t Implication? 3
3 Implication Intuition 3
4 Is Implication Useful? 4
5 Why a Core Language Feature? . 5
6 Design Decisions 6
7 Standard Library Impact 7

8 Implementation Experience . . . 7
9 Proposed Core Wording 7
10 Proposed Library Wording 9
11 Acknowledgments 10
12 Bibliography 10
13 Document Chronology 10

Abstract

This paper proposes to introduce operator=>, the implication operator, into the C++ core
language. Both formal and informal (intuitive) specifications of this operator are provided,
as is rationale and implementation experience toward its adoption. Core language wording is
proposed along with a small amount of library wording to take account of this new operator.

Younger scientists are extremely sensitive to the moral implications of all they do.
— KURT VONNEGUT, JR.

A semantic definition of a particular set of command types, then, is a rule for
constructing . . . a verification condition on the antecedents and consequents.

— ROBERT W. FLOYD

Bound by the Oath against lying, Aes Sedai had carried the halftruth, the quarter-
truth and the implication to arts.

— ROBERT JORDAN, né JAMES O. RIGNEY, JR.

1 What Is Implication?

There are 24 = 16 possible binary operators taking truth values as operands. Of these, C++
supports in its core language only two such binary logical operators, namely && and ||.1 These
two operators’ semantics, very well-known to C++ programmers, are often taught or specified via
a truth table such as the following:

Copyright © 2023 by Walter E. Brown. All rights reserved.
1These operators are also identified via the C++ alternative tokens and and or, respectively. See [lex.digraph], especially

[tab:lex.digraph] therein.

1

mailto:webrown.cpp@gmail.com

2 P2971R0: Implication for C++

Table 1: Customary definitions2 of operators && and ||

p q p&&q p||q

true true true true
true false false true
false true false true
false false false false

Implication is the name given to another of the 16 possible binary logical operators. In the
parlance of (discrete) mathematics and/or logic, it is frequently denoted via a right-arrow symbol
such as =⇒ .3 Implication’s left and right operands are commonly termed the antecedent and
the consequent, respectively, of the operator.4 An implication expression of the form p =⇒ q

(p=>q5 in code font) is read as “p implies q.”

With antecedent p and consequent q, implication’s semantics are specified thusly:

Table 2: Definition of implication operator

p q p=>q

true true true
true false false
false true true
false false true

While perhaps not obvious from a casual inspection, the semantics of our proposed operator=>
are identical to those of a corresponding predicate of the form (!p)||q.6 However, such equiva-
lence is easily demonstrated via a truth table:

Table 3: Two ways of writing an implication

p q !p||q p=>q

true true true true
true false false false
false true true true
false false true true

Finally, we note that it is a common practice, in written mathematics and logic as well
as (especially) in everyday usage, to express an implication in prose. Such prose expression
typically takes the form “If antecedent, then consequent.” The equivalent prose forms “antecedent

2Some disciplines prefer to use digits (typically 0 and 1) or other symbols to denote truth values. In this paper, we will
consistently use C++’s notation.

3Other symbols in relatively common use for implication include the glyphs ⊢ (spoken as turnstile or nail) and ∴
(therefore). The Eiffel programming language uses the infix token implies for its implication operator, Prolog uses a right
arrow ->, and VBA uses Imp for bitwise implication. All these seem inherently unsuitable for our purpose in this paper
and so will not be further explored herein.

4In some contexts, the antecedent is instead known as the premise or hypothesis, while the consequent is instead
labelled the conclusion or consequence.

5Note that we have opted to use => as our token to denote implication. We make this choice based on its self-evident
similarity in appearance to the traditional =⇒ operator.

6We recognize that the parentheses in the expression (!p)||q are redundant. However, it has been our experience
that many (especially less experienced) C++ programmers are uncertain of the relative precedence of the not and or
operators. Having clarified the intent, we will eschew such redundancy in the remainder of this paper.

