Remove Deprecated Volatile Features From C+426

Proposal to remove easily misunderstood feature

Document #: P2866R0

Date: 2023-05-15
Project: Programming Language C++
Audience: Evolution Incubator

Library Evolution Incubator
SG1 Concurrency

Revises: N/A

Reply-to: Alisdair Meredith
<ameredith1@bloomberg.net>

Contents
1 Abstract 2
2 Revision history. 2
2.1 RO: Varna 2023 e 2
3 Introduction 2
4 Background 2
5 Feature Analysis 2
51 Corelanguage e 2
5.2 Libraryo e e e 3
6 Feedback 3
6.1 Initial EWG review for C++23 e 3
6.2 Subsequent feedback L 3
7 Proposed Changes 3
7.1 Corelanguage 3
7.2 Library e e e 4
7.3 Recommendations for new deprecationo 4
8 Proposed Wording 4
8.1 Core wording changes e 4
8.2 Add Annex C Core wording e e 7
8.3 Strike core wording from Annex D Lo 8
9 Library Wording 9
9.1 No changes to zombie names L L 9
9.2 Add Annex C Library wording 9
9.3 Strike Library wording from Annex D oL 9
10 Acknowledgements 11
11 References 11

mailto:ameredith1@bloomberg.net

1 Abstract

C++ has deprecated a number of features related to volatile semantics in both the core language specification
and in the library specification. This paper proposes removing those features from C++26.

2 Revision history.

2.1 RQO: Varna 2023
Original version of this document, extracted from the C++23 proposal [P2139R2].
Key changes since that earlier paper:

— Combines core and library upates in a single paper
— C++23 undeprecated compound assignment
— Rebased wording onto [N4944]

3 Introduction

At the start of the C++23 cycle, [P2139R2] tried to review each deprecated feature of C++ to see which we
would benefit from actively removing and which might now be better undeprecated. Consolidating all this
analysis into one place was intended to ease the (L)EWG review process but in return gave the author so much
feedback that the next revision of the paper was not completed.

For the C++426 cycle, a much shorter paper, [P2863R0], will track the overall analysis, but for features that
the author wants to actively progress, a distinct paper will decouple progress from the larger paper so that the
delays on a single feature do not hold up progress on all.

This paper takes up the deprecated operations on volatile types, D.5 [depr.volatile.type], and the associated
deprecated library features.

4 Background

The volatile keyword is an original part of the C legacy for C++4, and describes constraints on programs
intended to model hardware changing values beyond the program’s control. As this entered the type system of
C++, certain interactions were discovered to be troublesome, and latent bugs that could be detected at the time
of program translation go unreported. [P1152R4] breaks down each context where the volatile keyword can
be used, and deprecated for C4++20 those uses that are unconditionally dangerous, or serve no good purpose.

Following the C+420 deprecations, the C committee looked to adopt a similar stance on volatile and were
given feedback that a number of vendors were strongly opposed to the deprecation of compound-assignment op-
erators, as among other reasons, many hardware APIs and device drivers would expect to use volatile compound
assignment to communicate with their devices. This subset of the deprecated functionality was undeprecated
for C++23 by [P2327R1], followed by further undeprecations in [CWG2654].

5 Feature Analysis

5.1 Core language

A quick micro-analysis suggests the main concerns of the first two paragraphs are read /modify /write operations,
where by the nature of volatile objects, the value being rewritten may have changed since read and modified.
This kind of pattern is most likely in old (pre-C++11) code using volatile as a poor proxy for atomic. Since
we will have well over a decade of real atomic support in the language when C++-26 ships, it could be desirable
to further encourage such code (when compiled in the latest dialect) to adapt to the memory model and its
stronger guarantees.

https://wg21.link/depr.volatile.type

The third paragraph addresses function arguments and return values. These are temporary or elided objects
created entirely by the compiler, and guaranteed to not display the uncertainty of value implied by the volatile
keyword. As such, any use is redundant and misleading, so it would be helpful to remove this facility sooner
rather than later, and have one fewer oddity to teach when learning (and understanding) the language. The
biggest concern would be for compatibility with C code, that may still use this feature in its headers. To mitigate,
me may consider removing volatile function parameters and return values for only functions with extern “C++"
linkage.

