
Michael Garland, June 2021

P2300R0

STD::EXECUTION

AUTHORS

Michał Dominiak,

Lewis Baker,

Lee Howes,

Michael Garland,

Eric Niebler &

Bryce Adelstein Lelbach



2

GOALS OF THIS PAPER

Refine design of core features in P0443 based on feedback from LEWG & SG1

Consolidate selected features needed to write effective code, especially from:

▪ P2181r1 Correcting the design of bulk execution

▪ P1897r3 Towards C++23 executors: A proposal for an initial set of algorithms

▪ P2175r0 Composable cancellation for sender-based async operations

Produce a self-contained, well-documented design suitable for inclusion in C++23

Produce a single, usable design for controlling execution in C++



3

HELLO, P2300
Preparing work to be executed on a thread pool & waiting for its completion

using namespace std::execution;

scheduler auto sch = my_thread_pool().scheduler();

sender auto begin = schedule(sch);

sender auto hi_again = then(begin, []{
std::cout << "Hello world! Have an int.";
return 13;

});

sender auto add_42 = then(hi_again, [](int arg) { return arg + 42; });

auto [i] = std::this_thread::sync_wait(add_42).value();



4

USER-FACING DESIGN



5

USER NEEDS

Control where work executes

Manage composition of asynchronous operations

Control submission of work for execution

Our design provides mechanisms to manage three key concerns



6

CONCEPT: SCHEDULERS
Schedulers are handles representing the context in which work will be executed

// Schedulers are obtained from context-specific interfaces.
scheduler auto sch = my_thread_pool().scheduler();

A single context object, such as a thread pool, may provide multiple

different schedulers encapsulating different execution strategies.



7

CONCEPT: SENDERS

An object that represents a computation to be performed and which,

upon completion, sends zero or more values.

Senders may alternatively send an error or done signal in lieu of values.

(More on this later.)

Senders describe work to be executed



8

ASSEMBLING DESCRIPTIONS OF WORK
Sender factories initiate the description of a computation

Sender Factories in P2300

schedule(scheduler auto sch) -> sender Returned sender completes on the given scheduler

just(auto ...values) -> sender Returned sender completes and sends the given values

transfer_just(scheduler auto, auto ...) -> sender
Returned sender completes on the given scheduler 

and sends the given values



9

ASSEMBLING DESCRIPTIONS OF WORK
Sender factories initiate the description of a computation

// Produces a sender that completes immediately
// and sends the value 1001.
sender auto a = just(1001);

// Senders may send more than one value ...
sender auto b = just(1001, 1002, 1003);

// ... or send none at all.
sender auto c = just();



10

ASSEMBLING DESCRIPTIONS OF WORK
Sender consumers are terminal points in the description of a computation

Sender Consumers in P2300

std::this_thread::sync_wait(sender auto snd)
-> std::optional<std::tuple<value-types...>>

Submit computation represented by snd for execution.

Block the current thread waiting for completion.
Return value(s) sent by snd.

If an error is sent, throw exception.

If done is sent, return an empty optional.

std::execution::start_detached(sender auto snd)
-> void

Submit computation represented by snd for execution.

Any values it sends will be discarded.
If an error is sent, std::terminate is called.



11

ASSEMBLING DESCRIPTIONS OF WORK
Sender consumers are terminal points in the description of a computation

// Produces a sender that completes immediately and sends the value 1.
sender auto one = just(1);

// Wait for completion and obtain the result.
auto [x] = std::this_thread::sync_wait(one).value();

// x == 1 at this point.



12

ASSEMBLING DESCRIPTIONS OF WORK

Adaptors accept senders as parameters and return a 
sender as output.

