
More constexpr for <cmath> and <complex>

Document: P1383R2
Date: June 15, 2023
Project: Programming Language C++, Library Working Group
Audience: SG6 → LEWG → LWG
Reply to: Oliver J. Rosten (oliver.rosten@gmail.com)

Abstract

A scattering of constexpr, principally throughout <cmath>, was proposed in [P0533] and accepted
into C++23. This was subject to a constraint that the affected functions be limited to those which
are, in a well-defined sense, no more complicated than the arithmetic operators +,−,×, /. It is
proposed to remove this restriction, thereby allowing a richer spectrum of mathematical functions
to be used in a constexpr context.

CONTENTS

I. Revision History 1

II. Introduction 1

III. Motivation & Scope 3

IV. State of the Art and Impact on Implementers 5

V. Design Decisions 5

VI. Impact On the Standard 6

VII. Future Directions 6

Acknowledgments 6

References 6

VIII. Proposed Wording 7

I. REVISION HISTORY

R1 Greatly expanded analysis of the design space.

R2 Rebase wording to N4944 and include overlooked
subsections of <complex>.

II. INTRODUCTION

Since its inception, constexpr has become an in-
valuable ingredient in compile-time programming. In-
deed, part of its appeal is that the sharp distinction
between meta-programming and runtime programming
has in many instances become blurred. The interest in
constexpr is reflected by the numerous papers propos-
ing to increase the range of core language features and
library functionality that may be used in a constexpr
context. As such, it is essential for the long-term unifor-
mity of C++ that parts of the standard library are not
left behind in this process.

This paper is the natural extension of [P0533] and
seeks to significantly expand the number of functions in
<cmath> (and also <complex>) which may be used in a
constexpr context. The potential utility of this for nu-
merics is noteworthy. However, it is clear that there are
new hurdles to overcome: floating-point is very subtle
and different people may want implementations to prior-
itize different things [P2337]. In other words, there is a
non-trivial design space.

Consider some function f(x) and its floating-point im-
plementation FR(xn), where the xn are numbers repre-
sentable by the floating-point type being used and R de-
notes the rounding mode. A central issue is whether, for
a given xn and R, FR(xn) should always give the same
answer, regardless of compiler settings and/or platform.
In some cases, the answer is clearly yes: for example if f
corresponds to multiplication by two. However, to take
a different extreme, what about std::sin(1e100)?1

Whilst it is of course true that there is an unambiguous
result to sin 10100, we may well wonder how meaningful
it is. First, shifting the argument by a tiny amount—
of relative size 10−100—can cause the output to change
dramatically. Secondly, the distance between adjacent
(double precision) floating-point numbers at this scale is
of order 1084. To put this into perspective, consider that
the ratio between the size of the observable universe and
the Planck scale2 is ‘only’ of order 1062. Suppose that we
tell an astronomer that we expect them to measure this
ratio in order that we can take its sin, and that we further
expect to at least get the first few significant figures right.
This is not entirely different from expecting a standard
library implementer to ensure that std::sin gives the
‘correct’ answer to the last bit, no matter how large the
argument: it is not obvious how to ascribe meaning to
the answer.

But how to reconcile this with the other extreme ex-
emplified by the requirement that multiplication by two

1 Thanks to Richard Smith for first bringing this example to our
attention.

2 The unimaginably small distance scale at which quantum gravity
presumably reigns.



2

should always gives the correct answer? Floating-point
numbers can be thought of in two ways: as points
on the number line or as intervals (c.f. interval arith-
metic [Kahan]). For a given xn and rounding mode, the
corresponding interval is such that all numbers in the in-
terval collapse to xn under rounding. The granularity
of floating-point is such that sinx sweeps across its en-
tire range from [-1,+1] an enormous number of times in
the interval containing 10100. Contrariwise, multiplica-
tion by two maps the interval associated with xn into the
interval associated with 2xn.

