
Document #: P2947R0
Date: 2023-07-17
Project: Programming Language C++
Audience: SG21, SG23
Reply-to:

Andrei Zissu <andrziss@gmail.com>
Ran Regev <regev.ran@gmail.com>
Gal Zaban <galzaban@gmail.com>
Inbal Levi <sinbal2l@gmail.com>

Contracts must avoid disclosing
sensitive information

Contents
Contents
Abstract
Motivation
Q&A
Summary of Proposed Changes
Impact of the Changes
Wording
References

Abstract
[P2811R7] proposes comment() and source_location() as properties of a
std::contracts::contract_violation object. [P2811R7] allows for these properties to
not be populated (and return empty strings).
This paper proposes that an implementation that does not provide an opt out for leaving these
properties unpopulated would be a non-conforming implementation.

1

mailto:andrziss@gmail.com
mailto:regev.ran@gmail.com
mailto:galzaban@gmail.com
mailto:sinbal2l@gmail.com
https://isocpp.org/files/papers/P2811R7.pdf
https://isocpp.org/files/papers/P2811R7.pdf


Motivation
Enabling the source_location and comment strings to be present in shipped binaries
might reveal sensitive information to anyone in possession of such a binary, such as file and
function names in source_location and CCA texts in comment.

It is accepted that it is impossible to prevent reverse engineers from analyzing binaries.
However, there is a significant advantage to reverse engineering a binary with symbols or debug
information that indicates the name and purpose of functions. This makes the reversing process
faster and lowers the entry barrier for reverse engineering that binary.
Additional information on reversing C++ binaries can be found in the following talk: CppCon
2019: Behind Enemy Lines - Reverse Engineering C++ in Modern Ages (Gal Zaban)

Nowadays, major vendors invest significant efforts in product security. As part of these efforts,
C++ binaries released in the final products are usually stripped, so that reversers can only find
limited information. If the implementation does not require this option, it could potentially
discourage the usage of contracts, at least in production builds. Vendors may choose not to use
the feature if they have no way to restrict the strings added to their binaries.

Another point worth considering is the (voluntary or otherwise) adherence of many companies to
various regulations and accordingly the need to pass security audits (especially in industries in
which safety and security are most important). This may often include required pen testing,
whereby any weakness or undue ease of debugging is likely to be listed in the test report. Case
in point, this is how RTTI wound up disabled in the case of company C mentioned below. More
information about this: SOC 2 Compliance: Do I need a pentest or vulnerability scanning?
(Valentina Flores)

The authors have witnessed first hand the importance given to avoiding having such sensitive
strings in shipped binaries. Use cases witnessed on several different occasions:

1. Company A requested the removal of log messages from production code, which
resulted in a full-blown compile-time text obfuscation facility with an accompanying log
decoder utility (Personal Log - Where No Init Has Gone Before (Andrei Zissu)).

2. Company B translated all log messages into IDs at compile time, producing a map-file
alongside the binaries to map log-message-number into its text. The map file stays
in-house while the binaries are producing numbers-only log messages (Yet another fast
log (Ran Regev)).

3. Company C disabled RTTI to avoid having plain text symbol names in shipped binaries.
This was a direct result of a pen tester report.

2

https://www.youtube.com/watch?v=ZJpvdl_VpSM
https://www.youtube.com/watch?v=ZJpvdl_VpSM
https://www.redsentry.com/blog/soc-2-compliance
https://www.redsentry.com/blog/soc-2-compliance
https://www.youtube.com/watch?v=0a3wjaeP6eQ
https://github.com/regevran/yafl
https://github.com/regevran/yafl


These examples illustrate a willingness on the part of companies to put in a great effort and/or to
accept various limitations in order to avoid shipping sensitive embedded textual information and
to protect intellectual property as first and foremost priority and no less than other safety and
security considerations.

Q&A

If the opt out is taken, how do we identify which CCA was violated?

In our opinion, it is ultimately the user's choice to eliminate this valuable information, and even
the fact that a contract violation happened may be useful enough.
We also expect crash dumps to be a partial mitigation of this issue, as they normally include call
stacks. For example, Visual Studio allows separate inclusion of symbols in pdb files which are
not typically shipped, but may be used to reconstruct full call stacks out of crash dumps
received from customers.
Another mitigation may be the ability to place breakpoints in contract violation handlers and
observe the call stack under a debugger.
In configurations lacking terminating contract semantics this will be a trade-off to be considered
by users, which may choose to provide less revealing means of identifying their own CCAs.