Sender adaptors are analogous to range adaptors

Including support for pipe operator syntax

Sender adaptors enable composing computations from individual pieces

Selected Sender Adaptors in P2300

then

let_value

bulk

when_all

split

// These are equivalent:

then(snd, ...);

then(...)(snd);

snd | then(...);



13

THEN
Continuing a computation with a single invocable object

Sender Adapters

then(sender auto snd, invocable f) -> sender
Returned sender sends the result of f invoked with the values 

sent by snd.  If snd does not send values, sends what snd
sends.

sender auto a = just(100);

sender auto b = then(a, [] (int x) { return 2 * x; });

auto [x] = std::this_thread::sync_wait(b).value();  // x == 200



14

LET_VALUE
Extending a computation with a sender factory

Sender Adapters

let_value(sender auto snd, invocable f)
-> sender

Will invoke f with values sent by snd, resulting in a sender. If 

snd doesn’t send values, f is not invoked.  Returned sender 

will send what that resulting sender does.

sender auto sends_A = ...

sender auto snd = sends_A

| let_value([] (auto& A) {

return schedule(my_thread_pool().scheduler())

| then([&A] { })

| then([&A] { })

...

});

let_value ensures that lifetime of delivered 

objects outlasts computation described by f.



15

BULK
Extending a computation with a bulk section

Sender Adaptors

bulk(sender auto snd,
std::integral auto size,
invocable f) -> sender

Returned sender completes after invoking f with (i, xs...) for all 

i in [0, size) where xs... are the values sent by snd, and

delivers those same values.  If snd does not send values, sends 

what snd sends.

std::vector in = {2, 3, 0, 0};

int n = in.size();

sender auto update = just(std::move(in))

| bulk(n, [](int i, std::vector<int>& x) { x[i] += 1; })

| bulk(n, [](int i, std::vector<int>& x) { x[i] += 1; });

auto [out] = std::this_thread::sync_wait(update).value(); // out == {4, 5, 2, 2}



16

WHEN_ALL
Joining results of multiple computations together

Sender Adapters

when_all(sender auto ...senders) -> sender
Returned sender completes once all given senders 

have completed and sends the values sent by all of 

them, in the same order they are listed.

transfer_when_all(scheduler auto sch,
sender auto ...senders) -> sender

Behaves like when_all, and returned sender 

completes on sch.

sender auto s0 = just(1000);

sender auto s1 = just("hello"sv);

sender auto s2 = when_all(s1, s2);

auto [x, y] = std::this_thread::sync_wait(s2).value();

s2

s0 s1



17

SPLIT
Used when multiple computations have a common predecessor

Sender Adaptors

split(sender auto snd) -> sender
Returned sender delivers values equivalent to those sent by 
snd.  May be snd itself or a new sender, as appropriate.

sender auto s0 = just(2021);

sender auto fork = split(std::move(s0));

sender auto s1 = fork | then([] (int y) { printf("Left %d\n", y); });

sender auto s2 = fork | then([] (int y) { printf("Right %d\n", y); });

s0

s1 s2



18

WHERE DO SENDERS COMPLETE?

Senders may advertise a completion scheduler

template <typename signal_cpo>
get_completion_scheduler(sender auto snd) -> scheduler

If well-formed, the sender snd ensures that it 

sends the indicated signal on an execution agent 

belonging to the context represented by the 

returned scheduler.

Controlling where senders complete with values

schedule(scheduler auto sch) -> sender Produces a scheduler whose completion scheduler is sch.

transfer(sender auto snd, scheduler auto sch) 
-> sender

Return a sender that sends the values sent by snd, but 

whose completion scheduler is sch. Does not change 

scheduler that snd starts on.

on(scheduler auto sch, sender auto snd)
-> sender

Starts snd on sch and returns a sender that sends the values 

sent by snd, but which has no completion scheduler.



19

USING TRANSFER
Transfer changes completion scheduler when describing work

sender auto initiate = schedule(sch1);

// Assuming no errors:

sender auto work = initiate              // .. completes on sch1

| then([]{ printf("On sch1\n"); })   // .. completes on sch1

| transfer(sch2)                     // .. completes on sch2

| then([]{ printf("On sch2\n"); });  // .. completes on sch2

std::this_thread::sync_wait(work);



20

USING ON
On specifies scheduler on which work already described will start

sender auto work = just()

| then([]{ printf("Running\n"); });

// Work will start on sch1.