P2971R0: Implication for C++ 3

only if consequent” and “consequent if antecedent” (note the order of the latter’s operands) are
encountered somewhat less frequently, but are certainly not unusual.7

2 What Isn’t Implication?

While attempting to discuss implication with numerous students and colleagues over the
years, we have frequently encountered considerable confusion. Such confusion has most often
arisen because the commonplace use of “if” to introduce a prose implication is at first erroneously
perceived to overlap (or sometimes even to conflict) with the customary programming language
use of the keyword if to introduce a conditional flow of control.8

Because these overlapping uses are entirely unrelated, let’s untangle any possible confusion
caused by recycling “if” for multiple programming purposes:

• When used to affect inter-statement control flow, programming languages typically use
the keyword if in the English sense of “when” or “in the event that”: “When the following
predicate is true, then execute the subsequent statement block. When the predicate is
instead false, then execute the alternative statement block (if any).” No implication is
involved here, just a commonplace conditional flow of control.

• In contrast, an implication is a bool-producing binary operator (operator=> in our nomen-
clature) that arises strictly in the context of an expression. By itself, it has no effect on any
flow of control, except that it may short-circuit (avoid) evaluating its right operand in the
same manner as do the && and || operators.

In brief, the notion of implication is unrelated to that of conditional flow of control. Their only
interaction may occur when an implication comprises all or part of an if statement’s predicate,
as in a statement that begins if(p=>q)· · ·.

3 Implication Intuition

Most programmers seem to have no trouble comprehending implication’s semantics when
an antecedent’s value is true; it generally seems clear to them that the outcome in that case
depends entirely on the truth value of the consequent. However, more than a few seem to find it
unintuitive that the operator’s result is uniformly true whenever an antecedent’s value is false,
regardless of the consequent’s truth value.

One way of understanding implication is as a promise. Let us consider the following example:
“If it is raining, then I will carry an umbrella.”

Under what circumstances will have I failed to keep my promise? Clearly I’ve broken my
promise when both (a) it is raining and (b) I don’t carry an umbrella. In other words, I’ve lied
when the implication’s antecedent (“it’s raining”) is true yet its consequent (“I’m carrying an
umbrella”) is false; there is no other state of affairs in which I can legitimately be accused of deceit
or dishonesty.

Therefore, if you’re going to accuse me of lying, you must have evidence of my perfidy; this
insight is captured in the second row (highlighted below) of an implication’s truth table. Otherwise,
as shown in the remaining three rows of implication’s truth table, you can’t prove that I’ve failed
to keep my word and thus must conclude that I’ve been faithful to my promise.9 In particular,

7There are also other, less obvious, prose forms, such as “All antecedents are consequents.” Even more convoluted
forms are possible, often involving negation of one or both operands. For example, it can be useful to recognize the
equivalence of the “if p then q” form, known as the positive, with the contrapositive form “if not q then not p.” Moreover,
English words such as “when,” “unless,” “necessary,” and “sufficient” can conceal and yet induce an implication.

8More advanced students have dragged even the ternary conditional operator (· · · ? · · · : · · ·) into the conversation!
9Otherwise, you risk slandering me (!) by making a false accusation.

4 P2971R0: Implication for C++

if it’s not raining (captured in the last two rows of the table), it just doesn’t matter whether I’m
carrying an umbrella and so my promise is intact in even those cases.

Accordingly, if we summarize this state of affairs in tabular form (see below), we discover that
such a table is isomorphic to the truth table for implication. To see the correspondence, first let
p denote “raining?” and q denote “umbrella?”, after which the implication p=>q (equivalently,
!p||q) will denote “faithful?”:

Table 4: Truth table for the example promise

raining? umbrella? faithful?

yes yes yes
yes no no (!)
no yes yes
no no yes

4 Is Implication Useful?

Implication is undeniably useful, as it is heavily employed by C++’s own specification! Here are
several examples, mostly from Working Draft [N4958], each first citing the textual specification
and then illustrating the corresponding desired code10 using an implication expression.