Thus, within the interval approach, it is reasonable for
different implementations to produce different values for
the same input; or even for the same implementation to
do so depending on things such as the degree of optimiza-
tion. This is true of the way C++ works at present. For
an example, see https://godbolt.org/z/M3fhYhx84:

float num() { return 3.14f; }

int main()
{

std::cout << std::hexfloat;
std::cout << num() / 3.14f;

}

With the compiler setting -O2 -ffast-math the answer
is not precisely one; however, removing the -ffast-math
flag and/or using -O0 it is one. From an interval per-
spective, this can be rationalized. Perhaps some will
baulk at this example due to the use of -ffast-math;
after all it does not conform to IEEE. But sometimes
the flexibility afforded by -ffast-math, such as re-
ordering of operations, allows it to give what is, intu-
itively at any rate, a more mathematically correct answer
https://godbolt.org/z/3vehd87h8.

float big() { return 1e20f;}

int main()
{

std::cout << big() + 3.14f - big();
}

Removing the -ffast-math flag causes the output to
change from 3.14f to zero. However care needs to be
taken over-interpreting this particular example. After
all, what is meant by a number such as 1e20f? A set of
numbers within a range of order 1013 reduce to this un-
der rounding. It is simply not expressible within the lan-
guage which number within this range is meant by 1e20f;
and how could it be? Floating-point has finite precision.
Within the interval approach, all numbers within the ap-
propriate range (once rounding is taking into account)
are equally valid. Following this logic through, from an
interval approach, the results from both using and not us-
ing -ffast-math can be considered equally valid. Then
again, the interval approach actually permits any answer
within what intuitively feels like a large range (though in

relative terms, with the scale set by big(), the range is
small).

In more general terms, the interval approach can be
understood as follows. Under the action of the true
mathematical function, f , the mapping of the floating-
point interval containing x intersects a union of floating-
point intervals. The latter define what can reasonably
be considered equally valid output of FR(xn). Do the
various C++ library implementations conform to this?
Doubtful! As far as we are aware implementations were
not developed with this in mind. Attempting to rem-
edy this via standardization seems counterproductive.
The effect would likely be to render all the existing
implementations—which for many purposes work per-
fectly well—non-conforming. Rather, it is suggested that
consideration of intervals can, in principle, be used as one
measure of the Quality of Implementation (QoI).

With all this in mind, the design space divides up as
follows:

Canon The output of the floating-point implementation of
a mathematical function coincides with that of the
underlying function itself, down to the last bit.

Interval The output of the floating-point implementation of
a mathematical function may fall within a range,
generated by considering the mapping of intervals
corresponding to floating-point numbers.

Approx A weaker version of [Interval], where deviations
from either the desired output range or the canon-
ical answer may be taken to reflect the QoI.

We assume that C++ implementations currently fall
within the last of these (if any fall within the second
that would be wonderful, but there is a burden of proof
to demonstrate this to be the case). Is this a problem?
It depends. If you are writing a networked multiplayer
game, then lack of support for [Canon] may be an is-
sue. On the other hand, if you are doing physical mod-
elling where the errors in the boundary conditions are
large compared to the floating-point granularity at the
appropriate scale then [Approx] may be perfectly sound.
Indeed, [Approx] may allow vendors to write faster im-
plementations than [Canon] and why should users pay
for a spurious ‘improvement’ in accuracy?

All of this suggests the following avenues (non-
exhaustive and not all of which are mutually-exclusive)
for standardization.

1. Allow existing [Approx] implementations of the
mathematical functions to be used in a constexpr
context demanding either

(a) No additional requirements, whatsoever;

(b) No hard requirements but encouraging QoI to
be specified in terms of degree of adherence to
either [Canon] or [Interval];

(c) That, in a constexpr context, functions sat-
isfy [Canon];

https://godbolt.org/z/M3fhYhx84
https://godbolt.org/z/3vehd87h8


3

(d) That, in a constexpr context, functions sat-
isfy [Interval].

2. Introduce a new set of mathematical functions, sat-
isfying the requirements of [Canon], and allow them
to be used in a constexpr context.

3. Demand existing functions always satisfy the con-
straints of [Interval].

4. Demand existing functions be [Canon] and intro-
duce a new set with weaker constraints.

Actually, as far as this paper is concerned the final option
is not viable. First and foremost, this would compel com-
piler vendors to change the behaviour of existing imple-
mentations, which could have unexpected effects on the
behaviour and performance of programs. Beyond this, as
alluded to above, it is not obvious whether it is construc-
tive to demand [Canon] in all circumstances. Insisting on
the ‘correct’ answer to the last bit can be an exercise in
absurdity. Perhaps it may be reasonable to prescribe cer-
tain answers—e.g. zero for std::sin(1e100)—but how
to agree on this value and how to decide where evaluation
switches from computation to prescription?3 There is
also the question as to whether relationships such as the
trigonometric identities should be preserved4; but again
it is worth at least critically assessing whether floating-
point calculations have any real meaning at all in certain
domains. Finally, even away from awkward cases, actu-
ally verifying that answers are canonical could be diffi-
cult, especially for doubles.

