
Less constexpr for <cmath>

Document: -

Date: March 09, 2021

Project: Programming Language C++, Library Working Group

Audience: SG6 → LEWG → LWG

Reply to: Nicholas G. Timmons (ngt26@cam.ac.uk)

Abstract

Proposal P1383 [2] calls for the inclusion of constexpr to the headers of
of the mathematical functions defined in <cmath> and <complex> to would
allow the functions to be evaluated at compile time. This has the potential
to cause problems of determinism as most mathematical libraries linked at
run-time do not produce correctly-rounded results. As a result, the value
which is statically compiled into the executable for a given call to sin may
not match the result produced at run-time for the same input. In this
position paper we highlight this issue and propose ways that constexpr

could be used with the mathematical functions in the future.

Contents

1 Introduction 1

2 Existing Constant Folding Problem 1

3 Future Constexpr Problems 2

4 Solution 2

5 Conclusion 2

1 Introduction

Proposal P1383 wants to add a constexpr to elemen-
tary functions and uses the justification of compilers
already performing constant folding at compile time
to justify that this should be an acceptable change.

In theory, this is something that should be true
as the IEEE-754 Standard for Floating-Point arith-
metic [1] states that the result of calls to the ele-
mentary functions should return a correctly-rounded
result. However, current run-time mathematical li-
braries which ship with operating systems are not
correctly-rounded. This means if a program with pre-
computed mathematical results is linked to a mathe-
matical library there is a chance that the call which
was statically evaluated may not match calls to the
same function with the same input.

Many people believe one bit of error in floating-
point does not affect the final output of a program,
but this is simply not true. Many applications rely

on bit-precise floating-point mathematics — and they
have every reason to. Much work was put into IEEE-
754 to guarantee deterministic and portable results
so that these results could be relied on when needed.
Problems of non-determinism and inconsistency with
results only occur when the rules are not followed and
by the nature of it being such a popular and widely
adopted standard, people do rely on the results.

This paper seeks to delay the addition of the
constexpr specifier to the elementary functions in
<cmath> until the common mathematical libraries
which are used provide results that are determinis-
tic between implementations.

We will present the current problems with Con-
stant Folding for mathematical functions as it is im-
plemented in gcc and Clang and then show how these
existing problems will be present if constexpr is
added to the elementary functions in <cmath>.

As the addition of constexpr would be a bene-
fit to the standard library, at the end of the paper
is a proposal for possible alternatives which can be
implemented.

2 Existing Constant Folding
Problem

The core of the problem with evaluating the elemen-
tary functions at compile time is that the current li-
braries which are used at run-time are not correctly-
rounded. It is impossible to give precise results to
the scale of the problem in 64-bit floating-point, but

1



for 32-bit floating-point, we can say that some func-
tions have a high proportion of all results incorrectly-
rounded. For example, in glibc 2.27 22.67 of all valid
inputs to acosh produce incorrectly-rounded results
in 32-bit. Figure 1 shows a comparison of different
implementations of some of the elementary functions
with highlights for where an incorrectly-rounded re-
sult is produced. You will notice that the different
implementations result not only in incorrect results
but a mismatch between libraries of where the incor-
rect results reside.

If the libraries all produce the same outputs
for the same input (regardless of whether they are
correctly-rounded) then we would not have a porta-
bility issue where a compiled result may not match
a run-time one. Unfortunately, there is no common
canonical result list that is adhered to.

How does this affect the use of Constant Fold-
ing for mathematical functions that are already be-
ing used in many compilers? For that, we need to
show how different compilers are implementing this
feature.

For Clang, this is implemented in its Constant
Folding optimisation pass. When a call to an ele-
mentary function is found, it will try and evaluate
the result. Using the example of tanf(x): the call to
tanf is identified, the type is promoted to double,
and the return value is fetched using the host library
and then cast back to the input precision.

For gcc, similar steps are taken except that the
value is calculated using GNU MPFR to produce the
correctly-rounded value at the input precision.

The Clang implementation has four problems; it
is using the host library which could be implemented
to any precision, it evaluates 32-bit as 64-bit, the fi-
nal result is not guaranteed to be correctly-rounded,
the final result may not match the run-time library.
The gcc implementation only has that final problem.

All of these factors could result in a situation
where mathfn(x) 6= mathfn(x) if one of the sides is
evaluated at compile time.