The fourth paragraph considers the volatile qualifier in structured bindings, and can affect only code written
since C++17, that will have been deprecated as long as it was non-deprecated when C++23 is published. It
would be good to remove this now, before more deprecated code is written.

After 6 years of deprecation warnings, and the potential to diagnose hard-to-reproduce latent bugs for users to
fix, the recommendation is to remove support for these deprecated use cases from C++26. It would also be
possible to review each of the 4 noted usages separately, and remove only the features with lowest risk from
removal, notably paragraphs 3 and 4.

5.2 Library
6 Feedback
6.1 Initial EWG review for C++23

The following feedback was provided when this core language feature was originally discussed in the EWG telecon
on May 30, 2020.

This clause is effectively four different sub-features, that were reviewed and polled independently. The author
offered to pull this whole section out into another paper if there were concerns about processing a complex topic
in this simplified omnibus paper (which has effectively happened in this paper), but there was relatively little
contention throughout the discussion, so it will remain here for now.

Some concerns were raised that by removing some of these features, we would be creating inconsistencies between
the treatment of const and volatile in the language. Others suggested that this was a good thing, and that
one of the early concerns Bjarne expressed about the design and evolution of C++ is that there was too much
consistency in the treatment of these two qualifiers that do different things in practice.

It was noted several times that volatile qualifiers on locally scoped variables, such as function arguments, rarely
means what naive users expect them to mean, and can be freely ignored by an optimizing compiler. By removing
support for some of those declarations, we make it harder to write misleading (but otherwise correct) code.

6.2 Subsequent feedback

Following feedback from WG14 and their progress for C23, the deprecated compound-assignment operators for
bitwise operators were undeprecated for C compatibility in C++23 by [P2327R1]. Subsequently, responding
to NB comment US 16-045, the remaining compound-assignment operators were undeprecated by [CWG2654],
reintroducing a potential C incompatibility in favor of consistency and a simpler language.

7 Proposed Changes

This paper proposes removing from C++26 all the deprecated features regarding the use of volatile.

7.1 Core language
Remove the following language interactions:

— increment and decrement operators on volatile lvalues
— volatile qualifier on non-reference function parameters

— volatile qualifier on non-reference function return types
— structured binding of volatile-qualified types

In addition, built-in assignment operator functions for volatile lvalues should be declared to return void. C++23
deprecates calling assignment operators with volatile lvalues, unless they are a discarded value expression, or
an unevaluated operand. We can enforce this by simply removing the return value from the function signature.
However, this is a bigger change than strictly necessary, as it further removes the non-deprecated use case as
an unevaluated operand. This is the recommended choice as it means that code written to detect valid return
types using SFINAE constraints will report only valid code; otherwise, we would risk breaking metaprograms.

7.2 Library

Remove deprecated tuple traits of volatile-qualified types. I tried and failed to demonstrate the need to support
a customization point of structured bindings of volatile-qualified types. Structured bindings of volatile-qualified
std: :tuple objects already fail to compile due to a lack of get support, and my test cases of tying to set up a
user-customization for their own types compiled without the volatile specializations.

Remove deprecated variant interface.

Remove deprecated volatile members of atomic<T> when atomic<T>::is_lock_free is false.

7.3 Recommendations for new deprecation

Structured bindings of volatile-qualified types, i.e., where e itself is The following library features are not yet
deprecated, so the recommendation is to deprecate for C+4-26, and remove in C++29, unless there is a strong
consensus to remove without a period of deprecation.

atomic<_integal-type_> and atomic<_pointer-type_> should remove volatile-qualified increment and decre-
ment operators.

All non-deleted volatile-qualified atomic<T> assignment-operators should change their return value to void,
although this may be an ABI-breaking change.

