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1. Introduction 
Complete type-and-resource safety have been an ideal (aim) of C++ from very early on (1979) and is 
achievable though a judicious programming technique enforced by language rules and static analysis. 
The basic model for achieving that can be found in [Str’15] and do not imply limitations of what can be 
expressed or run-time overheads compared to traditional C and C++ programming techniques. The basic 
design and enforcement techniques simply ensure that: 

• §2: every object is accessed according to the type with which it was defined 
• §3: every object is properly constructed and destroyed 
• §4-5: every pointer either points to a valid object or is the nullptr 
• §6: every reference through a pointer is not through the nullptr (often a run-time check) 
• §6: every access through a subscripted pointer is in-range (often a run-time check) 

That’s just what C++ requires and what most programmers have tried to ensure since the dawn of time. 
The difficulty is to guarantee it in a realistically-sized program. Experience shows that this cannot be 
done without static analysis and run-time support. Furthermore, for fundamental reasons this cannot 
done even with such support if arbitrary legal language constructs are accepted while conventional good 
performance must be maintained. 

The way out of this dilemma is a carefully crafted set of programming rules supported by library facilities 
and enforced by static analysis.  

This presentation is based on the C++ Core Guidelines [CG] and their enforcement rules (e.g., as 
implemented by the Core Guidelines checker distributed with Microsoft Visual Studio). That is, the 
points made here are backed up by specific rules and supported by existing software. By default, the CG 
do not provide complete type-and-resource safety. This paper is a high-level overview of the rules that 
must be enforced to guarantee that. Details can be found elsewhere (§9). 

All static analysis for GC is local; that is. Non-local static analysis, e.g., whole-program analysis, is not 
scalable and can’t in general handle dynamic linking. 
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To meet common definitions of safety, we further need to address 

• Narrowing conversions and overflow 
• Data races and deadlocks 

Those are dealt with separately in the CG and elsewhere.  

The Core Guidelines are designed for selective and gradual adoption. Consequently, all traditional C++ 
technique are available where conversion to stricter rules is not considered practical. In particular, 
nothing must impede C++’s ability to directly manipulate hardware where and when necessary. 

2. Object access 
Every object is accessed according to the type with which it was defined.  

The language guarantees this except for preventable pointer misuses (see §4, §5),  explicit casts,  and 
type punning using unions. The CG have specific rules to enforce these language rules. 

Static analysis can prevent unsafe casting and unsafe uses of unions. Type-safe alternatives to unions, 
such as std::variant, are available. Casting is essential only for converting untyped data (bytes) into 
typed objects. 

3. Construction and destruction 
Every object is properly constructed and destroyed.  

Static analysis easily prevents the creation of uninitialized objects. Buffers of uninitialized unsigned 
chars are acceptable according to the language definition and needed for performance reasons. 

The language guarantees that destructors for scoped objects are invoked upon scope exit and that 
destructors for static objects are invoked upon program termination.  

Using copy elision or move operations, objects can be safely moved between scopes. The CG insist that a 
moved-from object be assignable, but general operations are not allowed on moved-from objects. This 
is ensured through static analysis. 

Entities that must be acquired and later released for some other part of a system (e.g., memory or file 
handles) are called resources and represented as objects with destructors doing the release and often 
with constructors that do the acquisition as part of establishing an invariant. This is often referred to as 
resource safety or as RAII (Resource Acquisition Is Initialization). In addition to resource safety, this 
scope-based resource management ensures predictability and minimizes resource retention. 

4. No dangling pointers 
Every pointer either points to an object or is the nullptr. The first and essential step to ensure this is to 
guarantee initialization (see §3). 

In this paper 

• “pointer” includes all ways of referring to an object, including containers of pointers, references, 
lambda captures, and smart pointers. 
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• “return” includes all ways of getting a pointer value out of a scope, including containers of 
pointers, reference arguments, pointers to pointers, lambda captures, global variables, and 
exception values. 

4.1. Escaping pointers 
No pointer may point to an object after the object has gone out of scope. This is achieved through static 
analysis, preventing a pointer from “escaping” into a scope surrounding the object to which it points. A 
pointer value can be returned from a scope provided 

(1) It was passed into the scope (e.g., as an argument or retrieved from an object external to 
the scope). 

(2) It points to an object external to the scope (e.g., it was initialized by new). 

If static analysis cannot prove that, the pointer cannot be returned. This implies limitations to the 
complexity of the flow of control leading to the return of a pointer value. 

4.2. Invalidation 
No pointer may access a deleted object. This trivially prohibits access to a deleted object in the scope in 
which it was created using new (and scopes nested therein). Like for detecting escaping pointers, this 
implies limitations to the complexity of the flow of control leading to the return if a pointer value. 

This leaves the problem of preventing a pointer to an object on the free store from being deleted in a 
called function and then accessed through in its original scope. In principle, that could be handled using 
static analysis, but global static analysis is impractical or unaffordable in many contexts, so the CG resort 
to annotation: 

• A pointer returned by new is an owner and must be deleted (unless stored in static storage to 
ensure that it lives “forever.”). 

• Only a pointer known to be an owner can be deleted. Thus, a pointer passed into a scope as an 
owner<T*> must be deleted in that scope or passed along to another scope as an owner. A 
pointer that is passed into a scope as a plain T* may not be deleted. 

