
Freestanding Library: Partial Classes
Document #: P2407R0
Date: 2021-07-11
Project: Programming Language C++
Audience: Library Evolution Working Group
Reply-to: Emil Meissner

<e.meissner@seznam.cz>
Ben Craig
<ben dot craig at gmail dot com>

Contents
1 Introduction 1

2 Motivation and Scope 2
2.1 Scope . 2

2.1.1 About <bitset> . 2
2.2 Implementation experience . 2

2.2.1 The Existing Standard Library . 2
2.2.2 In Practice . 2

3 Design decisions 2
3.1 Deleting behavior . 2
3.2 [conventions] changes . 2
3.3 On std::visit . 3
3.4 Notes on variant and value categories . 3

4 Justification for deletions 3

5 Wording 3
5.1 Change in [conventions] . 3
5.2 Changes in [compliance] . 4
5.3 Changes in [optional.syn] . 4
5.4 Changes in [optional.optional.general] . 4
5.5 Changes in [variant.syn] . 4
5.6 Changes in [string.view.synop] . 4
5.7 Changes in [string.view.template.general] . 5
5.8 Changes in [array.syn] . 5
5.9 Changes in [array] . 5

6 References 5

1 Introduction
This proposal is part of a group of papers aimed at improving the state of freestanding. It marks (parts
of) std::array, std::string_view, std::variant, and std::optional as such. A future paper might add
std::bitset (as was the original goal in [P2268R0])

1

mailto:e.meissner@seznam.cz

2 Motivation and Scope
All of the added classes are fundamentally compatible with freestanding, except for a few methods that throw
(e.g. array::at). We explicitly =delete these undesirable methods.

The main driving factor for these additions is the immense usefulness of these types in practice.

2.1 Scope
We refine [freestanding.membership] by specifying the notion of partial classes, and accordingly specify the newly
(partially) freestanding classes as such.

2.1.1 About <bitset>

As mentioned in the introduction, this paper does not deal with bitset. Bitset is unique in that a relatively big
part of its interface depends on std::basic_string. We do not currently have a sound plan to make bitset work
as nicely as we’d like to. This situation is made worse by a significant amount of bitset’s member functions that
throw.

2.2 Implementation experience
2.2.1 The Existing Standard Library

We’ve forked libc++, and =deleted all not freestanding methods. Except for some methods on string_view
(which are implemented in terms of the deleted string_view::substring), this did not require any changes in
the implementation. All test cases (except for the deleted methods) passed after some rather minor adjustments
(e.g. replacing get<0>(v) with *get_if<0>(&v)), confirming that all these types are usable without the deleted
methods.

2.2.2 In Practice

Since we aren’t changing the semantics of any of the classes (except deleted non-critical methods), it is fair to say
that all of the (implementer and user) experience gathered as part of hosted applies the same to freestanding.

The only question is, whether these classes are compatible with freestanding. To which the answer is yes! For
example, the [Embedded Template Library] offers direct mappings of the std types. Even in kernel-level libraries,
like Serenity’s [AK] use a form of these utilities.

3 Design decisions
3.1 Deleting behavior
Our decision to delete methods we can’t mark as freestanding was made to keep overload resolution the same on
freestanding as hosted.

An additional benefit here is, that users of these classes, who might expect to use a throwing method, which
was not provided by the implementation, will get a more meaningful error than the method simply miss-
ing. This also means we can keep options open for reintroducing the deleted functions into freestanding.
(e.g. operator<<(ostream, string_view), should <ostream> be added).

3.2 [conventions] changes
The predecessor to this paper used //freestanding, partial to mean a class (template) is only required to be
partially implemented, in conjunction with //freestanding, omit meaning a declaration is not in freestanding.

In this paper, we keep marking not fully freestanding classes templates as //freestanding, partial, requiring
all members of such a class template to be individually marked as freestanding, or not. This is done to keep things
explicit. We also introduce //freestanding, delete, to mean a declaration shall be deleted on freestanding.

2

3.3 On std::visit

In this paper, we mark std::visit as freestanding, even though it is theoretically throwing. However, the
conditions for std::visit to throw are as follows:

It is possible for a variant to hold no value if an exception is thrown during a type-changing assignment or
emplacement.

This means a variant will only throw on visit if a user type throws (library types don’t throw on freestanding). In
this case, std::visit throwing isn’t a problem, since the user’s code is already using, and (hopefully) handling
exceptions.

This however has the unfortunate side-effect that we need to keep bad_variant_access freestanding.

3.4 Notes on variant and value categories
By getting rid of std::get, we force users to use std::get_if. Since std::get_if returns a pointer, one can
only access the value of a variant by dereferencing said pointer, obtaining an lvalue, discarding the value category
of the held object. This is unlikely to have an impact on application code, but might impact highly generic
library code.

4 Justification for deletions
Every deleted method is throwing. We omit string_view’s associated operator<< since we don’t add
basic_ostream.

5 Wording
This paper’s wording is based on the current working draft, [N4878], and it assumes that the wording in [P1642R5]
and [P2338R0] has been applied.

