
What is a view?
P2415R1

Document #: P2439R0

Date: 2021-09-09

Project: Programming Language C++

Audience: LEWG

Reply-to: Barry Revzin
<barry.revzin@gmail.com>
Tim Song
<t.canens.cpp@gmail.com>

mailto:barry.revzin@gmail.com
mailto:t.canens.cpp@gmail.com

view, a history
N4128, Ranges for the Standard Library (2014)

◦ First proposed (as Range)

◦ “lightweight objects that denote a range of elements
they do not own”

◦ O(1) copyable and assignable, default constructible

Views are:
◦ Non-owning

◦ O(1) default constructible

◦ O(1) copy constructible

◦ O(1) copy assignable

◦ O(1) move constructible

◦ O(1) move assignable

view, a history
P0789, Range Adaptors and Utilities (2017)

◦ Proposed single_view – an owning view

Views are:
◦ Non-owning

◦ O(1) default constructible

◦ O(1) copy constructible

◦ O(1) copy assignable

◦ O(1) move constructible

◦ O(1) move assignable

view, a history
P1456, Move-only views (2019)

◦ Copyability no longer required

◦ But copy operations must be O(1) where
supported

◦ Destruction required to be O(1)

Views are:
◦ O(1) default constructible

◦ O(1) copy constructible if supported

◦ O(1) copy assignable if supported

◦ O(1) move constructible

◦ O(1) move assignable

◦ O(1) destructible

view, a history
P2325, Views should not be required to be
default constructible (2021)

◦ Default constructible requirement removed

Views are:
◦ O(1) default constructible

◦ O(1) copy constructible if supported

◦ O(1) copy assignable if supported

◦ O(1) move constructible

◦ O(1) move assignable

◦ O(1) destructible

Why does view have complexity requirements?
Look at the algorithms – range adaptors are the algorithm for views:

auto rng = some_view
| views::reverse
| views::take(42)
| views::transform(f);

This pipeline:
◦ Copies some_view once

◦ Moves it ~5 times

◦ Destroys all the moved-from temporaries

Complexity requirements exist to support efficient lazy composition of views.

What do the algorithms actually need?
struct bad_view : view_interface<bad_view>
{

std::vector<std::string> v;

bad_view(std::vector<std::string> v)
: v(std::move(v)) { }

auto begin() { return v.begin(); }

auto end() { return v.end(); }

};

std::vector<std::string> get();

bad_view
◦ O(1) move constructible

◦ Copyable, but not O(1) copyable

◦ Not O(1) destructible

What breaks when it is used as a view?
◦ auto rng = bad_view(get())

| views::enumerate;

◦ OK, pipeline constructed in constant time

◦ auto bv = bad_view(get());
auto rng = bv | views::enumerate;

◦ Construction of rng copies bv

What do the algorithms actually need?
struct bad_view2 : view_interface<bad_view2>
{

std::vector<std::string> v;

bad_view2(std::vector<std::string> v)
: v(std::move(v)) { }

bad_view2(bad_view2&&) = default;

bad_view2& operator=(bad_view2&&) = default;

auto begin() { return v.begin(); }

auto end() { return v.end(); }

};

std::vector<std::string> get();

bad_view2
◦ O(1) move constructible

◦ Not copyable

◦ Not O(1) destructible

What breaks when it is used as a view?
◦ auto rng = bad_view2(get())

| views::enumerate;

◦ Still OK – constant time

◦ auto bv = bad_view2(get());
auto rng = bv | views::enumerate;

◦ Ill-formed – bad_view2 is not copyable

Writing the bad_view2 example today
auto strings = get();

auto rng = strings | views::enumerate;

Doesn’t move the vector – but move construction is cheap.

rng holds a reference to strings – extra indirection, risk of dangling

Destruction of rng is O(1)…but we still have to destroy strings anyway and pay the cost there

Proposal: relax complexity requirements

T models view only if:

◦ T has O(1) move construction; and
◦ T has O(1) move assignment move assignment of an object of type T is no more complex

than destruction followed by move construction; and
◦ T has O(1) destruction if N copies and/or moves are made from an object of type T that

contained M elements, then those N objects have O(N+M) destruction; and
◦ copy_constructible<T> is false, or T has O(1) copy construction; and
◦ copyable<T> is false, or T has O(1) copy assignment copy assignment of an object of

type T is no more complex than destruction followed by copy construction.

Proposal: auto-wrapping non-views
Add a move-only owning_view adaptor:

template<range R>
requires /* … */

class owning_view;

Change views::all wrap rvalue non-views
with owning_view, enabling such types to be
used in view adaptor pipelines.

Update viewable_range to match
views::all.

Example (ill-formed today, valid with this
change):

std::vector<int> get_ints();

auto rng = get_ints()
| views::filter(pred)
| views::transform(f);

What is a view?
auto rng = v | views::reverse;

Should rng store a copy of v or a reference to it?
◦ If it should store a copy because copying is cheap and it’s better to avoid potential dangling and cost of

indirection, v is a view.

◦ If it should store a reference to v because copying is expensive, v is not a view.

