
P1673R3: A free function linear
algebra interface based on the BLAS

Mark Hoemmen & P1673R3 coauthors

mhoemmen@stellarscience.com

LEWG meeting, 22 June 2021

These slides themselves have a paper number, P2402R0,
as requested by LEWG. P1673R3 is the proposal that
these slides summarize and discuss.

mailto:mhoemmen@stellarscience.com

P1673(R3) current status

• Reviewed by SG6, SG14, LEWGI, & LEWG
• Targeting IS
• Depends on P0009 (+ P2299 changes)
• Implementation

– https://github.com/kokkos/stdBLAS
– Design like coauthors’ existing libraries (e.g., kokkos-kernels)
– Builds on decades of coauthors’ implementation experience

• Wording reviewed by wordsmith / coauthor
Dan Sunderland

• New draft: https://github.com/ORNL/cpp-proposals-
pub/blob/master/D1673/blas_interface.md

https://github.com/kokkos/stdBLAS
https://github.com/ORNL/cpp-proposals-pub/blob/master/D1673/blas_interface.md

Why does P1673 belong
in the Standard Library?

• Linear algebra algorithms are like sort
– Obvious algorithms are slow and inaccurate

– Fastest call for hardware-specific tuning

• Core functionality for many applications
– At least as useful as the “mathematical functions”

already in the Standard Library

• Builds on decades of existing practice
– Including an actual standard (BLAS)…

– …and implementations from many vendors

Design summary

• Algorithms working on views of data
– Use mdspan (P0009) to view multidimensional arrays

– Otherwise, like existing standard algorithms

• Algorithms, not containers
– No matrix/vector operator arithmetic (no “C = A * B”)

– Express matrix properties like symmetry as algorithms’
assumptions about data, not as a class hierarchy

• Generic algorithms for any element types
– Integers, short or extended floats, fixed-point,

polynomials, crazy custom math types, …

– Can mix precisions in the same algorithm

Linear algebra has layers

Image credit: Lali Masriera (Barcelona, Catalunya)
https://en.wikipedia.org/wiki/File:Cortando_cebolla.jpg

https://en.wikipedia.org/wiki/File:Cortando_cebolla.jpg

Abstraction layers of linear algebra
• Layer -1: Multidimensional arrays, iteration, …
• Layer 0: Computational kernels

– Vector-vector ops: dot, norm, vector sum, apply plane
rotation, …

– Matrix-vector ops: matrix-vector multiply, triangular solve,
outer product update, …

– Matrix-matrix ops: matrix-matrix multiply, triangular solve
with multiple vectors, low-rank / symmetric update, …

• Layer 1: Solve low-level math problems
– Linear systems 𝐴𝑥 = 𝑏 (& determinants etc.)

– Least-squares problems min
𝑥

𝐴𝑥 − 𝑏

– Eigenvalue & singular value problems 𝐴𝑥 = 𝜆𝑥

• Layer 2: Solve higher-level math problems
– Nonlinear system of partial differential equations
– Solve huge problem by projecting onto small Layer 1

6

Abstraction layers of linear algebra
• Layer -1: Multidimensional arrays, iteration, …
• Layer 0: Computational kernels

– Vector-vector ops: dot, norm, vector sum, apply plane
rotation, …

– Matrix-vector ops: matrix-vector multiply, triangular solve,
outer product update, …

– Matrix-matrix ops: matrix-matrix multiply, triangular solve
with multiple vectors, low-rank / symmetric update, …

• Layer 1: Solve low-level math problems
– Linear systems 𝐴𝑥 = 𝑏 (& determinants etc.)

– Least-squares problems min
𝑥

𝐴𝑥 − 𝑏

– Eigenvalue & singular value problems 𝐴𝑥 = 𝜆𝑥

• Layer 2: Solve higher-level math problems
– Nonlinear system of partial differential equations
– Solve huge problem by projecting onto small Layer 1

7

P1673

other C++ libraries
(no standard yet)

P0009, P1684, Parallelism TS v2, …

Basic Linear Algebra Subprograms
• Standard published 2002

– 1995-99 meetings
– Fortran & C interfaces
– Dense matrix & vector ops

• Developed in levels (1,2,3):
– Vector-vector (BLAS 1): 1979
– Matrix-vector (BLAS 2): 1988
– Matrix-matrix (BLAS 3): 1990
– Level ➔more data reuse

• Implementations by many
system vendors, e.g.,
– AMD, ARM, IBM, Intel,

NVIDIA, Xilinx (FPGA)

• Open-source
implementations exist

8

(Fortran) BLAS quick reference:
http://www.netlib.org/blas

See also Jack Dongarra interview:
http://history.siam.org/oralhistories/d
ongarra.htm

http://www.netlib.org/blas
http://history.siam.org/oralhistories/dongarra.htm

BLAS codesigned w/ algorithms
• LINPACK library: 1979

– General dense, symmetric, & banded
– “Layer 1” algorithms (linear systems &

linear least squares)
– Designed to use BLAS (1), for good

performance on many different computers

9

• LAPACK: 1990
– Combines functionality of LINPACK +

EISPACK ({eigen,singular}value problems)
– “Coreleased” w/ BLAS 3; common authors
– Algorithms w/ optimal data reuse (*)
– BLAS 3 was designed for those algorithms

(*) I’m simplifying: see our paper, “Communication lower bounds &
optimal algorithms for numerical linear algebra” (Acta Numerica 2014).

P1673 design lesson: Layer!

