
Document Number: P2473R1
Date: 2021-12-02
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Distributing C++ Module Libraries

Abstract
This paper proposes a format for interoperability between build tools, compilers, and static
analysis tools that facilitates the adoption of C++ Modules where libraries are distributed as
pre-built artifacts as opposed to the build system having access to the entirety of the source
code. This proposal aims to address requirements R1 to R5 of the paper P2409R01.

Changes
● Changes in Revision 1

○ Clarified wording that the meta-ixx-info file is not necessarily in the same location
as the ixx file, but instead is subject to an independent lookup with the same
relative path.

○ Moved the concept of Variable Substitution to be a responsibility of the package
manager, meaning any variables must be substituted before the files are
presented to the build system.

○ Introduced a section related to alternative parsing options for the same interface
file. Additionally, the bmi filename now includes a fragment to identify which of
the alternative parsings are being used.

○ Clarified the “Search order” section to explain it in better detail including the
reason for it.

○ Made it a requirement to provide a meta-ixx-info file.
○ Proof-of-concept implementation is now required to generate recipes for building

each individual bmi file, since names are now dependent on the contents of the
meta-ixx-info file.

Introduction
In environments where package managers are used to distribute pre-built library artifacts, the
general expectation is that the contents of the library can be represented as files on disk. Those
files are deployed into either standard locations on disk2 or per-package locations3.

3 Those are usually relocatable locations, however, some package managers, such as Nix, use the
location as an addressing mechanism to uniquely identify the versions of dependencies.

2 Most GNU/Linux distributions follow the Filesystem Hierarchy Standards:
https://refspecs.linuxfoundation.org/FHS_3.0/fhs-3.0.pdf

1Ruoso, Daniel (2021). Requirements for Usage of C++ Modules at Bloomberg.
https://wg21.link/P2409R0

1



Document Number: P2473R1
Date: 2021-12-02
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

This proposal aims to provide a convention by which C++ Module Libraries can be distributed as
pre-built artifacts. However, a number of related topics are out of scope for this proposal.

Non-Goals
● Dependency Resolution: This proposal presumes that the libraries available in the

system are made available coherently (i.e.: no ODR violations) and completely (i.e.: no
missing modules or headers).

● Package Distribution Methods: This proposal will not handle how packages are
addressed or distributed.

● Package Format: This proposal handles the conventions for how the files will be laid out
on disk, not how they are transported or the mechanisms by which they are unpacked.

● Linker Arguments: This proposal assumes the build system will work in conjunction
with existing package managers in order to resolve the required arguments to be used
when invoking the linker.

● Compiler Arguments for the Translation Unit consuming the modules from the
library: As with discovering the linker arguments, the arguments required for the
Translation Unit calling the library are presumed to be resolved between the existing
build systems and package managers.

● Internal implementation of the build system: This convention in no way tries to define
how a build system may decide to produce and reuse modules that are part of the build
system or even how to produce and consume intermediates that may be needed when
consuming a module library.

Goals
● Module Discoverability: Given a configuration of module search paths decided

between the build system and the package manager, establish a convention to discover
modules available in the system.

● Instructions to Parse the Module Interface: Given that C++ Modules introduce a
distinction between the parsing of the module and the translation unit consuming it,
combined with the fact that the intermediate Binary Module Interface files are not
interoperable, this proposal defines a mechanism for instructing how to parse a module
interface source file.

● Convention for optimizing dependency discovery: Avoiding the need to do a
preprocessor pass in the step of building the module dependency graph is a desirable
optimization in some situations. While this is not a requirement, this proposal sets a
convention for those that decide to implement it.

2



Document Number: P2473R1
Date: 2021-12-02
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Assumptions
● Module search path: The concept of a module search path is common in other

languages, such as in gfortran4 and javac5, and it allows the system to work without a full
manifest of all modules available in the system. The build system and the package
managers should be able to define an ordered list of paths on disk by which lookups are
made with the understanding that every new lookup starts from the beginning of the
ordered list in order to identify the module.

● Relocatability: All path-related conventions described here should be located from the
top-level module path as configured by the build system and the package manager; it
should not assume that absolute paths can be referenced outside of those paths.

● Path Substitutions: Package managers may use variables to perform substitutions in
the paths described by the metadata to decouple dependencies in cases where package
managers use deployments with versions in the paths, such as Nix. Those substitutions
are expected to be made prior to the information being given to the build system.

● Explicit installation step: This decouples the layout of the source code in its origin
repository, and allows any rewriting to be made in paths in order to comply with this
convention.

Convention for Distributing C++ Module Libraries as
Files on Disk
This convention defines a simple lookup method for modules within a particular item of the
ordered search list, with the assumption that the ordered list will be traversed for each required
module lookup.