8 Proposed Wording

All changes are relative to [N4944].

First, where we want to restrict operations to modifiable lvalues that no longer support volatile-qualified types,
we will call out “modifiable non-volatile lvalues”, which excludes all cv-qualifiers, so we can strike cv-qualification
too.

8.1 Core wording changes

7.6.1.6 [expr.post.incr] Increment and decrement

The value of a postfix ++ expression is the value of its operand.

[Note 1: The value obtained is a copy of the original value. —end note]

The operand shall be a modifiable non-volatile lvalue. The type of the operand shall be an arlthmetlc type other
than v bool, or a pointer to a complete object type. ' , >

D—E)—[éepr—velr&ﬂleﬂpe]» The value of the operand object is modlﬁed (3.1 [defnb access)) by addlng 1 to it. The
value computation of the ++ expression is sequenced before the modification of the operand object. With respect
to an indeterminately-sequenced function call, the operation of postfix ++ is a single evaluation.

[Note 2: Therefore, a function call cannot intervene between the lvalue-to-rvalue conversion and the side effect
associated with any single postfix ++ operator. —end note]

https://wg21.link/expr.post.incr
https://wg21.link/depr.volatile.type
https://wg21.link/defns.access

15

The result is a prvalue. The type of the result is the ev-uneualified—version—of-the type of the operand. If
the operand is a bit-field that cannot represent the incremented value, the resulting value of the bit-field is

implementation-defined. See also 7.6.6 [expr.add] and 7.6.19 [expr.ass].
7.6.2.3 [expr.pre.incr] Increment and decrement

The operand of prefix ++ is modified (3.1 [defns.access]) by adding 1. The operand shall be a modifi-
able non-volatile lvalue. The type of the operand shall be an arithmetic type other than v bool, or a
pointer to a completely-defined object type. Aﬁ—epefaﬁé—wfﬁh—ve}&tﬂe-quﬂﬁheé—ﬁypeﬂs—éepfee&éed—%ee
D-5-[depr-volatiletypel The result is the updated operand; it is an lvalue, and it is a bit-field if the operand is
a bit-field. The expression ++x is equivalent to x+=1.

[Note 1: See the discussions of addition7.6.6 [expr.add] and assignment operators 7.6.19 [expr.ass] for information
on conversions. —end note

7.6.19 [expr.ass] Assignment and compound assignment operators

An assignment whose left operand is of a volatile-qualified type is depreeated{D-5-]depr-volatiletypel) ill-formed
unless the (possibly parenthesized) assignment is a discarded-value expression er—an—unevaluated—operand

9.3.4.6 [dcl.fct] Functions

The parameter-declaration-clause determines the arguments that can be specified, and their processing, when
the function is called.

[Note 1: The parameter-declaration-clause is used to convert the arguments specified on the function call; see
7.6.1.3 [expr.call]. —end note]

If the parameter-declaration-clause is empty, the function takes no arguments. A parameter list consisting of
a single unnamed parameter of non-dependent type void is equivalent to an empty parameter list. Except for
this special case, a parameter shall not have type cv void. A parameter with shall not have a volatile-qualified
type t&éepre%&%eel—se&Bﬂ—{depr—ve}&%ﬂe{ype} If the parameter-declaration-clause terminates with an ellipsis or
a function parameter pack (13.7.4 [temp.variadic]), the number of arguments shall be equal to or greater than
the number of parameters that do not have a default argument and are not function parameter packs. Where

“ ki

syntactically correct and where “...” is not part of an abstract-declarator, “, ...” is synonymous with “...".

