Rangified version of lexicographical compare three way

Document #: P2794R2

Date: 2023-05-08
Project: Programming Language C++
Audience: SG9
LEWG
Reply-to: Ran Regev

<ran.regev@beyeonics.com>

1 Revision History

- R2

- Fixed wording accoring to mailing list comments
- R1

- Added link to github implementation

- Added code example
- RO

- initial work

2 Motivation and Scope

This document adds the wording for ranges: : lexicographical_compare_three_way

3 Design Decisions

— We explored the following directions and decided to drop them:

— Having restrictions on the relation between the ranges. We found it unneccessary as the comp predi-
cate glue the ranges together to this comparison’s needs.

— Returning not only the comparison result but also the iterators to the ranges where the decision was
made (return a result-struct). We couldn’t find any useful implementation for these iterators and
therefore decided to drop the idea.

— The chosen direction is as follows:

— Follow the way std::lexicographical compare three way is declared.

— The Comp function is restricted to return one of the comparison categories, and nothing else. There-
fore -

— There is no reason to restrict the relation between the compared ranges in any way.

— Functions built on top of ranges::lexicographical_compare_three_way may restrict their
input parameters if required.

— Functions built on top of ranges: :lexicographical_compare_three_way such as (the yet to
be defined) ranges: :sort_three_way () should benefit from the additional information that can
be found in the return value of ranges: :lexicographical_compare_three_way, and even use
it to indicate the user that the function ended in a specific state. E.g. sort_three way() may
report that the resulted sorted range is sorted from smallest to largest (or largest to smallest),
all element are equal or even that the given range is unsortable.


mailto:ran.regev@beyeonics.com

4 Code Example

— In [GitHub] branch P2022/master one can build and run [Tests] to experiment with the function

5 Proposed Wording

5.1 Add to [algorithm.syn]

template<class Inputlteratorl, class Inputlterator2>
constexpr auto
lexicographical compare_three way(Inputlteratorl b1, Inputlteratorl el,
Inputlterator2 b2, Inputlterator2 e2);

template <class T, class.. U>
concept same-as-one-of = /see below/; // exposition only

template<
input__iterator I1,
input__iterator 12,
class Comp,
class Projl,
class Proj2
>
using lexicographical-compare-three-way-result-t = /see below/; // exposition-only

template<
input_ iterator I1, sentinel for S1,
input__iterator 12, sentinel for S2,
class Comp = compare_three way,
class Projl = identity,
class Proj2 = identity
>
constexpr bool is-lexicographical-compare-three-way-result-ordering = /see below/; //exposition-only

template<
input_ iterator I1, sentinel for S1,
input_ iterator 12, sentinel for S2,
class Comp = compare_ three_way,
class Projl = identity,
class Proj2 = identity
>
requires
is-lexicographical-compare-three-way-result-ordering<
I1, 12, Comp, Projl, Proj2
>
constexpr auto
ranges::lexicographical compare three way(
I1 first1,
S1 lastl,
12 first2,
S2 last2,
Comp comp = {},
Projl projl = {},
Proj2 proj2 = {}
) -> common__comparison__category t<



decltype(
comp(projl(*firstl), proj2(*first2))
)

strong_ ordering
>3

template<
ranges::input_ range R1,
ranges::input_range R2,
class Comp = compare__three_way,
class Projl = identity,
class Proj2 = identity
>
requires
is-lexicographical-compare-three-way-result-ordering <
iterator_ t<R1>, iterator_ t<R2>, Comp, Projl, Proj2
>
constexpr auto
ranges::lexicographical _compare_three way(
R1&& 11,
R2&& 12,
Comp comp = {},
Projl projl = {},
Proj2 proj2 = {}
) -> common__comparison_ category t<
decltype(
comp(projl(ranges::begin(rl)), proj2(ranges::begin(r2)))
),

strong_ordering
>3

5.2 Add to §27.8.12 [alg.three.way]

template<class Inputlteratorl, class Inputlterator2>
constexpr auto
lexicographical compare_three way(Inputlteratorl bl, Inputlteratorl el,
Inputlterator2 b2, Inputlterator2 e2);

template <class T, class... U>
concept same-as-one-of = (same_as<T, U> or ..); // exposition only

template<
input_ iterator I1,
input__iterator 12,
class Comp,
class Projl,
class Proj2
>
using lexicographical-compare-three-way-result-t =
invoke result t<
Comp,
class projected<I1, Projl>::value_ type,
class projected<I2, Proj2>::value type
>; // exposition-only



template<
input_ iterator I1, sentinel for S1,
input_ iterator 12, sentinel for S2,
class Comp = compare_three_ way,
class Projl = identity,
class Proj2 = identity
>
constexpr bool is-lexicographical-compare-three-way-result-ordering =
same-as-one-of<
lexicographical-compare-three-way-result-t<
I1, 12, Comp, Projl, Proj2
>,
strong_ ordering, weak_ordering, partial ordering>; //exposition-only
template<
input_ iterator I1, sentinel for S1,
input_ iterator 12, sentinel for S2,
class Comp = compare_ three_ way,
class Projl = identity,
class Proj2 = identity
>
requires
is-lexicographical-compare-three-way-result-ordering<
I1, 12, Comp, Projl, Proj2
>
constexpr auto
ranges::lexicographical compare three way/(
11 first1,
S1 last1,
12 first2,
S2 last2,
Comp comp = {},
Projl projl = {},
Proj2 proj2 = {}
) -> common__comparison__category_ t<
decltype(
comp(projl(*first1), proj2(*first2))
)
strong_ ordering
>;

template<
ranges::input_range R1,
ranges::input_ range R2,
class Comp = compare__three_ way,
class Projl = identity,
class Proj2 = identity
>
requires
is-lexicographical-compare-three-way-result-ordering<
iterator_ t<R1>, iterator_t<R2>, Comp, Projl, Proj2
>
constexpr auto
ranges::lexicographical compare three way/(
R1&& rl,



R2&& 12,
Comp comp = {},
Projl projl = {},
Proj2 proj2 = {}
) -> common__comparison__category_ t<
decltype(
comp(projl(*ranges::begin(rl)), proj2(*ranges::begin(r2)))
),

strong_ ordering
>3

— Let N be the minimum integer between distance(firstl,sl) and distance(first2,;s2). Let E(n) be
comp(projl((first! + n)), proj2((first2 + n))).

— Returns: E(i), where i is the smallest integer in [0, N) such that E(i) != 0 is true, or (distance(first1,s1)
<=> distance(first2, s2) if no such integer exists.

— Complexity: At most N applications of comp, projl, proj2.

6 Acknowledgements

Alex Dathskovsky <calebxyz@gmail.com>

Avi Korzac <Avi.Korzac@beyeonics.com>
Lee-or Saar <Leeor.Saar@beyeonics.com>

Mor Elmaliach <Mor.Elmaliach@beyeonics.com>
Yaron Meister <Yaron.Meister@beyeonics.com>

7 References

[GitHub] Ran Regev. implementation.
https://github.com/regevran /TIPapersFork /tree /P2022 /master

[Tests] Regev and Ran. tests.
https://github.com/regevran/I1PapersFork /tree/P2022/master/P2022/tests


https://github.com/regevran/IlPapersFork/tree/P2022/master
https://github.com/regevran/IlPapersFork/tree/P2022/master/P2022/tests

	Revision History
	Motivation and Scope
	Design Decisions
	Code Example
	Proposed Wording
	Add to [algorithm.syn]
	Add to §27.8.12 [alg.three.way]

	Acknowledgements
	References