How does the process of Reverse Engineering C++ change when debug information is
added to the binary?

The debug information and information like the source_location can guide reverse
engineers to the interesting parts of the binary simply by looking at references to relevant
function names in the binary's strings. Similar to researching binaries compiled in 'debug' mode,
this requirement would make it easier for researchers, as any function containing a contract
would still reference its original name from the source.
Furthermore, per [P2811R7]:[3.10.4] the source location information passed to the contract
violation handler may represent call sites, either instead or in addition to the location of the CCA
itself. This would add even more information useful to reversers, as each precondition CCA may
generate multiple textual references in the compiled code representing potentially all the call
sites of the functions to which the CCA appertains.
There are various talks and blogs available online for more information on this subject:

● Reverse Engineering Tips - Run-Time Type Identification (Thomas Roccia)
● Reversing C++ (Paul Vincent Sabanal, Mark Vincent Yason)
● Recovery of Object Oriented Features from C++ Binaries (Kyungjin Yoo, Rajeev Barua)
● RTTI Internals in MSVC (Lukasz Lipski)

3

https://isocpp.org/files/papers/P2811R7.pdf
https://blog.securitybreak.io/reverse-engineering-tips-run-time-type-identification-99eaff0c3afb
https://www.blackhat.com/presentations/bh-dc-07/Sabanal_Yason/Paper/bh-dc-07-Sabanal_Yason-WP.pdf
https://terpconnect.umd.edu/~barua/yoo-APSEC-2014.pdf
https://www.lukaszlipski.dev/post/rtti-msvc/


Is this only about ease of reversing?

No, it’s not only about the direct effect on reverse engineering, but also about perception and
what effects it might have on contracts adoption. Several use cases have been listed in this
paper which clearly show examples of companies caring about this enough to do something
about it.

The standard doesn’t usually specify compiler flags, so why propose them now?

We are not. We propose mandating implementations to provide unspecified means of opting out
of CCA-related textual information. In practice such means are indeed likely to come in the form
of compiler flags, but we’re not proposing spelling this out in the standard.

Summary of Proposed Changes
We propose adding clear stipulations to the contract_violation type introduced in
[P2811R7], to the effect of requiring conforming implementations to provide means of opting out
of having any meaningful information in the source_location and comment properties. It is
up to the implementations what such means shall be and whether a single means will be
provided for opting out of populating both properties or different means for either of them
separately. In case of opt out by the user, the information that would have populated these
properties will not appear anywhere in the binary code (unless it’s required for another reason).
At the very least such information will not appear in a way that associates it with a
corresponding CCA and reveals its location and meaning.

Impact of the Changes
● Adopting this proposal does not change the essence of [P2811R7].
● Adopting this proposal puts security at a higher priority and is aligned with SG23 goals.

4

https://isocpp.org/files/papers/P2811R7.pdf
https://isocpp.org/files/papers/P2811R7.pdf


Wording

Edits are relative to [P2811R7], in [support.contract.cviol]

const char* comment() const noexcept;

Returns: Implementation-defined text describing the predicate of the

violated contract.

An implementation shall provide a way for this accessor to return no

information.

source_location location() const noexcept;

Returns: The implementation-defined source code location where this

contract violation was detected.

An implementation shall provide a way for this accessor to return no

information.

References
P2811R7: Contract-Violation Handlers (Joshua Berne)
(https://isocpp.org/files/papers/P2811R7.pdf)

CppCon 2019: Behind Enemy Lines - Reverse Engineering C++ in Modern Ages (Gal Zaban)
(https://www.youtube.com/watch?v=ZJpvdl_VpSM)

SOC 2 Compliance: Do I need a pentest or vulnerability scanning? (Valentina Flores)
(https://www.redsentry.com/blog/soc-2-compliance)

CppCon 2022: Personal Log - Where No Init Has Gone Before in C++ (Andrei Zissu)
(https://www.youtube.com/watch?v=0a3wjaeP6eQ)

Yet Another Fast Log (Ran Regev)
(https://github.com/regevran/yafl)

5

https://isocpp.org/files/papers/P2811R7.pdf
https://isocpp.org/files/papers/P2811R7.pdf
https://www.youtube.com/watch?v=ZJpvdl_VpSM
https://www.redsentry.com/blog/soc-2-compliance
https://www.youtube.com/watch?v=0a3wjaeP6eQ
https://github.com/regevran/yafl