As for the third option, this has a certain appeal. How-
ever, on balance it is preferred to encourage implementors
to use this (or something along similar lines) to quantify
their QoI. Insisting that existing implementations strictly
adhere to this seems too prescriptive.

While there may be merit in the second option above,
this paper proposes standardization of 1b. This does
not preclude proposing the second option at a future
date, though a considered resolution of how to deal with
things like std::sin(1e100) should be found. Any po-
tential tension is more about the philosophical ques-
tion of whether [Approx] functions should be usable in
a constexpr context. Strict adherents to the position of
only allowing [Canon] functions to be used in this way
may object to the first option out of principle but, again,
let us emphasise that practically speaking there is no rea-
son the two approaches cannot coexists.

To conclude the introduction, given our belief
that declaring more functions within <cmath> to be
constexpr is useful, we seek to adhere to one of the core
principles of C++ [D&E]:

3 One reasonable approach would be to make the shift when
the floating-point interval between numbers becomes sufficiently
large so as to saturate the range of a function.

4 Thanks to Hans Boehm for pointing this out.

It is more important to allow a useful feature
than to prevent every misuse.

Whether or not proposal 1b is ultimately accepted boils
down to the relative strength of usefulness and imple-
mentability versus potential for misuse. For 1c the bal-
ancing act shifts more towards whether the impact on
library implementors and the commensurate delay for
end-users is worth it: doing this is as hard as 2. It is
also worth noting that the 1c approach of switching be-
tween [Appox] and [Canon] implementations via an if
consteval branch will, in some cases, significantly in-
crease the difference between the compile-time and run-
time outputs, compared to 1b.

III. MOTIVATION & SCOPE

Prior to [P0533], no effort had been made to allow for
functions in <cmath> to be declared constexpr; this de-
spite there being glaring instances, such as std::abs,
for which this was arguably perverse. Indeed, be-
tween [P0415R0] and [P0533] being adopted, the situ-
ation was actually been better for <complex> than for
<cmath>! The aim of [P0533] was to at least partially
rectify the situation, while recognizing that attempting
to completely resolve this issue in a single shot was too
ambitious.

The broad strategy of [P0533] is to focus on those func-
tions which are, in a well-defined sense, no more compli-
cated than the arithmetic operators +,−,×, /; the ratio-
nale for this being that the latter are already available
in a constexpr context. As [P0533] proceeded through
the standardisation process, LEWG expressed a desire to
extend the scope to include a significant amount of what
remains in <cmath>, in particular common mathematical
functions such as std::exp.5 However, later discussion—
crystalized in [P2337]—revealed significant worries.

Various, related concerns to the goal of this paper to
declare more functions in <cmath> to be constexpr have
been raised:

1. Implementations of certain functions in <cmath> do
not produce results which are ‘correctly’ rounded to
the last bit.6

2. The output of certain functions in <cmath> may
differ depending on whether they are evaluated at
runtime or translation time.

5 It seems too ambitious at this stage to include the mathematical
special functions [sf.cmath] and so they are excluded from this
proposal.

6 As discussed in the introduction, it is doubtful whether rounding
of e.g. std:sin(1e100) can be meaningfully considered correct,
though it may nevertheless serve as a useful prescription for giv-
ing a standard answer.



4

3. The output of certain functions in <cmath> may
vary from platform to platform.

4. The output of certain functions in <cmath> may
depend on the level of optimization; a corollary is
that even with a given level of (non-trivial) opti-
mization, the same function in <cmath> may give
different answers, depending on the ambient code
https://godbolt.org/z/js7rGvPbf.7

5. The output of certain functions in <cmath> may
differ when the same binary is executed on different
CPUs within the same architectural family.