• From [unique.ptr.single.general]/2:
“If the deleter’s type D is not a reference type, D shall meet the Cpp17Destructible require-
ments.”
In code: static_assert(nonreference_type<D> => destructible_type<D>);

• From [optional.relops]/2:
“Returns: If x.has_value() != y.has_value(), false; otherwise if x.has_value() ==
false, true; otherwise *x == *y.”
In code: return (x.has_value() == y.has_value()) and (x.has_value()=>*x == *y);

• From [out.ptr.t]/3:
“If Smart is a specialization of shared_ptr and sizeof...(Args) == 0, the program is
ill-formed.”
In code: static_assert(shared_ptr_type<Smart> => sizeof...(Args) > 0uz));

• From Table 47 [tab:meta.unary.prop]:
Preconditions for type trait is_final: “If T is a class type, T shall be a complete type.”
In code: requires(class_like_type<T> => complete_obj_type<T>)

• From Table 47 [tab:meta.unary.prop]:
Preconditions for type traits is_empty, has_virtual_destructor, etc.: “If T is a non-union
class type, T shall be a complete type.”
In code: requires(class_type<T> => complete_obj_type<T>)

• From [N4908]’s [propagate_const.requirements]/1:
“T shall be an object pointer type or a class type for which decltype(*declval<T&>()) is
an lvalue reference; otherwise the program is ill-formed.”
In code: static_assert((obj_ptr_type<T> or class_like_type<T>) and
(class_like_type<T> => requires(T & t) requires lref_type<decltype(*t)>;));

10The code is taken from the author’s private implementation of the standard library. In this implementation, the
author has freely experimented with several adaptations that match the spirit, but not always the letter, of the library
as specified by any C++ Working Draft. For example, bool-returning type traits have been (a) largely reformulated as
concepts and (b) consistently renamed with a suffix _type.

P2971R0: Implication for C++ 5

5 Why a Core Language Feature?

In brief, implication must be a core language feature because users can’t write a function
that accomplishes the equivalent. Just as users can’t write a function that provides the exact
semantics of native operator&& or operator||, this inability is due to implication’s desired
short-circuiting behavior.

The best (actually, the only) faithful implication implementions we have found to date involve a
function-like macro such as one of these:

#define IMPLIES(p,q) (!(p) or (q))
#define IMPLIES(p,q) ((p) ? (q) : true)

A different possible implementation strategy would take advantage of [conv.prom]/7 (integral
promotion) or [conv.integral]/2 (integral conversion) rules, but these would sacrifice short-circuit
evaluation:

#define IMPLIES(p,q) ((p) <= (q))
#define IMPLIES(p,q) (int(p) <= int(q))

In any event, any macro implementation of course brings with it all the usual well-known issues11

associated with any macro’s definition and use. In addition to potential comma-confusion in
non-trivial expressions, a macro does not easily afford operator overloading, participation in a
fold expression, etc. Perhaps most importantly, no macro solution can be completely type-safe.

In C++, we’ve been taught that “The first rule about macros is: Don’t use them unless you have
to.”12 Alas, when it comes to implication, it seems we have to, as current C++ seems to afford us
no viable alternative. Treating implication as a first-class core language operator would remedy
all such drawbacks and lacks.

Finally, we note a colleague’s suggestion to provide implication’s semantics via a function
template along the following lines:

1 template< class F >
2 requires requires(F f) { {f()} -> convertible_to<bool>; }
3 bool
4 implies(bool antecedent, F consequent)
5 {
6 return not antecedent or (bool)consequent();
7 }

While such an implementation does mimic the short-circuiting we seek, it does so in a very clumsy
manner: It requires that the implication’s consequent be encoded via a bool-returning callable
rather than as a simple bool value. Although this approach theoretically allows the consequent’s
evaluation only when needed, we consider this an unacceptably awkward workaround for a
conceptually simple feature.

Moreover, a call to such a function template would conceivably involve, for example, a niladic
lambda with a bool-valued capture that it could return; however, such capture would itself
evaluate the very expression whose evaluation we seek to postpone until needed. Few (if any)
programmers would consider doing this to obtain a user-provided operator&& or operator||,
and we shouldn’t do so for an operator=> either.

11See, for example, Mats Petersson’s answer to “Why are preprocessor macros evil...?” at https://stackoverflow.com/
questions/14041453/why-are-preprocessor-macros-evil-and-what-are-the-alternatives and Bjarne Stroustrup’s answer
to “So, what’s wrong with using macros?” at https://www.stroustrup.com/bs_faq2.html#macro.