5.1 Change in [conventions]
Add new paragraphs to [freestanding.membership]

5 A freestanding member is a member declaration of a freestanding class template that is implemented in
freestanding implementations.

6 A partially freestanding class template is a freestanding class template, where at least one, but not all members
are freestanding members. In the associated header synopsis for such a class template, the class template’s
declaration is followed with a comment that includes freestanding and partial.

[Example:
template<class T, size_t N> struct array; //freestanding, partial

-end example]
7 Each freestanding member in the synopsis of a partially freestanding class template is followed by a comment

including freestanding.
8 Deleted freestanding members are member functions of a partially freestanding class template that are

designated as such. Deleted freestanding members are not freestanding members. In the partially freestanding
class template’s synopsis, deleted freestanding members are followed with a comment that includes freestanding
and delete. Deleted freestanding members shall either meet the requirements of a hosted implementation, or
be deleted.

[Example:

3

constexpr reference at(size_type n); // freestanding, delete

-end example]

5.2 Changes in [compliance]
Add new rows to Table 24:

Subclause Header(s)
[. . .] [. . .] [. . .]
?.? [optional] Optional Objects <optional>
?.? [variant] Variants <variant>
?.? [string.view] String view classes <string_view>
?.? [array] Sequence containers <array>
[. . .] [. . .] [. . .]

5.3 Changes in [optional.syn]
Instructions to the editor:

Please append a //freestanding to every entity except:

— bad_optional_access
— optional

Please append a //freestanding, partial to the following entities:

— optional

5.4 Changes in [optional.optional.general]
Instructions to the editor:

Please append a //freestanding to every entity except:

— every reference qualified overload of value

Please append a //freestanding, delete to the following entities:

— every reference qualified overload of value

5.5 Changes in [variant.syn]
Instructions to the editor:

Please append a //freestanding to every entity except:

— every overload of get

Please append a //freestanding, delete to the following entities:

— every overload of get

5.6 Changes in [string.view.synop]
Instructions to the editor:

Please append a //freestanding to every entity except:

4

— basic_string_view
— operator<<

Please append a //freestanding, partial to the following entities:

— basic_string_view

5.7 Changes in [string.view.template.general]
Instructions to the editor:

Please append a //freestanding to every entity except:

— at
— copy
— substr
— The following overloads of compare:

— compare(size_type pos1, size_type n1, basic_string_view s)
— compare(size_type pos1, size_type n1, basic_string_view s, size_type pos2, size_type n2)
— compare(size_type pos1, size_type n1, const charT* s)
— compare(size_type pos1, size_type n1, const charT* s, size_type n2)

Please append a //freestanding, delete to the following entities:

— at
— copy
— substr
— The following overloads of compare:

— compare(size_type pos1, size_type n1, basic_string_view s)
— compare(size_type pos1, size_type n1, basic_string_view s, size_type pos2, size_type n2)
— compare(size_type pos1, size_type n1, const charT* s)
— compare(size_type pos1, size_type n1, const charT* s, size_type n2)

5.8 Changes in [array.syn]
Instructions to the editor:

Please append a //freestanding to every entity except:

— array

Please append a //freestanding, partial to the following entities:

— array

5.9 Changes in [array]
Instructions to the editor:

Please append a //freestanding to every entity except:

— at

Please append a //freestanding, delete to the following entities:

— at

6 References
[AK] Andreas Kling. Serenity OS AK Library.

https://github.com/SerenityOS/serenity/tree/master/AK

5

https://github.com/SerenityOS/serenity/tree/master/AK

[Embedded Template Library] John Wellbelove. Embedded Template Library.
https://www.etlcpp.com/

[N4878] Thomas Köppe. 2020-12-15. Working Draft, Standard for Programming Language C++.
https://wg21.link/n4878

[P1642R5] Ben Craig. 2020-12-10. Freestanding Library: Easy [utilities], [ranges], and [iterators].
https://wg21.link/p1642r5

[P2268R0] Ben Craig. 2020-12-10. Freestanding Roadmap.
https://wg21.link/p2268r0

[P2338R0] Ben Craig. 2021-03-13. Freestanding Library: Character primitives and the C library.
https://wg21.link/p2338r0

6

https://www.etlcpp.com/
https://wg21.link/n4878
https://wg21.link/p1642r5
https://wg21.link/p2268r0
https://wg21.link/p2338r0

	Introduction
	Motivation and Scope
	Scope
	About <bitset>

	Implementation experience
	The Existing Standard Library
	In Practice

	Design decisions
	Deleting behavior
	[conventions] changes
	On std::visit
	Notes on variant and value categories

	Justification for deletions
	Wording
	Change in [conventions]
	Changes in [compliance]
	Changes in [optional.syn]
	Changes in [optional.optional.general]
	Changes in [variant.syn]
	Changes in [string.view.synop]
	Changes in [string.view.template.general]
	Changes in [array.syn]
	Changes in [array]

	References

