
P2690
P2500 Parallel Algorithms and P2300

SG1

Ruslan Arutyunyan



SG1 2022-11-08 2

Motivation

▪ Parallel algorithms with execution policies (C++17) were a good start 
to express parallelism in C++ standard

▪ Schedulers/senders/receivers is more flexible abstraction for 
answering “where” the code is executed.

▪ P2300 is targeted to C++26 so we need the answer how the rest of 
C++ standard library interoperates with 
schedulers/senders/receivers

P2500 is intended to answer how C++17 parallel algorithms 
work together with P2300 std::execution



SG1 2022-11-08 3

API on the user side

The API call should look like (based on std::for_each):

for_each(execute_on(scheduler, std::execution::par), begin, end,
callable);

Design to achieve:

▪ Implementation should call customization of for_each if exists

▪ Otherwise, the default implementation is called.

▪ Customization of every particular algorithm should be allowed



SG1 2022-11-08 4

for_each CPO underneath

struct __for_each

{

template <std::policy_aware_scheduler Scheduler, typename It, typename Callable>

void operator()(Scheduler s, It b, It e, Callable c) const {

if constexpr (std::tag_invocable<__for_each, Scheduler, It, It, Callable>) {

std::tag_invoke(*this, s, b, e, c);

}

else {

// default implementation

}

}

};
inline constexpr __for_each for_each;



SG1 2022-11-08 5

Why scheduler?

▪ Allows getting as many senders as algorithm wants to be able to 
build whatever dependency graph.

Alternatives:

▪ Could be “combinated tag” of scheduler and execution policy in that 
case generic implementation does not have much to do with that

▪ Could be execution policy but makes it harder to get necessary 
objects from (e.g., scheduler for default algorithm implementation or 
allocator, if available)



SG1 2022-11-08 6

execute_on

struct __execute_on {

policy_aware_scheduler auto operator()(scheduler auto sched, execution_policy auto policy) const {

return std::tag_invoke(*this, sched, policy);

}

};
inline constexpr __execute_on execute_on;

▪ Serves the purpose to tie scheduler and execution policy. It’s up to 
scheduler customization to check if it can work with the passed 
execution policy.

▪ Might have the default implementation but it’s an open question 
what the behavior it should implement.



SG1 2022-11-08 7

Policy aware scheduler

template <typename S>

concept policy_aware_scheduler = scheduler<S> && requires (S s) {

typename S::base_scheduler_type;

typename S::policy_type;

{ s.get_policy() } -> execution_policy;

};

▪ Allows to get both execution policy type and execution policy object

▪ Allows to get scheduler type it was constructed over.

• Necessary for parallel algorithm to be able to reuse existing implementation 
for “known” base_scheduler_type



SG1 2022-11-08 8

Execution policy concept

template <typename ExecutionPolicy>

concept execution_policy = std::is_execution_policy_v<std::remove_cvref_t<ExecutionPolicy>>;

▪ Necessary if we want to constraint the return type of (some kind of) 
s.get_policy() method for policy_aware_scheduler

▪ Has a potential problem with user-defined policies support. We 
might need to allow is_execution_policy trait specialization.



SG1 2022-11-08 9

Open questions

▪ Should execute_on have default implementation?

• If yes, should it advice sequential execution using passed scheduler execution 
resources or the calling thread?

• If no, what a default behavior should it advice for scheduler to implement?

▪ What if the scheduler is used in entry point to the binary as a 
polymorphic (or type-erased) scheduler? How would it know that 
customization appears?

▪ If execution_policy concept is necessary should specialization of 
is_execution_policy be allowed?



SG1 2022-11-08 10

Further exploration

▪ Allows to customize just parallel backend instead of customizing 
every single algorithm.

▪ Might result in separate paper based on the analysis.

Explore the feasibility of the set of basic functions the rest 
of algorithm can be expressed with (code name: “parallel 
backend”

Namespace for new algorithms



SG1 2022-11-08 11

Main topics during Kona (2022) SG1 review

▪ What should be the execution context argument(s)?

• Is that a policy wrapping scheduler?

• Is that a scheduler wrapping policy?

• Is that a something else, like execution environment?

▪ Should execution context include knobs for algorithm tuning?

▪ Does it depend on async algorithm?



12Intel ConfidentialDepartment or Event Name

Backup



SG1 2022-11-08 13

Alternative considered API

Alternative API might have both scheduler and 
execution_policy as operator() parameters.
struct __for_each {

template <std::policy_aware_scheduler Scheduler, std::execution_policy ExecutionPolicy,
typename It, typename Callable>

void operator()(Scheduler s, ExecutionPolicy policy, It b, It e, Callable c) const;

};

▪ Complicates the API for the user (IMHO)

▪ Still requires scheduler to check if it can work with passed execution 
policy but on the later stage, after the algorithm call is resolved



14