Actually, concerns like these can be subsumed into
three broader worries:

1. Is it acceptable for evaluation of mathematical
functions to differ between translation time and
runtime?

2. Is is acceptable for the evaluation of mathemati-
cal functions at runtime to depend on things other
than the rounding mode?

3. Is it acceptable for constant evaluation of mathe-
matical functions to differ between platforms?

A conceptual framework for reasoning about these is-
sues has been given in the introduction. If one had the
luxury of possessing both a [Canon] and [Interval] imple-
mentation then much of the concern regarding the first
and second issues could be allayed by simply choosing the
appropriate implementation for the task in hand, accept-
ing the tradeoffs. If an identical answer is required in all
situations (except possibly when the runtime rounding
mode is changed), then use the [Canon] implementation.
If the cost of this is undesirable then use [Interval]: the
same function may produce different results in different
contexts, but in a manner such that all outputs are, in a
well defined sense, equally valid.

However, the reality is that the only available imple-
mentations are [Approx]. Nevertheless, C++ has long
allowed for differences between translation time and run-
time; and runtime evaluation itself depends on things
such as the degree of optimization. It is certainly the
case that quantification of this may very well be useful
and can feed into QoI; but in of itself long-standing prac-
tice shouldn’t present an obstacle to the goals of this
paper. But what of whether it is acceptable for constant
evaluation of mathematical functions to differ between
platforms? Even if an [Interval] implementation were
available, some disquiet may follow from the fact that
different platforms may do different things in the follow-
ing example:

7 Thanks to Matthias Kretz for supplying this example.

template<double D>
struct do_stuff
{
static void execute() {}

};

template<>
struct do_stuff<1.0>
{
static void execute() { destroy_everything(); }

};

// Do I feel lucky?
do_stuff<std::sin(1e100)>::execute();

That being said, even if the result were guaranteed
to be the same on every platform, the code is no less
ridiculous. Indeed, we believe that the utility of rolling
out constexpr to touch more of <cmath> outweighs the
fact that it may be misused, bringing us back to the
core principle cited in the introduction, from [D&E]. It
is perfectly reasonable for people to want to generate a
constexpr lookup table for (say) std::sin. If they are
operating in the domain where they do not care whether
their values differ between platforms etc. is it really right
that we continue to prohibit this entirely legitimate use-
case?

Furthermore, there is a case to be made that allow-
ing additional functions within <cmath> to be used in
constant expressions actually confers a greater degree of
control to users. As things stand, whether constant fold-
ing is performed can depend on a variety of factors, such
as the degree of optimization and the ambient code (as
illustrated earlier). By allowing people to write things
such as

constexpr auto x{std::exp(1.0)};

they are able to specify their intent within the language:
evaluate this at translation time.

This naturally leads us to consider the fact that the lat-
est C working draft carves out identifiers prefixed with
cr to represent [Canon] implementations of mathemat-
ical functions. If we are to work on the assumption that
such functions will at some point materialize, then why
not leave <cmath> as it is and only allow the cr functions
in a constexpr context? After all, in the above example
the intent to evaluate at translation time could be per-
fectly well specified, without any appreciable downside,
by

constexpr auto x{std::cr_exp(1.0)};

But here’s the problem: mathematical functions are used
to build up other functions and it may be desirable to use
such functions both in a standard runtime context and
also in a constexpr context, for all the reasons given
above. For users who do not care that these functions
are not [Canon]—indeed, they may very well desire the

https://godbolt.org/z/js7rGvPbf


5

runtime performance gains that a less prescriptive im-
plementation may confer—it is not reasonable to expect
them to implement all of their functions twice.

Thus, regardless of whether or not C++ ends up with
[Canon] mathematical functions

1. There will always be a desire from some quarters
for the existing <cmath> behaviour;

2. Allowing people to use these functions in a
constexpr context has benefits.

IV. STATE OF THE ART AND IMPACT ON
IMPLEMENTERS

A. Current Implementations

With the exception of the special functions [sf.cmath],
functions taking a pointer argument and those with
an explicit dependence on the runtime rounding mode,
GCC currently renders almost everything in <cmath>
constexpr. Though clang does not have constexpr im-
plementations, it does perform compile time evaluation of
many mathematical functions (but not the special func-
tions) during optimization. The existence of compile time
evaluation in GCC and clang demonstrates that imple-
mentation of this proposal is plausibly feasible.

