Whatisaview?

Document #:

Date:
Project:
Audience:

Reply-to:

P2439R0

2021-09-09

Programming Language C++
LEWG

Barry Revzin
<barry.revzin@gmail.com>
Tim Song
<t.canens.cpp@gmail.com>

P2415R1

mailto:barry.revzin@gmail.com
mailto:t.canens.cpp@gmail.com

view, a history

N4128, Ranges for the Standard Library (2014) Views are:
First proposed (as Range) Non-owning
“lightweight objects that denote a range of elements O(1) default constructible
O(1) copy constructible
O(1) copy assignable
O(1) move constructible
O(1) move assignable

they do not own”
O(1) copyable and assignable, default constructible

view, a history

P0789, Range Adaptors and Utilities (2017) Views are:
Proposed single view —an owning view —MNep-awring
O(1) default constructible
O(1) copy constructible

O(1) copy assignable
O(1) move constructible

O(1) move assignable

view, a history

P1456, Move-only views (2019) Views are:
Copyability no longer required O(1) default constructible
But copy operations must be O(1) where O(1) copy constructible if supported
supported

O(1) copy assignable if supported

Destruction required to be O(1)

O(1) move constructible
O(1) move assignable
O(1) destructible

view, a history

P2325, Views should not be required to be Views are:
default constructible (2021) —O{1) default-constructible
Default constructible requirement removed O(1) copy constructible if supported

O(1) copy assignable if supported
O(1) move constructible

O(1) move assignable
O(1) destructible

Why does view have complexity requirements?

Look at the algorithms — range adaptors are the algorithm for views:

auto rng = some_view
| views: :reverse
| views::take(42)
| views::transform(f);

This pipeline:
Copies some_view once
Moves it ~5 times
Destroys all the moved-from temporaries

Complexity requirements exist to support efficient lazy composition of views.

What do the algorithms actually need?

struct bad view : view interface<bad view> bad view

{ O(_l) move constructible
std::vector<std::string> v; Copyable, but not O(1) copyable
bad_view(std::vector<std::string> v) Not O(1) destructible

: v(std::move(v)) { }
What breaks when it is used as a view?

auto begin() { return v.begin(); } auto rng = bad_view(get())

auto end() { return v.end(); } | views::enumerate;
}; OK, pipeline constructed in constant time
J
auto bv = bad view(get());
std::vector<std: :string> get(); auto rng = bv | views::enumerate;

Construction of rng copies bv

What do the algorithms actually need?

struct bad view2 : view interface<bad view2> bad view?2
: —

O(1) move constructible
std::vector<std::string> v;

Not copyable

bad_view2(std::vector<std::string> v) :
e e & T Not O(1) destructible

bad_view2(bad_view28&) = default; What breaks when it is used as a view?

auto rng = bad _view2(get())

bad view2& operator=(bad view2&&) = default; -
| views::enumerate;

auto begin() { return v.begin(); } Still OK — constant time

auto end() { return v.end(); } auto bv = bad_view2(get());
}; auto rng = bv | views::enumerate;

std: :vector<std: :string> get(); lll-formed —bad_view?2 is not copyable

Writing the bad view2 example today

auto strings = get();

auto rng = strings | views::enumerate;
Doesn’t move the vector — but move construction is cheap.

rng holds a reference to strings — extra indirection, risk of dangling

Destruction of rng is O(1)...but we still have to destroy strings anyway and pay the cost there

Proposal: relax complexity requirements

T models view only if:
o T has O(1) move construction; and
o T-has-O{)-meveassigrment-move assignment of an object of type T is no more complex
than destruction followed by move construction; and
o T has-O{H-destruction-if N copies and/or moves are made from an object of type T that
contained M elements, then those N objects have O(N+M) destruction; and
o copy_constructible<T> is false, or T has O(1) copy construction; and

o copyable<T> is false, or Hhas-O{}-cepy-assigrment-copy assignment of an object of
tvype T is no more complex than destruction followed by copy construction.

Proposal: auto-wrapping non-views

Add a move-only owning view adaptor: Example (ill-formed today, valid with this
change):

template<range R>
requires /* .. */ std: :vector<int> get ints();
class owning view;
auto rng = get _ints()
| views::filter(pred)
| views::transform(f);

Change views: :all wrap rvalue non-views
with owning_ view, enabling such types to be
used in view adaptor pipelines.

Update viewable range to match
views::all.

Whatis a view?

auto rng = v | views::reverse;

Should rng store a copy of v or a reference to it?

If it should store a copy because copying is cheap and it’s better to avoid potential dangling and cost of
indirection, v is a view.

If it should store a reference to v because copying is expensive, v is not a view.