// (and also complete on sch1, in this example)

sender auto initiate = on(sch1, work);

std::this_thread::sync_wait(initiate);



21

SENDING MORE THAN VALUES
Analogues of then and let_value for error and done signals

Sender Adapters

upon_error(sender auto snd, invocable f)
-> sender

Returned sender sends the result of f invoked with an error 

delivered by snd.  Sends what snd sends, otherwise.

upon_done(sender auto snd, invocable f)
-> sender

Returned sender sends the result of invoking f invoked when 

snd completes with done.  Sends what snd sends, otherwise.

let_error(sender auto snd, invocable f)
-> sender

Will invoke f with the error sent by snd, resulting in a sender.  

If snd doesn’t send an error, f is not invoked.  Returned sender 

will send what that resulting sender does.

let_done(sender auto snd, invocable f)
-> sender

Will invoke f if snd sends done, resulting in a sender.  If snd
doesn’t send done, f is not invoked.  Returned sender will send 

what that resulting sender does.



22

EXECUTE
One-way execution of invocable objects on schedulers

scheduler auto sch = my_thread_pool().scheduler();

// Submitting a function with no arguments that returns no results
// to be run in the execution context represented by the scheduler.
execute(sch, [] { printf("Running on thread pool\n"); });

This operation fills the role of one-way executors from P0443.



23

WHEN IS WORK SUBMITTED?

Customizations of algorithms are permitted to be potentially eager, as in P0443 and other papers

Lazy implementations of potentially eager algorithms are always valid

Strictly lazy semantics (i.e., work is never submitted until explicitly started) are chosen by name

Regardless of submission point, required ordering of sender completions must never be altered

Default interface supports lazy submission but permits potentially eager submission



24

WHEN IS WORK SUBMITTED?
Default interface supports lazy submission but permits potentially eager submission

sender auto a = ...some sender...;

sender auto b = then(a, []{ printf("b\n"); });
// a may be submitted for execution already,
// but must never execute before b completes.

sender auto c = lazy_then(a, []{ printf("c\n"); });
// c must not be submitted for execution yet.

// b may have been submitted before this point.
std::this_thread::sync_wait(b);

// c must not be submitted before this point.
std::this_thread::sync_wait(c);



25

FUTURE WORK

An existing parallel algorithm of the form:

algorithm(ExecutionPolicy&& policy, …) -> T

could be executed on a specific scheduler by combining a scheduler with a policy:

algorithm(executing_on(scheduler, policy), ...) -> T

and a new asynchronous form of the algorithm could be achieved by combining with senders:

async_algorithm(executing_async(sender, policy), ...) -> sender

We envision composing with parallel algorithms via operators not yet defined



26

sender auto async_read(sender auto buffer, auto handle);

struct dynamic_buffer { std::unique_ptr<std::byte[]> data; std::size_t size; };

sender auto async_read_array(auto handle) {
return just(dynamic_buffer{})

| let_value([] (dynamic_buffer& buf) {
return just(std::as_writeable_bytes(std::span(&buf.size, 1))

| async_read(handle)
| then(

[&] (std::size_t bytes_read) {
assert(bytes_read == sizeof(buf.size));
buf.data = std::make_unique(new std::byte[buf.size]);
return std::span(buf.data.get(), buf.size);

})
| async_read(handle)
| then(

[&] (std::size_t bytes_read) {
assert(bytes_read == buf.size);
return std::move(buf);

})
});

}

Separately defined asynchronous 

algorithm returns a sender.

let_value() responsible for managing 

lifetime of dynamic_buffer

Composition with external async. algorithm

Returned sender delivers a filled dynamic_buffer upon completion.



27

IMPLEMENTER’S 
INTERFACE



28

CONCEPT: RECEIVERS

Senders represent continuable computations.

Receivers are the continuations to which they send values.