3 Future Constexpr Problems

If constexpr was to be added to these functions there
would be a requirement for the compilers to adhere to
the command. As there is currently no good solution
for what number should be returned for any input to
these functions, there is a high chance of the values
not matching between compilers. Regardless of the
run-time environment that the executable is finally
ran in.

This would make code compilation non-

deterministic due to not knowing which value would
be output, and then non-portable due to not know-
ing if the run-time linked mathematical library will
match with the results generated at compile-time.

It must be stated that there is already other a
long list of other issues which cause similar problem,
but it is the authors belief that the list should not be
expanded if it can be avoided.

4 Solution

Many compilers support the flag -ffast-math which
are used to signal compliance with the IEEE-754
standard. The existing constant folding of the mathe-
matical functions should be moved to only take place
when compiling with this flag enabled as the current
state of the mathematical libraries cannot guarantee
that the results returned will be compliant with the
standard. This should be the case for any externally
linked library with no guarantee of correctness.

To reach the goal of adding constexpr to the el-
ementary mathematical functions there must be fur-
ther development of the existing mathematical li-
braries to support correct-rounding as dictated by
IEEE-754. Alternatively, only allow the specifier to
be added to the cr{fn} version of the mathemati-
cal functions which were proposed in ISO/IEC TS
18661-4:2015 which looks to be adopted into C2x.
This would mean that the result had to be correctly-
rounded and guarantee compile-time and run-time re-
sults are equal.

5 Conclusion

The current proposals to allow for the constexpr

specifier to be added to the mathematical functions is
incompatible with the current mathematical libraries
in common use, as they do not comply with the IEEE-
754-2019 standard because they do not provide the
correctly-rounded result for the valid inputs in their
domain. If the specifier was allowed it would intro-
duce non-determinism between the compiled value
and the run-time value for the same inputs if the
same versions of the same library were not used in
both instances. This would reduce the reliability of
mathematical computing in C++.

References

[1] “IEEE Standard for Floating-Point Arithmetic”.
In: IEEE Std 754-2019 (Revision of IEEE 754-

2



2008) (2019), pp. 1–84. doi: 10.1109/IEEESTD.
2019.8766229.

[2] Edward J Rosten and Rosten.Oliver J. “More
constexpr for ¡cmath¿ and ¡cstdlib¿”. In: (2019).

3



F
n

.
J
u

li
a

M
S

V
C

g
li

b
c

2
.2

7

s
i
n

c
o
s

t
a
n

l
o
g

l
o
g
2

l
o
g
1
0

F
ig

u
re

1:
S

am
p

le
of

el
em

en
ta

ry
fu

n
ct

io
n

s
sh

ow
in

g
th

e
d

is
tr

ib
u

ti
o
n

o
f

in
co

rr
ec

tl
y
-r

o
u

n
d

ed
re

su
lt

s
o
n

th
e

C
P

U
fo

r
J
u

li
a
,
M

S
V

C
a
n

d
g
li

b
c

2
.2

7
.

D
iff

er
en

t
li

b
ra

ri
es

p
ro

d
u

ce
er

ro
r

in
d

iff
er

en
t

p
la

ce
s,

m
ea

n
in

g
f

(x
)

in
o
n

e
li

b
ra

ry
m

ig
h
t

n
o
t

b
e

eq
u

a
l

to
f

(x
)

in
a
n

o
th

er
li

b
ra

ry
fo

r
so

m
e

in
p

u
ts

—
th

is
is

a
th

re
a
t

to
p

or
ta

b
il

it
y.

N
O
T
E
:
In

th
is

ta
bl
e
a
tr
a
n
sl
u
ce
n
t
ve
rt
ic
a
l
o
ra
n
ge

li
n
e
is

d
ra
w
n
fo
r
ea
ch

in
co
rr
ec
tl
y
ro
u
n
d
ed

re
su
lt
,
fo
r
so
m
e
gr
a
p
h
s
su
ch

a
s
J
u
li
a
s
i
n
,

w
h
er
e
th
er
e
a
re

re
la
ti
ve
ly

fe
w

in
co
rr
ec
tl
y-
ro
u
n
d
ed

re
su
lt
s
th
e
er
ro
rs

a
re

qu
it
e
fa
in
t.

T
h
is

is
n
ee
d
ed

so
th
a
t
m
o
st

fu
n
ct
io
n
s
w
it
h
lo
ts

o
f
er
ro
r
a
re

n
o
t
a
ll

a
n
o
ra
n
ge

ba
r.

4