• A pointer passed to another scope as an owner and not passed back as an owner is said to be 
invalidated and cannot be used again in its original scope (since it will have been deleted). 

Anything that holds an owner is subject to the owner rules. Given owner annotation, these rules are 
enforced by static analysis. 

The owner annotation is necessary only for low-level code implementing higher-level abstractions (such 
as vector) and for pointers in interfaces that cannot be changed (e.g., for ABI reasons). The CG 
recommend preferring higher-level abstractions, such as vector and unique_ptr and avoid explicit 
owner annotations wherever possible. 

4.3. “Odd” pointers 
It is necessary to avoid access through a one-past-the-end pointer (e.g., an iterator returned from find()) 
and to avoid all-but-assignments to moved-from objects. This is ensured through static analysis 
enforcing proper use. A not_end type similar to not_null may be useful to help the static analyzer in 
cases where the result of x.find() and the like isn’t immediately tested against x.end(). 
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5. Memory pools 
The discussion in §4 assumes that objects are static, local (automatic), or on the free store (heap, 
dynamic memory) managed by new and delete. However, user-defined memory management in various 
forms is essential in many application areas and fundamental in the C++ standard library. 

By a memory pool, I mean a section of memory in which an object can be stored.  In principle, a pointer 
to an object in a memory pool can be handled in a similar manner to that of a pointer to an object 
created by new. However, C++ lacks a standard “pool” abstraction. Instead, there are thousands of 
variations of the idea, seriously complicating the task of static-analyzer writers. 

To avoid dangling pointers to its stored objects, a pool can apply one of alternative strategies: 

1. Disallow objects to be deleted or relocated 
2. Disallow pointers to objects to escape 
3. Invalidate all pointers to objects if a potentially deleting or relocating operation is invoked 

std::vector with subscripting and resize() is a typical example of a pool that requires special attention 
and is dealt with through invalidation (the third alternative) enforced by static analysis. If a non-const 
function is invoked on a vector, all pointers to its elements are considered invalid and may not be used. 
This is ensured through static analysis. This is a conservative, but safe, strategy that can be applied to 
every pool. To enable a non-const function (e.g vector::operator[]()) to be considered not invalidating, 
we might add a [[not_invalidate]] annotation. Such annotation can be validated by static analysis. 

6. No Range errors 
Every reference through a pointer is not through the nullptr (often a run-time check). 

The CG simply prohibit access through a pointer that is not known to be not the nullptr. As an 
alternative to repeated nullptr checks, it offers the gsl::not_null type. 

Every access to an array is in-range (often a run-time check). 

The CG simply prohibit subscripting of pointers (and equivalent address arithmetic). As an alternative, it 
offers gsl::span that provides range-checked access (a version of gsl::span is now std::span). Containers, 
range-for, and algorithms dramatically reduces the need for subscripting pointers compared to C-style 
code. Spans are ideally used in interfaces, but can also be used locally as an alternative to direct use of 
pointers passed through potentially unsafe interfaces; such pointers typically require special (see §7) 
attention or run-time checking. 

7. Low-level code 
C++ is extensively used for low-level manipulation of memory and other system resources. Making C++ 
safe by eliminating all direct access to “raw” memory is not an option. Languages that ban such unsafe 
access, typically have ways of allowing unsafe code or delegate such manipulation to code written in C 
or C++. 

The current solution for messy, low-level code (e.g., for a memory manager where casts and pointer 
manipulation are necessary or for highly-optimized implementation of key data structures) is to apply 
the static analysis selectively. We may need a notion of “trusted code” marked in the code itself, maybe 
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indicated by a [[trusted]] annotation. Such annotation would allow programmers to understand 
[[trusted]] code independently of static analyzer settings. Naturally [[trusted]] code would require 
significant extra care and review; it should be minimized. Calls to other code from [[trusted]] code 
would be assumed correct by the static analyzer. 

Such annotation need not be all-or-nothing. The “profile” options currently used to control the CG static 
analysis would make a good initial set of options, e.g. [[trusted lifetime]] would suppress the checking 
for leaks, etc. 

For most code written in a modern C++ style, conforming to the restrictions needed to achieve type-
and-resource safety doesn’t require major structural changes or imply run-time overheads. Older styles 
of code will need to replace use of arrays through pointers with abstractions such as vector and span. 
However, there are structures that cannot easily be fitted into this guaranteed framework. An example 
is general graphs with nodes where ownership and lifetime aren’t clearly indicated so that type-and-
resource safety depends on the cleverness of the programmer. One possible solution is to cleanly and 
explicitly separate ownership and access (e.g., a vector of owner pointers plus a data structure on non-
owning link pointers). Another is to  use of a smart pointers (e.g. std::shared_ptr) plus tests for 
circularities.  

8. So what? 
The static analysis I rely on for guarantees is not yet 100% implemented (but is getting close) and what is 
available is not available on every platform. It would be a massive advantage for all C++ developers if it 
were. Universal availability of Core Guidelines static analysis would be far more significant than any 
single language extensions, and far easier/cheaper to achieve. It would also be following the tradition of 
C and C++ in distinguishing between what is legal in the standard and what is good software 
development. The compiler is not our only tool, and has never been. 

What is checked statically should be principled and precisely specified. The C++ Core Guidelines is a 
significant effort in that direction. Also, the completeness of the safety guarantees needs to be – as far 
as possible – formally proved. 
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