12Bjarne Stroustrup: The C++ Programming Language, Special Edition. Addison-Wesley, 2000. ISBN: 0201700735.

https://stackoverflow.com/questions/14041453/why-are-preprocessor-macros-evil-and-what-are-the-alternatives
https://stackoverflow.com/questions/14041453/why-are-preprocessor-macros-evil-and-what-are-the-alternatives
https://www.stroustrup.com/bs_faq2.html#macro

6 P2971R0: Implication for C++

6 Design Decisions

As stated above, we intend the semantics of our new implication operator in an expression
p=>q to be identical to those of the equivalent expression !p||q. This intent drives our design
decisions regarding this new operator=>. Specifically, we propose:

• That the implication operator have precedence identical to that of operator||.

• That the implication operator be left-associative.

• That the implication operator be evaluated in a short-circuit manner, i.e., that it not evaluate
its consequent (right operand) whenever its antecedent’s (left operand’s) value suffices to
determine the operator’s result.

Of these three decisions, the last seems least controversial. Short-circuit evaluation13 for
logical operators has considerable precedent in C++, where it has always been the norm for
operators && and ||. It is also commonly found in other programming languages, where it
is sometimes known as minimal evaluation, semistrict evaluation, or McCarthy evaluation of
conditional connectives. Some have argued that short-circuit evaluation ought be avoided because,
for example, they “complicate the formal reasoning about programs”;14 however, this seems to
have been (and to remain) a minority opinion.

Left-associativity seems also to be an uncontroversial decision. In C++, all binary operators
are left-associative; we have found no reason to depart from this long-established pattern. It
simplifies teaching the language, too, to have this consistency with the other binary operators.

When it comes to determining the precedence of this new boolean operator, we considered its
possible interaction with the existing boolean && and || operators. There seems little guidance
available from other programming languages, because we know of only a few that support this
feature.15 In consequence, this operator is less commonly taught to programmers, leading to little
demand for it, and so we have a classical vicious circle. We decided to match the precedence of
operator|| (rather than opt for any higher or lower precedence) so that existing expressions of
the form !p||q could be essentially mechanically replaced by a p=>q implication, which has
identical (but far more obvious) semantics. We find this the most compelling reason for our
recommendation.16

Finally, during our 60 years of programming, we have relatively rarely encountered implication
operators combined in an expression with other boolean operators. Moreover, we believe that
such combinations deserve disambiguation via parentheses as an aid to reader comprehension.
Accordingly, we provide a Recommended practice paragraph to this effect in our Proposed Core
Wording (§9) below.

13That is, “evaluation stops once the result is known.” See “A comprehensive guide to Eiffel syntax” at https://eiffel-
guide.com/.

14Dijkstra, Edsger W.: “On a somewhat disappointing correspondence.” 1987-05-25. Transcribed at https://www.cs.
utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1009.html

15See https://softwareengineering.stackexchange.com/questions/184089/why-dont-languages-include-implication-
as-a-logical-operator for some discussion of this lack. Note that, after considerable point-and-counterpoint arguments,
the topic has no definitive conclusion. Even the most popular answer, which argues against such an operator, is refuted
point-by-point in subsequent answers and remarks.

16This seems to us equivalent to the argument leading to std::min and std::max becoming part of the C++ standard
library. These are near-trivial algorithms, easily hard-coded where needed, yet requiring special attention to recognize
each time encountered. (They’re also easy to get wrong.)

https://eiffel-guide.com/
https://eiffel-guide.com/
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1009.html
https://www.cs.utexas.edu/users/EWD/transcriptions/EWD10xx/EWD1009.html
https://softwareengineering.stackexchange.com/questions/184089/why-dont-languages-include-implication-as-a-logical-operator
https://softwareengineering.stackexchange.com/questions/184089/why-dont-languages-include-implication-as-a-logical-operator

P2971R0: Implication for C++ 7

7 Standard Library Impact

The introduction into the core language of an implication operator seems to require no
mandatory adjustments to any specification in the C++23 standard library. On its face, then, an
implication operator is a pure extension to the existing language.

However, it does seem desireable to account for the new implication operator’s existence within
the specification of the booleantestable concept.17 Since only the boolean && and || operators
are today considered therein, we propose (in §10) wording to augment that specification with
requirements for operator=>’s correct behavior as well.