Receivers provide three channels for receiving completion signals from a sender:

▪ set_value(receiver auto recv, auto Ts...) -> void

▪ set_error(receiver auto recv, auto err) -> void

▪ set_done(receiver auto recv) -> void

Receivers are the “glue” between senders



29

CONCEPT: RECEIVERS

Senders represent continuable computations.

Receivers are the continuations to which they send values.

Receiver contract:

▪ Exactly one of these must be successfully invoked on a receiver before it is destroyed. 

▪ If a call to set_value fails with an exception, either set_error or set_done must be 
invoked on the same receiver.

Receivers are the “glue” between senders



30

RECEIVERS ARE FOR IMPLEMENTERS

Senders represent continuable computations.

Receivers are the continuations to which they send values.

The connect algorithm binds them together.

Design principle: Neither receivers nor connect should appear in typical user code; 

they exist for implementers of senders and low-level operations on senders

Receivers are the “glue” between senders



31

SENDERS & RECEIVERS
Connecting a sender to a receiver produces an operation state, which can be started

sender auto snd = ...some sender...;
receiver auto rcv = ...some receiver...;

// Connecting a receiver tells a sender where to send its completion signal.
operation_state auto state = connect(snd, rcv);

// The defining interface of an operation state is that it can be started:
start(state);

// NOTE: Operation state objects are not movable; therefore, an operation state
// object must be kept alive until its corresponding operation finishes.



32

CUSTOMIZATION

All of the sender algorithms defined in P2300 are customization points

We rely on the tag_invoke mechanism for defining customization points

A sender algorithm expression algorithm(snd, args…) is equivalent to:

1. tag_invoke(<algorithm>, get_completion_scheduler<cpo>(snd), snd, args...),
if that expression is well-formed; otherwise

2. tag_invoke(<algorithm>, snd, args...), if that expression is well-formed; otherwise

3. a default implementation, if there exists a default implementation of the given algorithm.

Sender algorithms are customizable



33

CANCELLATION

Fundamental support for certain algorithm and concurrency patterns, including examples such as:

▪ try multiple network servers; use whichever responds first; cancel the rest

▪ when one leg of when_all(ops...) fails, try to cancel incomplete operations

▪ apply a generic timeout() algorithm to a sender to have it cancelled after given time period

Builds upon std::stop_token mechanism in C++20, with get_stop_token() receiver query

Design details to follow in P2300r1

Mechanisms to request cancellation of work that has already started



34

COMPARISON WITH P0443



35

KEY CHANGES IN P2300

Provides both a detailed design explanation and a complete specification

Consolidates necessary functionality from companion papers into a self-contained design

Elides certain functionality of P0443 as requested in previous design reviews

Thorough revision of material from prior papers in response to feedback



36

FOCUS ON CORE CONCEPTS

Removed polymorphic executor wrappers (P0443r14, Section 2.4)

Removed thread pool type (P0443r14, Section 2.5)

Removed generic property mechanism, and replaced with named query customization points

Removed executor as a distinct concept and defined execute to operate on schedulers 

Removed functionality from this paper in response to design review of P0443 



37

CONSOLIDATE FUNCTIONALITY

Core specification of concepts and implementer interface in P0443r14

Sender adaptor for bulk execution from P2181r1

Fundamental algorithms for using senders in P1897r3

Approach to managing cancellation from P2175r0

Functionality needed to write sender-based code was spread across multiple papers



38

CLARIFIED SEMANTICS

Senders now advertise what scheduler, if any, their evaluation will complete on

Places of execution of user code are precisely defined

Semantics of variously qualified connect overloads are specified

Distinction between multi-shot and single-shot senders is made clear

P0443 was unclear on several important semantic questions



39

NEW CAPABILITIES

A new split algorithm allows generic code to chain a sender with multiple successors

A transfer algorithm to explicitly control where senders complete

Fused algorithms (e.g., transfer_just, transfer_when_all) permit more efficient customizations

Implementors can now customize sender adaptors via completion scheduler of provided sender

Users now have a choice between strictly lazy & possibly eager versions of most sender algorithms

P2300 also adds capabilities not present in P0443 and companion papers



40

Further Questions?