Nevertheless, even for GCC’s implementation of
the relatively simple functions which [P0533] declares
constexpr, there are subtleties. In particular GCC is
not entirely consistent with the way in which it presently
deals with NaNs and/or infinities when they are passed
as arguments to various mathematical functions.

B. Special Values

Two problems that [P0533] had to deal with was situ-
ations in which

1. Floating-point exceptions (other than FE INEXACT)
are raised;

2. NaNs and/or infinities are passed as arguments to
functions in <cmath> declared constexpr.

The chosen solution was to delegate to Annex F of the
C standard insofar as it applicable. Recall that Annex F
specifies C language support for IEC 60559 arithmetic;
thus, to the extent that a floating-point type conforms
to this, the behaviour in the aforementioned situations
is exactly prescribed in C++, following the adoption
of [P0533]. Should a floating-point type not conform to
relevant parts of IEC 60559, then its behaviour in these
situations is unspecified.

This strategy is applicable in its current form to this
paper, though the range of scenarios in which Annex
F may be invoked is somewhat richer. For example,
an implementation conforming to IEC 60559 must give
acos(1) = +0.

C. Interaction with the C Standard Library

For a mathematical function which may be evaluated
at translation time, putting all peculiarities of floating-
point momentarily to one side, it is desirable for there
to be consistency with the values computed at run-
time. However, the fact that the rounding mode may be
changed at runtime indicates that this is not, in general,
possible.

For more complicated mathematical functions there is
an additional subtlety due to the interaction with the C
standard library. In [library.c] it is noted that <cmath>
makes available the facilities of the C standard library.
One interpretation of this is that the C++ implemen-
tation could use one of several different C standard li-
braries. If so, constraining translation time behaviour so
that it is consistent with the runtime behaviour could be
very difficult, quite apart from the issue of the runtime
rounding mode.

Let us return to an earlier example:

#include <cmath>
double f() { return std::sin(1e100); }

It turns out that on clang (targeting x64), the following
code is emitted:

.LCPI0_0:
.quad -4622843457162800295

_Z1fv:
movsd .LCPI0_0(%rip), %xmm0
retq

with equivalent code generated by GCC. This demon-
strates that both compilers are already generating the
results at translation time and, therefore, independently
of the runtime C library. For this particular example, it
appears that current practise does indeed achieve con-
sistency between translation time and runtime, though
effectively by ignoring the latter!

The story does not end here. For more complicated
examples and/or removing optimization, it may be that
a runtime call to the C library is made, after all. Bear-
ing in mind that any value in the range [-1, 1] could be
considered reasonable, this implies that the value of, say,
std::sin(1e100) evaluated in one part of a code base
may be very different from the (translation time) value
evaluated elsewhere. Nevertheless, it seems reasonable in
our opinion that both clang and GCC tacitly allow this,
as already discussed in detail.

V. DESIGN DECISIONS

The key design decisions advocated in this paper are
that:

1. It is acceptable for evaluation of mathematical
functions to differ between translation time and
runtime.



6

2. It is acceptable for constant evaluation of mathe-
matical functions to differ between platforms.

3. It is preferable to encourage quantification of QoI
rather than mandate precise behaviour for existing
functions within <cmath>.

Let us recapitulate the various points.

1. Allowing a broader range of mathematical func-
tions to be used within constant expressions is use-
ful; GCC already supports this.

2. Since the advent of constexpr, the standard has
implicitly allowed for differences between trans-
lation time and runtime evaluation: the arith-
metic operators +,−,×, / may be used in ei-
ther context, but only in a runtime context
may the rounding mode be changed. Further-
more, runtime evaluation may invoke instruc-
tions such as fused multiply-add (fma), which
are not necessarily utilized at translation time:
https://godbolt.org/z/ceonfG4cT.

3. Even without constexpr, current practice has long
allowed for differences in the output of mathemati-
cal functions between any of translation time, run-
time, runtime with different compiler flags, and
runtime on a different platform. For example, op-
timization may emit code which entirely bypasses
runtime calls to the C library, instead generating
results at translation time. However, under other
circumstances, optimization might not do this.