Of course, there are further opportunities18 to apply the new operator=> in the standard
library’s current specification. For the time being, we have opted not to do so until our colleagues
have gained more experience with this new core language feature.

We note here for future reference that any predicate of the form !p||q can without loss of
expressiveness be immediately mechanically rewritten in the new equivalent form p=>q. Such
rewriting seems strictly editorial, and therefore leave it to the discretion of the WG21 Project
Editor and/or LWG participants whether to make such changes now, later, or ever.

In contrast, each occurrence of a predicate in the similar-yet-different form a||!b must
be individually inspected to decide whether the operands’ order of evaluation matters to the
expression’s semantics. Only when it is determined that the initial expression is equivalent to
!b||a (i.e., the operands may be swapped without compromising the intent) may a||!b be
rewritten as b=>a.

Finally, we note the possibility of one or more future additions to the standard library tailored to
this new operator. For example, we might for completeness want to augment <functional> with a
class template (named, say, logical_implication) akin in intent and design to <functional>’s
existing logical_or and logical_and templates, but adapting operator=> instead.

8 Implementation Experience

The basic functionality of the proposed operator=> feature is being implemented in a private
fork of Herb Sutter’s cppfront/cpp2 project.19 It has been to date an entirely straightforward effort
to do so, with the bulk of the invested time devoted to testing. As seems always to be the case,
more test cases are needed, but there has so far been no observed impact on any pre-existing
code.

Overloading the proposed operator=> has not yet been implemented. However, no significant
implementation concerns about this (or about any other part of this proposal) have to date been
voiced during private discussions20 with C++ compiler providers about this proposed feature.

9 Proposed Core Wording21

9.1 Insert => into the list of tokens defining the grammar term operator-or-punctuator in
[lex.operators] (5.12). (We recommend the new operator be inserted so as to follow immedi-
ately after the existing || operator in that list.) Also make the identical change in [gram.lex].

17See [concept.booleantestable] (18.5.2).
18The examples provided in §4 illustrate some of these opportunities.
19See the project source code at https://github.com/hsutter/cppfront, its associated wiki at https://github.com/

hsutter/cppfront/wiki, and Sutter’s C++Now2023 progress report at https://youtu.be/fJvPBHErF2U.
20As of this writing, such discussions are ongoing and further feedback is actively solicited.
21All proposed additions and deletions are based on [N4958]. Editorial instructions and drafting notes look like this .

https://github.com/hsutter/cppfront
https://github.com/hsutter/cppfront/wiki
https://github.com/hsutter/cppfront/wiki
https://youtu.be/fJvPBHErF2U

8 P2971R0: Implication for C++

9.2 Amend bullet [intro.races]/7.1.2 as shown below.

(7.1.2) — A is the left operand of a built-in logical AND (&&, see 7.6.14), or logical OR (||, see
7.6.15), or IMPLICATION (=>, see 7.6.15) operator, or

9.3 Insert => into the list of tokens defining the grammar term fold-operator in [expr.prim.fold]
(7.5.6)/1. (We recommend the new operator be inserted so as to follow immediately after the
existing || operator in that list.) Also make the identical change in [gram.lex].

9.4 Retitle [expr.log.or] (7.6.15) as shown below.

7.6.15 Logical OR and IMPLICATION operators [expr.log.or]

9.5 Extend the logical-or-expression grammar rule preceding [expr.log.or] (7.6.15)/1 as shown
below. Also make the identical change in [gram.lex].

logical-or-expression:
logical-and-expression
logical-or-expression || logical-and-expression
logical-or-expression => logical-and-expression

9.6 Edit [expr.log.or] (7.6.15)/2 and insert new paragraphs as shown below.

2 The => operator groups left-to-right. The operands are both contextually converted to bool
(7.3). The result is false if the left operand (the antecedent) is true and the right operand
(the consequent) is false; otherwise the result is true. Like the || operator, the => operator
guarantees left-to-right evaluation; moreover, the consequent is not evaluated if the antecedent
evaluates to false.

3 [Note 1: The semantics of an expression of the form p=>q are precisely those of an expression of the form !p||q.