[Example 1: The declaration

int printf(const char*, ...);

declares a function that can be called with varying numbers and types of arguments.

printf("hello world");
printf ("a=%d b=%d", a, b);

However, the first argument must be of a type that can be converted to a const char*. —end example]

[Note 2: The standard header <cstdarg> (17.13.2 [cstdarg.syn]) contains a mechanism for accessing arguments
passed using the ellipsis (see 7.6.1.3 [expr.call] and 17.13 [support.runtime]). —end note]

The type of a function is determined using the following rules. The type of each parameter (including function
parameter packs) is determined from its own parameter-declaration (9.3 [dcl.decl]). After determining the type
of each parameter, any parameter of type “array of T” or of function type T is adjusted to be “pointer to T”.
After producing the list of parameter types, any top-level ev-guadifters const-qualifiers modifying a parameter
type are deleted when forming the function type. The resulting list of transformed parameter types and the
presence or absence of the ellipsis or a function parameter pack is the function’s parameter-type-list.

The return type shall be a non-volatile non-array object type, a reference type, or €+ potentially const-qualified
void.

[Note 8: An array of placeholder type is considered an array type. —end note]

https://wg21.link/expr.add
https://wg21.link/expr.ass
https://wg21.link/expr.pre.incr
https://wg21.link/defns.access
https://wg21.link/depr.volatile.type
https://wg21.link/expr.add
https://wg21.link/expr.ass
https://wg21.link/expr.ass
https://wg21.link/depr.volatile.type
https://wg21.link/expr.context
https://wg21.link/dcl.fct
https://wg21.link/expr.call
https://wg21.link/depr.volatile.type
https://wg21.link/temp.variadic
https://wg21.link/cstdarg.syn
https://wg21.link/expr.call
https://wg21.link/support.runtime
https://wg21.link/dcl.decl

16 A volatile-qualified return type is deprecated; see 13.7.4 [temp.variadic].

18

19

20

[dcl.struct.bind] Structured binding declarations

A structured binding declaration introduces the identifiers v0, v1, v2,... of the identifier-list as names of structured
bindings. Let cv denote the cv-qualifiers in the decl-specifier-seq and S consist of the storage-class-specifiers of
the decl-specifier-seq (if any). A cv that includes volatile is deprecated:seeD-5 ill-formed. First, a variable
with a unique name e is introduced. If the assignment-expression in the initializer has array type cvl A and no
ref-qualifier is present, e is defined by

attribute-specifier-seq,,; S cv A e ;

and each element is copy-initialized or direct-initialized from the corresponding element of the assignment-
expression as specified by the form of the initializer. Otherwise, e is defined as-if by

attribute-specifier-seq,,; decl-specifier-seq ref-qualifier,,, e initializer ;

where the declaration is never interpreted as a function declaration and the parts of the declaration other than
the declarator-id are taken from the corresponding structured binding declaration. The type of the id-expression
e is called E.

[Note 1: E is never a reference type (7.2 [expr.prop]). —end note]
Otherwise, ...

[Example 2:

struct S { mutable int x1 : 2; volatile double y1; I};
S £Q);

const auto [x, y 1 = £0;

volatile auto [a, b] = £(); //ill-formed, no volatile structured bindings
The type of the id-expression x is “int”, the type of the id-expression y is “const volatile double”. —end
example]

12.5 [over.built] Built-in operators

For every pair{F+wvg} type T, where T is a cv-unqualified arithmetic type other than bool or a cv-unqualified
pointer to (possibly cv-qualified) object type, there exist candidate operator functions of the form

vg T& operator++(wg T&);
T operator++(wg T&, int);
4¢ T& operator-—(wg T&);
T operator--(wg T&, int);

For every triple (L , vg, R), where L is an arithmetic type, and R is a floating-point or promoted integral type,
there exist candidate operator functions of the form

4¢ L& operator=(wg L&, R);
void operator=(volatilel&,R);
vq L& operator*=(vq L&, R);
vq L& operator/=(vq L&, R);
vq L& operator+=(vq L&, R);
vq L& operator-=(vq L&, R);

For every pair (T, vq), where Tis any type, there exist candidate operator functions of the form

T*vgk operator=(T*vg&, T*);
void operator=(T* volatile &, T*);