4. The philosophy of this paper is not to accept an
impasse. Rather, it is preferred to support a useful
extension to existing practice in a non-prejudicial
fashion, while not precluding orthogonal develop-
ments which may cater for a different range of use-
cases. It also advocates (but does not require) that
implementers provide more information on their
QoI.

One way or another, much of this boils down to the
question of whether it is really acceptable for mathemati-
cal functions to give different results in different contexts,
given the same input. Again, our answer is yes; we em-
phasise again that this is already part of C++ and does
not imply that C++ is broken! That being said, there
are cases where people may want a mathematical func-
tion to produce the same result, given the same input,
in all situations (except, presumably, when the rounding
mode is changed). Our opinion is that this is best served
by a separate proposal.

VI. IMPACT ON THE STANDARD

This proposal amounts to a (further) liberal sprinkling
of constexpr in <cmath>, together with a smattering in
<complex>.

VII. FUTURE DIRECTIONS

It is worth considering separate implementations of
mathematical functions with strict guarantees on their
outputs. Finally, it would be ultimately desirable to ex-
tend constexpr to some, if not all, of the special func-
tions.

ACKNOWLEDGMENTS

I would like to thank Richard Smith for his usual per-
ceptive comments and Matthias Kretz and Nick Tim-
mons for some very helpful feedback and discussions.
Particular thanks to Ed Rosten for collaborating on the
first incarnation of this paper.

REFERENCES

[P0533] Edward J. Rosten and Oliver J. Rosten, constexpr
for <cmath> and <cstdlib>.

[P2337] Nicholas G. Timmons, Less constexpr for <cmath>.
[D&E] Bjarne Stroustrup, The Design and Evolution of C++.
[P0415R0] Antony Polukhin, Constexpr for std::complex.
[N4944] Thomas Köppe, ed., Working Draft, Standard for

Programming Language C++.
[Kahan] William Kahan. 2006. How Futile Are Mindless As-

sessments of Roundoff in Floating-Point Computation?
Retrieved June 15, 2023 from https://people.eecs.

berkeley.edu/?wkahan/Mindless.pdf.

https://godbolt.org/z/ceonfG4cT
https://people.eecs.berkeley.edu/?wkahan/Mindless.pdf
https://people.eecs.berkeley.edu/?wkahan/Mindless.pdf


7

VIII. PROPOSED WORDING

The following proposed changes, indicated in green , refer to the Working Paper [N4944]

A. Modifications to “Header <complex> synposis” [complex.syn]

// [complex.value.ops], values

template<class T> constexpr T real(const complex<T>&);

template<class T> constexpr T imag(const complex<T>&);

template<class T> constexpr T abs(const complex<T>&);

template<class T> constexpr T arg(const complex<T>&);

template<class T> constexpr T norm(const complex<T>&);

template<class T> constexpr complex<T> conj(const complex<T>&);

template<class T> constexpr complex<T> proj(const complex<T>&);

template<class T> constexpr complex<T> polar(const T&, const T& = T());

// [complex.transcendentals], transcendentals

template<class T> constexpr complex<T> acos(const complex<T>&);

template<class T> constexpr complex<T> asin(const complex<T>&);

template<class T> constexpr complex<T> atan(const complex<T>&);

template<class T> constexpr complex<T> acosh(const complex<T>&);

template<class T> constexpr complex<T> asinh(const complex<T>&);

template<class T> constexpr complex<T> atanh(const complex<T>&);

template<class T> constexpr complex<T> cos (const complex<T>&);

template<class T> constexpr complex<T> cosh (const complex<T>&);

template<class T> constexpr complex<T> exp (const complex<T>&);

template<class T> constexpr complex<T> log (const complex<T>&);

template<class T> constexpr complex<T> log10(const complex<T>&);

template<class T> constexpr complex<T> pow (const complex<T>&, const T&);

template<class T> constexpr complex<T> pow (const complex<T>&, const complex<T>&);

template<class T> constexpr complex<T> pow (const T&, const complex<T>&);

template<class T> constexpr complex<T> sin (const complex<T>&);

template<class T> constexpr complex<T> sinh (const complex<T>&);

template<class T> constexpr complex<T> sqrt (const complex<T>&);

template<class T> constexpr complex<T> tan (const complex<T>&);

template<class T> constexpr complex<T> tanh (const complex<T>&);