Module name to file names
The module name, as used in the import statement, will be translated to a file name by using the
following convention:

● The dot character represents hierarchy, so it’s converted to a nested directory structure
● The partitions of a module are moved to a directory named after the module with the

suffix “.part”, with the file named after the partition name
● The module interface units will have the “.ixx” extension6

Examples, assuming a POSIX file system:

6 Assuming that’s the convention we expect, this paper defers that decision to match what the general
expectation for the extensions for interface units.

5 https://docs.oracle.com/javase/9/tools/javac.htm
4 https://gcc.gnu.org/onlinedocs/gfortran/Directory-Options.html

3

https://docs.oracle.com/javase/9/tools/javac.htm
https://gcc.gnu.org/onlinedocs/gfortran/Directory-Options.html


Document Number: P2473R1
Date: 2021-12-02
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Module name Path relative to root of module search path

foo foo.ixx

foo.bar foo/bar.ixx

foo.bar:baz foo/bar.part/baz.ixx

The general expectation is that the installation process for a module library will make the
translation on behalf of the user, which allows for a deterministic lookup when consuming a
module from outside of the build system.

Caveats
● Case-insensitive file systems may lead to conflicts for modules that only differ in case.
● Any character that would be invalid in a file name on a given system becomes invalid as

a module name on that system.
● Unicode codepoints in the module name may result in less portable projects due to

incoherent expectations on the encoding of file names in different file systems and
operating systems.

Instructions for consuming the module
The instructions for consuming the module will be searched through the module search path in
the same relative path from the root as the module interface file, with the extension
“.meta-ixx-info”.

This file will be encoded as a JSON object, with the following keys:

● include_path: Ordered list of paths required for the preprocessor pass on the
interface unit file. This does not include the paths required for standard or system
headers implicitly provided by the compiler. Defaults to empty.

● definitions: Object with key-value pairs of preprocessor definitions. Defaults to
empty.

● imports: List of module names imported by this module interface unit. This is an
optional field that allows the build system to avoid parsing module units7 to deduce the
same information. An empty list specifies that no modules are imported, if this key is
missing or the value is nil, the implementation should perform the dependency discovery.

● _VENDOR_extension: Vendors may use this format for specifying extensions for the
metadata that may be used by the build system.

7 The standard currently optimizes for detecting whether a source file imports or exports modules, but the
dependency discovery still requires a fully capable preprocessor.

4



Document Number: P2473R1
Date: 2021-12-02
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

It is an assumption from this convention that any other option beyond the ones that would apply
to the preprocessor must be applied uniformly between the translation unit consuming the
module and the parsing of the module interface unit. Those are flags such as the language
standard version, or other flags that influence ABI compatibility.

It is also assumed that the include paths and definitions from the translation unit consuming the
module should not be used when parsing the imported module.

Variable Substitution
When substitution variables are required for include paths or definitions, the package manager
should perform those substitutions by itself and it should present to the build system with a fully
resolved set of meta-ixx-info files. As a suggestion to implementers, those can be added as an
overlay in front of the search path.

Alternative parsing of the same Module Interface files
There are significant prior examples of changes in semantics and behavior depending on
particular preprocessor arguments. While they are strictly considered a violation of the
One-Definition-Rule, in some cases, such as conditional compilation of assertions, those are in
general considered “benign” violations.

In addition, we should also consider the scenario where the build system is configured to use an
alternative parsing of the interface in coordination with selecting an alternative build of the
library to link against, avoiding violations of the One-Definition-Rule.

This is frequently expressed in terms of “build flavors”, such as “Debug” versus “Release”. For
the purposes of identifying how the module is parsed, the build system should consider the sha1
checksum of the contents of the meta-ixx-info file.

Distributing Binary Module Interface files
While the scope of interoperability for binary module interface (bmi) files is quite limited8, it is a
significant optimization for environments where the code is mostly produced with the same
compiler. That is the case for most GNU/Linux distributions, for instance.

However, it’s also important to avoid any ambiguity on whether the bmi file is applicable to a
given compiler. Therefore this convention requires compilers to provide an identifier that is as
unique as the compatibility it supports.

8 At the point of this writing, the interoperability of Binary Module Interface files is the same as that of
precompiled headers, which is limited to the same exact version of the compiler, or in some cases even
only the same build.

5



Document Number: P2473R1
Date: 2021-12-02
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Likewise, given that different instructions for parsing the module interface file can result in
different interpretations for that module, the sha1 checksum of the contents of the meta-ixx-info
file that was parsed should be included in the name of the bmi file, thus preventing ambiguities
between the meta-ixx-info lookup and the bmi lookup.