• Standardize in layers
– Multidimensional arrays

(P0009)
– Computations (BLAS, P1673)
– Then actual math algorithms

• Layer by developers’ expertise
– System vendors write P1673
– So mathematicians can do

mathematics

• Layer for performance
portability
– BLAS has architecture-specific

optimizations
– So math algorithms can have

portable implementations

10

Layering improves longevity,
just like the Dobos torte
(Image credit: Wikipedia)

P1673 works on views

• BLAS and P1673 both work on views
– matrix_product(A, B, C)
– Not “C = A * B”

• Higher-level algorithms depend on different steps
viewing the “same matrix” in different ways, e.g.,
– Rectangular submatrices during LU factorization
– Upper and lower triangles during linear system solve

• Most interesting operations are not elementwise
– e.g., matrix-matrix multiply
– Expression templates won’t help avoid allocation
– P1673 has many more algorithms than {+, *} (C++ != APL)

Goldilocks & the 3 problem sizes

• Small
– ≤ 4x4? Fits in a register?

– Cheap copying favors op
arithmetic (C = A * B)

• Large
– Need 64-bit dimensions?

Won’t fit in memory?

– Specialized algorithms and
data structures (my field)

– Which often have medium-
sized subproblems

• Medium (BLAS)
– Like sort: enough work that

algorithms matter

– Avoid {allocate, copy};
work on views

– “Large” methods don’t pay

• P1673: Medium to small
– Remove BLAS’ error

checking (narrow contract)

– Exploit mdspan’s compile-
time dimensions

– Can add batched overloads

P1673 is extensible

• Algorithms are independent of mdspan layouts
and accessors, so easy to add more
– Tiled or recursive layouts for better locality
– Accessors for heterogeneous computing

• ExecutionPolicy&& overloads
– Control parallelism (reordering assumptions)
– Extra context: scheduling queue, scratch space

• Easy to add “batched” overloads
– Batched: Solve many same-size problems at once
– Best way to vectorize & parallelize small problems
– Easy with mdspan: extra extent + different layout

Addressing LEWG R2 feedback

• Introduce std::linalg namespace
– Use it to replace “linalg_” prefix

• Remove “_view” suffix
– Consider it reserved for ranges
– conjugate_view -> conjugated, etc.

• Investigate “concept-ification”
– As in P1813R0 for numeric algorithms like reduce
– Added discussion to R3; see following slides

• Investigate support for GPU memory
• Wording & other improvements

P1813R0 concept-ification

• Define concepts that
describe generalizations
of a (math) group

• Use them to constrain
elements of algorithms’
range parameters

• e.g., reduce requires
associative op+

– (a + b) + c == a + (b + c)

Algebraic structures between magmas
& groups (Image credit: Wikipedia)

Associativity is too strict

• There are many useful arithmetic systems
with nonassociative operator+
– With infinity: If 10 is Inf, 3+8-7 is either Inf or 4

– Saturating: If 10 is max, 3+8-7 is either 3 or 4

– With rounding (e.g., floating point)

• Concepts are “always”; users accept “usually”
– Linear algebra has many examples of algorithms

(e.g., matrix factorizations) that don’t succeed
for all (run-time) input

Generalizing associativity
is not useful for our algorithms

• P1813R0’s most general concept: magma
– Set M with binary operation * such that

– if x and y are in M, then x * y is in M (“closed”)

• Sounds general, but already too specific
– Assumes only one set (i.e., type) M

• No mixed precision or expression templates

• Example: y(i) = alpha * x(i) + y(i) (could have 5 types!)

– Assumes binary operation is closed
• What if it could throw or otherwise fail?

• e.g., rational with bounded number of digits; signaling NaN

Need adverbs >> adjectives

• Constraints are adjectives

– Properties of ranges’ element types

– Useful to us mainly to describe what compiles, or
how to write a custom element type that works

• We need adverbs

– Permissions that users give an algorithm

– Regardless of properties of ranges’ element types

– C++ Standard already has GENERALIZED_SUM

Support for discrete GPUs

• GPU: Graphics processing unit

• Algorithm with the right ExecutionPolicy could
access memory that C++ ordinarily could not
– “Inaccessible memory” not Standard C++

– Straightforward extension in practice

– Long history outside GPUs (PGAS)

• Asynchronous execution of algorithms
– Different interface, esp. for return value

– LEWG asked us to consider return by pointer

Return scalars by value, for now

• Earlier reviews (SG6, SG14, LEWGI) insisted that
we return scalar results by value, like reduce
– Original design had output (by reference) arguments
– Made batched overloads more natural

• Just writing to a pointer isn’t enough
to express asynchronous execution
– How do we know if the value is ready?
– Asynchronous algorithms need to track data flow too

• Standard interface isn’t settled yet
– Senders / receivers model (P0443, P1897, P2300)

would permit composing asynchronous work

P0009 & P2299 changes

• Recent P0009 (mdspan) design changes

– e.g., P2299’s CTAD improvements

– basic_mdspan -> mdspan

• P1673R3 predates those changes

– Next revision will incorporate them

– Draft: https://github.com/ORNL/cpp-proposals-
pub/blob/master/D1673/blas_interface.md

https://github.com/ORNL/cpp-proposals-pub/blob/master/D1673/blas_interface.md

Summary

• Our proposal P1673 is a C++ BLAS interface
• BLAS: established standard with a long history
• P1674 clarifies P1673 design
• Please also read P1417 for historical context
• Thanks especially to:

– Daisy Hollman
– Alicia Klinvex
– Nevin Liber
– Christian Trott

• & to my employer, Stellar Science
– Esp. my colleague K. R. Walker