B. Modifications to “Value Operations” [complex.value.ops]

...

template<class T> constexpr T abs(const complex<T>& x);



8

...

template<class T> constexpr T arg(const complex<T>& x);

...

template<class T> constexpr T norm(const complex<T>& x);

...

template<class T> constexpr complex<T> conj(const complex<T>& x);

...

template<class T> constexpr complex<T> proj(const complex<T>& x);

...

template<class T> constexpr complex<T> polar(const T& rho, const T& theta = T());

C. Modifications to “Transcendentals” [complex.transcendentals]

template<class T> constexpr complex<T> acos(const complex<T>& x);

...

template<class T> constexpr complex<T> asin(const complex<T>& x);

...

template<class T> constexpr complex<T> atan(const complex<T>& x);

...

template<class T> constexpr complex<T> acosh(const complex<T>& x);

...

template<class T> constexpr complex<T> asinh(const complex<T>& x);

...

template<class T> constexpr complex<T> atanh(const complex<T>& x);

...

template<class T> constexpr complex<T> cos (const complex<T>& x);

...

template<class T> constexpr complex<T> cosh (const complex<T>& x);

...

template<class T> constexpr complex<T> exp (const complex<T>& x);



9

...

template<class T> constexpr complex<T> log (const complex<T>& x);

...

template<class T> constexpr complex<T> log10(const complex<T>& x);

...

template<class T> constexpr complex<T> pow (const complex<T>& x, const complex<T>& y);
...

template<class T> constexpr complex<T> pow (const complex<T>& x, const T& y);

...

template<class T> constexpr complex<T> pow (const T& x, const complex<T>& y);

...

template<class T> constexpr complex<T> sin (const complex<T>& x);

...

template<class T> constexpr complex<T> sinh (const complex<T>& x);

...

template<class T> constexpr complex<T> sqrt (const complex<T>& x);

...

template<class T> constexpr complex<T> tan (const complex<T>& x);

...

template<class T> constexpr complex<T> tanh (const complex<T>& x);

...

D. Modifications to “Additional overloads” [cmplx.over]

1 The following function templates shall have additional constexpr overloads:

arg norm
conj proj
imag real

where norm, conj, imag, and real are constexpr overloads.

2 The additional constexpr overloads shall be are sufficient to ensure:
. . .
3 Function template pow has additional constexpr overloads sufficient to ensure. . .



10

E. Modifications to “Header <cmath> synopsis” [cmath.syn]

namespace std{

...

constexpr floating-point-type acos(floating-point-type x);

constexpr float acosf(float x);

constexpr long double acosl(long double x);

constexpr floating-point-type asin(floating-point-type x);

constexpr float asinf(float x);

constexpr long double asinl(long double x);

constexpr floating-point-type atan(floating-point-type x);

constexpr float atanf(float x);

constexpr long double atanl(long double x);

constexpr floating-point-type atan2(floating-point-type y, floating-point-type x);

constexpr float atan2f(float y, float x);

constexpr long double atan2l(long double y, long double x);

constexpr floating-point-type cos(floating-point-type x);

constexpr float cosf(float x);

constexpr long double cosl(long double x);

constexpr floating-point-type sin(floating-point-type x);

constexpr float sinf(float x);

constexpr long double sinl(long double x);

constexpr floating-point-type tan(floating-point-type x);

constexpr float tanf(float x);

constexpr long double tanl(long double x);

constexpr floating-point-type acosh(floating-point-type x);

constexpr float acoshf(float x);

constexpr long double acoshl(long double x);

constexpr floating-point-type asinh(floating-point-type x);

constexpr float asinhf(float x);

constexpr long double asinhl(long double x);

constexpr floating-point-type atanh(floating-point-type x);

constexpr float atanhf(float x);

constexpr long double atanhl(long double x);

constexpr floating-point-type cosh(floating-point-type x);

constexpr float coshf(float x);

constexpr long double coshl(long double x);

constexpr floating-point-type sinh(floating-point-type x);