Those identifiers should then be used on the name of the file being distributed, following the
pattern:

${module_path}.bmi.${vendor}.${compat_uuid}.${meta_ixx_info_sha1sum}

For instance, if g++ uses a uuid-v4 to identify the build of the compiler that can reuse a bmi, and
if the lookup finds a meta-ixx-file with the contents of ‘{}’, the file for the module foo.bar would
be named:

foo/bar.bmi.g++.20734238-4fc7-4725-bf22-be9700326774.bf21a9e8fbc5a384
6fb05b4fa0859e0917b2202f.

Note that even though the example above uses a uuid-v4, a compiler that decides to version its
compatibility format could use any identifier that would be a valid extension to the file name. The
compiler is free to assign any identifier it wants. Implementations following this convention
should treat it as an opaque identifier.

While it would be possible for the compiler to support different BMI formats at the same time,
adding a provisioning for that in the convention would significantly increase the complexity of the
lookup. In order to limit the complexity, this convention sets the expectation that a compiler
expects only one input format.

Search order
When searching for the files in the module search path, the search should always be started
from the beginning for each file that needs to be found. This is important to allow overlays that
contain only the meta-ixx-info file, or overlays that contain only the bmi file.

For instance, if the module search path is, in order, /path/a/, /path/b/, /path/c/ then the
search order for a module foo.bar should be:

1. Lookup for ixx file, in order:
a. /path/a/foo/bar.ixx
b. /path/b/foo/bar.ixx
c. /path/c/foo/bar.ixx

2. Lookup for meta-ixx-info file, in order:
a. /path/a/foo/bar.meta-ixx-info
b. /path/b/foo/bar.meta-ixx-info
c. /path/c/foo/bar.meta-ixx-info

6



Document Number: P2473R1
Date: 2021-12-02
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

3. Lookup for the bmi file, assuming
g++.20734238-4fc7-4725-bf22-be9700326774 as the compiler compatibility
identifier and bf21a9e8fbc5a3846fb05b4fa0859e0917b2202f as the checksum
of the meta-ixx-info file.

a. /path/a/foo/bar.bmi.g++.20734238-4fc7-4725-bf22-be97003267
74.bf21a9e8fbc5a3846fb05b4fa0859e0917b2202f

b. /path/b/foo/bar.bmi.g++.20734238-4fc7-4725-bf22-be97003267
74.bf21a9e8fbc5a3846fb05b4fa0859e0917b2202f

c. /path/c/foo/bar.bmi.g++.20734238-4fc7-4725-bf22-be97003267
74.bf21a9e8fbc5a3846fb05b4fa0859e0917b2202f

Missing Files
While the build system should be able to react to a missing bmi file by scheduling its parsing,
both the ixx and the meta-ixx-info files must always be present for a module to be considered
valid when distributed. While it would be possible to assume the absence of a meta-ixx-info file
as having an empty object by default, this would be error prone. Making the meta-ixx-info file
mandatory allows the detection of common configuration errors by failing fast, rather than
having a potentially incorrect default behavior.

De-optimizing the presence of bmi files
When a build system recognizes the presence of a compatible bmi file for the current build, it
would be a valid optimization to stop the traversal of dependencies and just consume that
directly. However, when that happens, the build system hides details on how to reproduce the
parsing of those module interfaces from any tooling that would integrate with the system.

Therefore, build systems that want to preserve maximum interoperability will need to continue
traversing module interfaces, even when they see no reason to parse them, and make that
information available as it is the case today with the compilation database, otherwise the
observability of that build will be greatly reduced.

Discovery tooling
Even with the convention established here, there’s still an additional piece of tooling that
becomes a requirement for the consumption of a module library: the construction of a plan to
parse all required modules.

The main problem happens when dealing with transitive dependencies of modules being
provided as libraries.

7



Document Number: P2473R1
Date: 2021-12-02
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

This paper proposes a tool called c++-modules-config, that takes as input a search path of
module libraries available to be consumed, the compatibility identifier for bmi files, and a list of
modules that need to be resolved.

This tool will do the recursive traversal to return a complete description that is sufficient for the
build system to plan the parsing of all modules provided by the system that need to be
consumed. This will exclude modules that may be available but that are not going to be
consumed.

The output of this tool will be a complete listing of the modules involved in this build, the source
files with their interfaces, the instructions required to parse those files, as well as module
dependencies. This information should be made compatible with the format documented in
P1689R49.

This paper proposes an extension to that format to store the contents of the meta-ixx-info file
under the meta-ixx-info key. It can be used by anyone who needs to produce a different bmi
file.

This tool also needs to be able to incrementally update this file such that whenever the list of
external module dependencies changes, the re-calculation should be fast.

For better observability of the build, the output of this tool should be stored in a file named
module_config.json in the same location where compile_commands.json is currently
saved.