— end note]

24 TheFor each of these operators, the result is a bool. If the second expression is evaluated, the
first expression is sequenced before the second expression (6.9.1).

5 Recommended practice: Implementations should issue a warning upon encountering a paren-
thesis-free logical-or-expression that applies both of these operators.

9.7 Insert => into the list of tokens defining the grammar term operator in [over.oper.general]
(12.4.1)/1. (We recommend the new operator be inserted so as to follow immediately after the
existing || operator in that list.) Also make the identical change in [gram.over].

P2971R0: Implication for C++ 9

9.8 Extend [over.built] (12.5)/23 with a new row where and as shown below.

23 — There also exist candidate operator functions of the form
bool operator!(bool);
bool operator&&(bool, bool);
bool operator||(bool, bool);
bool operator=>(bool, bool);

9.9 Extend the constraint-logical-or-expression grammar rule preceding [temp.pre] (13.1)/2 as
shown below. Also make the identical change in [gram.temp].

constraint-logical-or-expression:
constraint-logical-and-expression
constraint-logical-or-expression || constraint-logical-and-expression
constraint-logical-or-expression => constraint-logical-and-expression

9.10 Insert a new bullet immediately following [temp.constr.normal] (13.5.4)/1.2 as shown below,
then renumber the subsequent bullets.

(1.3) — The normal form of an expression E1=>E2 is the disjunction (13.5.2.2) of the negated
([expr.unary.op]) normal form of E1 and the normal form of E2.
(1.31.4) — . . .

9.11 Extend [tab:temp.fold.empty] (Table 20) as shown below.

Operator Value when pack is empty
&& true
|| false
=> true
, void()

10 Proposed Library Wording

10.1 Edit the subbullets of [concept.booleantestable] (18.5.2)/2 as shown below.

(2.1) — either remove_cvref_t<T> is not a class type, or a search for the names operator&&,
and operator||, and operator=> in the scope of remove_cvref_t<T> finds nothing; and

(2.2) — argument-dependent lookup (6.5.4) for the names operator&&, and operator||, and
operator=> with T as the only argument type finds no disqualifying declaration (defined below).

10.2 Edit [concept.booleantestable] (18.5.2)/6 as shown below.

10 P2971R0: Implication for C++

6 [Note 1: The intention is to ensure that, given two types T1 and T2 that each model boolean-testable-impl, the &&, and

||, and => operators within the expressions declval<T1>() && declval<T2>(), and declval<T1>()||declval<T2>(),

and declval<T1>()=>declval<T2>() resolve to the corresponding built-in operators. — end note]

11 Acknowledgments

Many thanks to the readers of early drafts of this proposal for their thoughtful comments; the
paper was substantively improved due to your much-appreciated feedback.

This paper’s central theme was first presented publicly during the author’s opening keynote
address (https://youtu.be/bgyY3x8y4PE) at the Core C++ 2022 conference; special thanks to that
conference’s organizers for inviting that talk and to all its attendees for their enthusiastic reception.
It was truly a never-to-be-forgotten experience.

12 Bibliography

[N4908] Thomas Köppe: “Working Draft, C++ Extensions for Library Fundamentals, Version 3.” ISO/IEC
JTC1/SC22/WG21 document N4908 (2022–03 mailing), 2022–02–20. https://wg21.link/n4908.

[N4958] Thomas Köppe: “Working Draft, Standard for Programming Language C++.” ISO/IEC JTC1/
SC22/WG21 document N4958 (2023–08 mailing), 2023–08–14. https://wg21.link/n4958.

13 Document Chronology

Rev. Date Changes

0 2023–09–14 • Published as P2971R0, 2023–09 mailing.

https://youtu.be/bgyY3x8y4PE
https://wg21.link/n4908
https://wg21.link/n4958

	Title
	Contents
	Abstract
	1 What Is Implication?
	2 What Isn't Implication?
	3 Implication Intuition
	4 Is Implication Useful?
	5 Why a Core Language Feature?
	6 Design Decisions
	7 Standard Library Impact
	8 Implementation Experience
	9 Proposed Core Wording
	10 Proposed Library Wording
	11 Acknowledgments
	12 Bibliography
	13 Document Chronology