11

constexpr float sinhf(float x);

constexpr long double sinhl(long double x);

constexpr floating-point-type tanh(floating-point-type x);

constexpr float tanhf(float x);

constexpr long double tanhl(long double x);

constexpr floating-point-type exp(floating-point-type x);

constexpr float expf(float x);

constexpr long double expl(long double x);

constexpr floating-point-type exp2(floating-point-type x);

constexpr float exp2f(float x);

constexpr long double exp2l(long double x);

constexpr floating-point-type expm1(floating-point-type x);

constexpr float expm1f(float x);

constexpr long double expm1l(long double x);

constexpr floating-point-type frexp(floating-point-type value, int* exp);

constexpr float frexpf(float value, int* exp);

constexpr long double frexpl(long double value, int* exp);

constexpr floating-point-type ilogb(floating-point-type x);

constexpr int ilogbf(float x);

constexpr int ilogbl(long double x);

constexpr floating-point-type ldexp(floating-point-type x, int exp);

constexpr float ldexpf(float x, int exp);

constexpr long double ldexpl(long double x, int exp);

constexpr floating-point-type log(floating-point-type x);

constexpr float logf(float x);

constexpr long double logl(long double x);

constexpr floating-point-type log10(floating-point-type x);

constexpr float log10f(float x);

constexpr long double log10l(long double x);

constexpr floating-point-type log1p(floating-point-type x);

constexpr float log1pf(float x);

constexpr long double log1pl(long double x);

constexpr floating-point-type log2(floating-point-type x);

constexpr float log2f(float x);

constexpr long double log2l(long double x);

constexpr floating-point-type logb(floating-point-type x);

constexpr float logbf(float x);

constexpr long double logbl(long double x);

constexpr floating-point-type modf(floating-point-type value, floating-point-type* iptr);

constexpr float modff(float value, float* iptr);

constexpr long double modfl(long double value, long double* iptr);



12

constexpr floating-point-type scalbn(floating-point-type x, int n);
constexpr float scalbnf(float x, int n);
constexpr long double scalbnl(long double x, int n);

constexpr floating-point-type scalbln(floating-point-type x, long int n);
constexpr float scalblnf(float x, long int n);
constexpr long double scalblnl(long double x, long int n);

constexpr floating-point-type cbrt(floating-point-type x);

constexpr float cbrtf(float x);

constexpr long double cbrtl(long double x);

// [c.math.abs], absolute values
...

constexpr floating-point-type hypot(floating-point-type x, floating-point-type y);

constexpr float hypotf(float x, float y);

constexpr long double hypotl(long double x, long double y);

// [c.math.hypot3], three-dimensional hypotenuse
constexpr floating-point-type hypot(floating-point-type x, floating-point-type y, floating-point-type z);

constexpr floating-point-type pow(floating-point-type x, floating-point-type y);

constexpr float powf(float x, float y);

constexpr long double powl(long double x, long double y);

constexpr floating-point-type sqrt(floating-point-type x);

constexpr float sqrtf(float x);

constexpr long double sqrtl(long double x);

constexpr floating-point-type erf(floating-point-type x);

constexpr float erff(float x);

constexpr long double erfl(long double x);

constexpr floating-point-type erfc(floating-point-type x);

constexpr float erfcf(float x);

constexpr long double erfcl(long double x);

constexpr floating-point-type lgamma(floating-point-type x);

constexpr float lgammaf(float x);

constexpr long double lgammal(long double x);

constexpr floating-point-type tgamma(floating-point-type x);

constexpr float tgammaf(float x);

constexpr long double tgammal(long double x);
...

F. Modifications to “Three-dimensional hypotenuse” [c.math.hypot3]

constexpr floating-point-type hypot(floating-point-type x, floating-point-type y, floating-point-type z);


	More constexpr for <cmath> and <complex>
	Contents
	Revision History
	Introduction
	Motivation & Scope
	State of the Art and Impact on Implementers
	Current Implementations
	Special Values
	Interaction with the C Standard Library

	Design Decisions
	Impact On the Standard
	Future Directions
	Acknowledgments
	References
	Proposed Wording
	Modifications to ``Header <complex> synposis'' [complex.syn]
	Modifications to ``Value Operations'' [complex.value.ops]
	Modifications to ``Transcendentals'' [complex.transcendentals]
	Modifications to ``Additional overloads'' [cmplx.over]
	Modifications to ``Header <cmath> synopsis'' [cmath.syn]
	Modifications to ``Three-dimensional hypotenuse'' [c.math.hypot3]