Could that be shipped by libraries?
In the presence of a standardized package manager, it would be reasonable to assume that the
package manager could also play the role of providing the information that would be otherwise
discovered by the c++-modules-config tool for all the modules that are included in each of
the packages available in the system. The package-to-package dependency could be used to
limit the amount of data that would need to be ingested.

In the absence of a standard package manager, however, we don’t have a mechanism to
identify a logical unit at a higher level than the module itself. An alternative approach would be
to have a standard location where the metadata for all available modules would be read from,
however, on a system with many more dependencies available than consumed, this could result
in a substantially higher amount of unnecessary I/O.

9 Boeckel, Ben & King, Brad (2021). Format for describing dependencies of source files.
wg21.link/p1689r4

8



Document Number: P2473R1
Date: 2021-12-02
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Enabling the build with plain Makefiles
C++ Modules created a new layer of indirection on the compilation process. Prior to modules, a
simple Makefile would be able to produce all objects in an embarrassingly parallel way. With
modules, however, it is necessary to create the bmi files before each consumer of a module can
be parsed.

Additionally, the lack of correlation between file names and module names means that the rules
for the build depend on a mapping between source files and module names to be extracted.
Compounding that to the lack of a standardized package management system, results in the
fact that there was no build-system-agnostic way of identifying which modules were present on
the system, short of parsing all the source files that could be found.

By adopting this convention, we enable the generation of make-compatible dependency
instructions for the parsing of modules external to the system by a simple tool invocation that
parses as few files as necessary, including the generation of rules for locally building the bmi
files for modules external to the current build system that didn’t ship a compatible bmi.

Moreover, If the source code of the project itself has the physical layout described in this paper,
it will be possible to automate the generation of Make rules for all bmi files for code internal to
the project. The process would be not unlike how object files, archives and executables are
produced in a project without modules. A Proof-of-Concept example of how a build system
would be able to achieve that accompanies this paper.

While it’s not the intent of this paper to advocate for a simple Makefile as a desirable build
system, it is an important illustration of how much simpler the semantics of the build become
when we can count on a convention between file names and module names.

Integration Scenarios
This section is meant to illustrate how this convention could be used to improve interoperability
in various scenarios.

Consuming Module Libraries from CMake
CMake would be able to discover modules from outside of the build system and configure a
target for each of those modules by identifying the ixx file by name, as well as the instructions
on how to parse those modules. It may also be able to detect when the system already provides
the bmi for the particular compiler being used.

This removes the need for CMake-specific “find module” implementations for arbitrary module
libraries, as long as a module search path can be defined between the package manager,
CMake, and the user.

9



Document Number: P2473R1
Date: 2021-12-02
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

Consuming Module Libraries from Plain Makefiles
The use of well-defined search paths on disk enables an implementation with vanilla Makefiles,
where the rule for producing intermediate bmi files uses vpath10 to find the sources for a module.
This supports cases where the bmi for that compiler is already present or where it needs to be
produced. See the Proof-of-Concept that accompanies this paper.

Building Module Projects with Plain Makefiles
If the compiler supports looking up modules according to this convention, a project with the
source layout matching this convention, will be able to have its build driven by a plain Makefile
by simply including an additional scan step that generates module dependency information from
a translation unit.

Transparent Compiler Support
When compilers and static analysis tools support the same convention, it is possible for the
single-translation-unit case to work transparently where a translation unit depends on modules.
It would even be possible for independent invocations of the compiler to use the filesystem
alone to synchronize11 the production of bmi files and avoid duplicate work between different
compiler invocations.

Deploying internally in the build system
If a build system were to create an internal deployment of the module units within the build
system itself, it would make it trivial for static analysis tools completely external to the build
system to reproduce the semantics of the build without any additional integration beyond the
compile command.

Proof-of-Concept Implementation Example
Accompanying this paper, we are publishing proof-of-concept code exercising the lookup
mechanism, exercising the interaction between the proposed c++-modules-config tool with a
simple GNU Make build system and a mock compiler. The example uses vpath to parse
modules internal or external to the local build, as well as can coherently consume a bmi file in
case it’s shipped with the library.

11 In POSIX systems, for instance, creating a hard link and renaming a file are atomic operations. By
combining those two operations it is possible for a compiler to create a “leader election” mechanism
allowing one process to know not to try and produce a BMI file because it’s already being parsed by
another process.

10 https://www.gnu.org/software/make/manual/html_node/General-Search.html

10

https://www.gnu.org/software/make/manual/html_node/General-Search.html


Document Number: P2473R1
Date: 2021-12-02
Reply-to: Daniel Ruoso <druoso@bloomberg.net>
Audience: SG15

See the proof-of-concept at https://github.com/bloomberg/P2473

11

https://github.com/bloomberg/P2473