For every pair (T, vg), where T is an enumeration or pointer-to-member type, there exist candidate operator
functions of the form

https://wg21.link/temp.variadic
https://wg21.link/expr.prop
https://wg21.link/over.built

»g T & operator=(wg T &, T);
void operator=(volatile T* &,T);

8.2 Add Annex C Core wording

C.1 C++ and ISO C++ 2023 [diff.cpp23]

C.1.X Clause T: expressions [diff.cpp23.expr]

Affected subclause: 7.6.1.6 [expr.post.incr] and 7.6.2.3 [expr.pre.incr]
Change: Cannot increment or decrement volatile scalars

Rationale:

Effect on original feature:

Affected subclause: 7.6.19 [expr.ass]

Change: Cannot use the return value of assignment to a volatile-qualified type
Rationale:

Effect on original feature:

Affected subclause: 9.3.4.6 [dcl.fct]

Change: Cannot declare volatile-qualified function parameter types and function return types
Rationale:

Effect on original feature:

Affected subclause: [dcl.struct.bind]

Change: Cannot define a structured binding of a volatile-qualified type
Rationale:

Effect on original feature:

C.6.4 [diff.expr] Clause 7: expressions

Affected subclause: 7.6.1.6 [expr.post.incr] and 7.6.2.3 [expr.pre.incr]

Change: Cannot increment or decrement volatile scalars

The implicitly-declared copy constructor and implicitly-declared copy assignment operator cannot make a copy

of a volatile Ivalue. For example, the following is valid in ISO C:

struct X { int i; };
volatile struct X x1 = {0};

struct X x2 = x1; // invalid C++
struct X x3;
x3=x1; // also invalid C++

Rationale: Several alternatives were debated at length. Changing the parameter to volatile const X& would
greatly complicate the generation of efficient code for class objects. Discussion of providing two alternative
signatures for these implicitly-defined operations raised unanswered concerns about creating ambiguities and

complicating the rules that specify the formation of these operators according to the bases and members.

Effect on original feature: Deletion of semantically well-defined feature.

Difficulty of converting: Semantic transformation. If volatile semantics are required for the copy, a
user-declared constructor or assignment must be provided. If non-volatile semantics are required, an explicit

const__cast can be used.

https://wg21.link/expr.post.incr
https://wg21.link/expr.pre.incr
https://wg21.link/expr.ass
https://wg21.link/dcl.fct
https://wg21.link/diff.expr
https://wg21.link/expr.post.incr
https://wg21.link/expr.pre.incr

How widely used: Seldom.
w Affected subclause: 7.6.1.6 [expr.post.incr] and 7.6.2.3 [expr.pre.incr]
Change: Cannot increment or decrement volatile scalars
Rationale:
Effect on original feature:
How widely used: Seldom.
x Affected subclause: 7.6.19 [expr.ass]
Change: Cannot use the return value of assignment to a volatile-qualified type
Rationale:
Effect on original feature:
How widely used: Seldom.
v Affected subclause: 9.3.4.6 [dcl.fct]
Change: Cannot declare volatile-qualified function parameter types and function return types
Rationale:
Effect on original feature:

How widely used: Seldom.

8.3 Strike core wording from Annex D
D.5 [depr.volatile.type| Deprecated volatile types

1 Postfix ++ and -- expressions (7.6.1.6 [expr.post.incr]) and prefix ++ and -- expressions (7.6.2.3 [expr.pre.incr])
of volatile-qualified arithmetic and pointer types are deprecated.
[Example 1:

volatile int velociraptor;
++velociraptor; // deprecated

—end example]

2 Certain assignments where the left operand is a volatile-qualified non-class type are deprecated; see 7.6.19
[expr.ass].
[Example 2:

int neck, tail;
volatile int brachiosaur;

brachiosaur = neck; // OK
tail = brachiosaur; // OK
tail = brachiosaur = neck; // deprecated
brachiosaur += neck; // OK

—end example]

3 A function type (9.3.4.6 [dcl.fct]) with a parameter with volatile-qualified type or with a volatile-qualified return
type is deprecated.

[Example 3:

https://wg21.link/expr.post.incr
https://wg21.link/expr.pre.incr
https://wg21.link/expr.ass
https://wg21.link/dcl.fct
https://wg21.link/depr.volatile.type
https://wg21.link/expr.post.incr
https://wg21.link/expr.pre.incr
https://wg21.link/expr.ass
https://wg21.link/dcl.fct

volatile struct amber jurassic();
void trex(volatile short left_arm, volatile short right_arm);
void fly(volatile struct pterosaur* pteranodon);

—end example]
4 A structured binding (9.6 [dcl.struct.bind]) of a volatile-qualified type is deprecated.
[Example 4:

struct linhenykus { short forelimb; };

void park(linhenykus alvarezsauroid) {
volatile auto [what_is_this] = alvarezsauroid; // deprecated
/...

}

—end example]

9 Library Wording

9.1 No changes to zombie names

As all the entities being struck are overloads of identifiers that retain their original meaning, there are no new
names to add to 16.4.5.3.2 [zombie.names].

9.2 Add Annex C Library wording

9.3 Strike Library wording from Annex D
D.20 [depr.tuple] Tuple
1 The header (22.4.2 [tuple.syn]) has the following additions:

namespace std {
template<class T> struct tuple_size<volatile T>;
template<class T> struct tuple_size<const volatile T>;
template<size_t I, class T> struct tuple_element<I, volatile T>;
template<size_t I, class T> struct tuple_element<I, const volatile T>;

}

template<class T> struct tuple_size<volatile T>;
template<class T> struct tuple_size<const volatile T>;

2 Let TS denote tuple_size<T> of the cv-unqualified type T. If the expression TS::value is well-
formed when treated as an unevaluated operand (7.2.3 [expr.context]), then specializations of each
of the two templates meet the Cppl7TransformationTrait requirements with a base characteristic of
integral_constant<size_t, TS::value>. Otherwise, they have no member value.

3 Access checking is performed as if in a context unrelated to T'S and T. Only the validity of the immediate context
of the expression is considered.

4 In addition to being available via inclusion of the (22.4.2 [tuple.syn]) header, the two templates are available
when any of the headers (24.3.2 [array.syn]), (ranges.syn), or (22.2.1 [utility.syn]) are included.

template<size_t I, class T> struct tuple_element<I, volatile T>;
template<size_t I, class T> struct tuple_element<I, const volatile T>;

5 Let TE denote tuple_element_t<I, T> of the cv-unqualified type T. Then specializations of each of the
two templates meet the Cppl7TransformationTrait requirements with a member typedef type that names the

https://wg21.link/dcl.struct.bind
https://wg21.link/zombie.names
https://wg21.link/depr.tuple
https://wg21.link/tuple.syn
https://wg21.link/expr.context
https://wg21.link/tuple.syn
https://wg21.link/array.syn
https://wg21.link/utility.syn

following type:

— for the first specialization, add_volatile_t<TE>, and
— for the second specialization, add_cv_t<TE>.

In addition to being available via inclusion of the (22.4.2 [tuple.syn]) header, the two templates are available
when any of the headers (24.3.2 [array.syn]), (ranges.syn), or (22.2.1 [utility.syn]) are included.

D.21 [depr.variant] Variant
The header (22.6.2) has the following additions:

namespace std {
template<class T> struct variant_size<volatile T>;
template<class T> struct variant_size<const volatile T>;
template<size_t I, class T> struct variant_alternative<I, volatile T>;
template<size_t I, class T> struct variant_alternative<I, const volatile T>;

3

template<class T> struct variant_size<volatile T>;
template<class T> struct variant_size<const volatile T>;

Let VS denote variant_size<T> of the cv-unqualified type T. Then specializations of each of the two templates
meet the Cpp17UnaryTypeTrait requirements with a base characteristic of integral _constant<size_t, VS::value>.

template<size_t I, class T> struct variant_alternative<I, volatile T>;
template<size_t I, class T> struct variant_alternative<I, const volatile T>;

Let VA denote variant_alternative<I, T> of the cv-unqualified type T. Then specializations of each of the
two templates meet the Cppl7TransformationTrait requirements with a member typedef type that names the
following type:

— for the first specialization, add_volatile_t<VA::type>, and
— for the second specialization, add_cv_t<VA: :type>.

D.30.2 [depr.atomics.volatile] Volatile access

If an atomic specialization has one of the following overloads, then that overload participates in overload resolu-
tion even if atomic<T>::is_always_lock_free is false:

void store(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
T operator=(T desired) volatile noexcept;
T load(memory_order order = memory_order::seq_cst) const volatile noexcept;
operator T() const volatile noexcept;
T exchange(T desired, memory_order order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_weak(T& expected, T desired,
memory_order success, memory_order failure) volatile noexcept;
bool compare_exchange_strong(T& expected, T desired,
memory_order success, memory_order failure) volatile noexcept;
bool compare_exchange_weak(T& expected, T desired,
memory_order order = memory_order::seq_cst) volatile noexcept;
bool compare_exchange_strong(T& expected, T desired,
memory_order order = memory_order::seq_cst) volatile noexcept;
T fetch_key(T operand, memory_order order = memory_order::seq_cst) volatile noexcept;
T operator op=(T operand) volatile noexcept;
T* fetch_key(ptrdiff_t operand, memory_order order = memory_order::seq_cst) volatile noexcept;

D.30.3 [depr.atomics.nonmembers] Non-member functions

template<class T>
void atomic_init(volatile atomic<T>* object, typename atomic<T>::value_type desired) noexcept;

10

https://wg21.link/tuple.syn
https://wg21.link/array.syn
https://wg21.link/utility.syn
https://wg21.link/depr.variant
https://wg21.link/depr.atomics.volatile
https://wg21.link/depr.atomics.nonmembers

template<class T>
void atomic_init(atomic<T>* object, typename atomic<T>::value_type desired) noexcept;
Constraints: For the volatile overload of this function, atomic<T>::is_always_lock_free is true.

Effects: Equivalent to: atomic_store_explicit(object, desired, memory_order::relaxed);

10 Acknowledgements
Thanks to Michael Parks for the pandoc-based framework used to transform this document’s source from Mark-
down.

Thanks again to Matt Godbolt for maintaining Compiler Explorer, the best public resource for C++ compiler
and library archaeology, especially when researching the history of deprecation warnings!

11 References

[CWG2654] US. 2022-11-03. Un-deprecation of compound volatile assignments.
https://wg21.link/cwg2654

[N4944] Thomas Képpe. 2023-03-22. Working Draft, Standard for Programming Language C++.
https://wg21.link /n4944

[P1152R4] JF Bastien. 2019-07-22. Deprecating volatile.
https://wg21.link /p1152r4

[P2139R2] Alisdair Meredith. 2020-07-15. Reviewing Deprecated Facilities of C++-20 for C++23.
https://wg21.link /p2139r2

[P2327R1] Paul M. Bendixen, Jens Maurer, Arthur O’Dwyer, Ben Saks. 2021-10-04. De-deprecating volatile

compound operations.
https://wg21.link/p2327r1

11

https://wg21.link/cwg2654
https://wg21.link/n4944
https://wg21.link/p1152r4
https://wg21.link/p2139r2
https://wg21.link/p2327r1

	Abstract
	Revision history.
	R0: Varna 2023

	Introduction
	Background
	Feature Analysis
	Core language
	Library

	Feedback
	Initial EWG review for C++23
	Subsequent feedback

	Proposed Changes
	Core language
	Library
	Recommendations for new deprecation

	Proposed Wording
	Core wording changes
	Add Annex C Core wording
	Strike core wording from Annex D

	Library Wording
	No changes to zombie names
	Add Annex C Library wording
	Strike Library wording from Annex D

	Acknowledgements
	References

