
Document: P2173R1
Revises: P2173R0

Date: 9-Dec-2021
Audience: EWG
Authors: Inbal Levi (sinbal2l@gmail.com)

Daveed Vandevoorde (daveed@edg.com)
Ville Voutilainen (ville.voutilainen@gmail.com)

Attributes on Lambda-Expressions

Revision History
R0: Original proposal with wording.
R1: Wording tweaked to reflect CWG review, including re-basing them on the current working
paper (N4892), which has lambda grammar substantially modified by P1102.

Introduction
This paper proposes a fix for Core Issue 2097
(http://open-std.org/JTC1/SC22/WG21/docs/cwg_toc.html#2097), to allow attributes for
lambdas, those attributes appertaining to the function call operator of the lambda.

Lambdas are shorthands for function objects; it seems reasonable to allow attributes like
[[nodiscard]], [[deprecated]] and [[noreturn]] for the lambda call operator. For a lambda that
wraps a [[noreturn]] function, it’s half-evidently reasonable to allow the lambda to be [[noreturn]].
For lambdas that are in a wider scope than a block scope (and even for lambdas in a block
scope, to catch misuses), it seems reasonable to allow [[nodiscard]] and [[deprecated]].

This arguably makes the language more regular: Function objects allow marking their call
operators with attributes and, with this change, shorthand function objects allow that too.

The current grammar for a lambda expression is a follows ([expr.prim.lambda]/1):
lambda-expression :

lambda-introducer lambda-declarator compound-statement
lambda-introducer < template-parameter-list > requires-clauseopt

lambda-declarator compound-statement

lambda-introducer :
[lambda-captureopt]

mailto:sinbal2l@gmail.com
mailto:daveed@edg.com
mailto:ville.voutilainen@gmail.com

lambda-declarator :
lambda-specifiers
(parameter-declaration-clause) lambda-specifiers requires-clauseopt

lambda-specifiers :
decl-specifier-seqopt noexcept-specifieropt

attribute-specifier-seqopt trailing-return-typeopt

Of note for this paper is that this grammar currently reserves exactly one spot for attributes — a
spot that parallels the similar grammar location for function declarators — for attributes that
appertain to the corresponding function type. However, attributes appertaining to declarator
types are less common than attributes appertaining to just about any other kind of thing in C++ .1

So this paper argues for introducing an additional syntactic location for attributes in
lambda-expressions, so that, for example, the following would become valid:

auto lm = [][[nodiscard, vendor::attr]]()->int { return 42; };

The remainder of this paper discusses design options and provides wording to enable this
extension. All references to the working paper are based on N4892.

Design and Options
When considering the grammar in the introduction, we observe:

1. The existing location for attributes and their appertainance is consistent with other
contexts permitting a function-like declarator. Besides, changing this could break
existing code (though likely very little). We therefore do not think it wise to change that
aspect of the existing syntax.

2. Because many of the elements of the lambda syntax are optional, there are only three
potential syntactic locations for additional attributes: (a) prior to the lambda-introducer,
(b) after the lambda-introducer but before the optional lambda-declarator, and (c) after
the compound-statement. However, option (a) is not really available because it would
introduce an ambiguity for the grammar of expression statements ([stmt.pre]/1).

When we consider the semantics of attributes in the context of lambda expressions, we also
observe that a lambda-expression is a shorthand notation for a closure object and its (class)
type and that type includes various elements (sometimes optional) like:

● the closure (class) type itself: attributes could be meaningful for it (e.g., to control
alignment)

1 And, for example, none of the standard-supplied attributes appertain to function types.

● the call operator of the closure: allowing attributes for this operator is the raison d’etre of
this paper and there is ample anecdotal evidence that programmers want to be able to
say that this operator is [[noreturn]] or [[nodiscard]], for example

● a conversion operator: it too could conceivable use attributes in some situations (a
[[deprecated]] attribute, for example)

● various constructors, each of which could also conceivably want meaningful attributes

Providing a mechanism to allow attributes for all these elements would severely burden the
syntax of lambda-expressions. We therefore propose to introduce additional attributes only for
the call operator (using the location just after the lambda-capture), with a nod to the possibility of
later also adding them for the closure class using trailing attributes (i.e., right after the
compound-statement). Note that the use of trailing attributes for expressions is not novel, since
they can occur in new-expressions ([expr.new]/1). For elements that are not covered with a
lambda-specific syntax, the programmer can instead write out a function-object class type
explicitly.

So we propose to allow in C++23:

auto rethrower = [][[noreturn]]() { throw; };

leaving a potential later option for:

auto cntr = [i=0]{ return ++i; } alignas(64);

Proposed Wording Changes
Change the grammar for lambda-expression in [expr.prim.lambda] as follows:

lambda-expression :
lambda-introducer attribute-specifier-seqopt

lambda-declarator compound-statement
lambda-introducer < template-parameter-list > requires-clauseopt

attribute-specifier-seqopt lambda-declarator compound-statement

lambda-introducer :
[lambda-captureopt]

lambda-declarator :
lambda-specifiers
decl-specifier-seq noexcept-specifieropt

attribute-specifier-seqopt trailing-return-typeopt

noexcept-specifier attribute-specifier-seqopt trailing-return-typeopt

trailing-return-typeopt

(parameter-declaration-clause) lambda-specifiers requires-clauseopt

(parameter-declaration-clause) decl-specifier-seqopt noexcept-specifieropt

attribute-specifier-seqopt trailing-return-typeopt requires-clauseopt

lambda-specifiers :
decl-specifier-seqopt noexcept-specifieropt

attribute-specifier-seqopt trailing-return-typeopt

(Note the need to expand lambda-specifiers and enumerate a number of possibilities to avoid
the ambiguity/collision of “prefix” attributes and “declarator” attributes when the parameter list,
subsequent decl-specifiers, and noexcept-specifier are omitted.)

Insert between paragraphs 2 and 3 of [expr.prim.lambda.general]/4.

N An ambiguity can arise because a requires-clause can end in an attribute-specifier-seq, which
collides with the attribute-specifier-seq in lambda-expression. In such cases, any attributes are
treated as attribute-specifier-seq in lambda-expression.
[Note: Such ambiguous cases cannot have valid semantics because the constraint expression
would not have type bool. — end note]

(Note: This ambiguity is pre-existing in general template declarations, but more severe there.
For example:

template<typename T> requires T::operator int [[]] void f();
but also:

template<typename T> requires T::operator int
unsigned f();

Examples courtesy of Richard Smith.)

Replace the first two sentences in [expr.prim.lambda.general]/4 as follows:

4 If a lambda-expression includes an empty lambda-declarator, it is as if the lambda-declarator
were (). The lambda return type is auto, which is replaced by the type specified by the
trailing-return-type if provided and/or deduced from return statements as described in 9.2.9.6.
If a lambda-declarator does not include a parameter-declaration-clause it is as if () were
inserted at the start of the lambda-declarator. If the lambda-declarator does not include a
trailing-return-type, the lambda return type is auto, which is deduced from return statements
as described in _decl.spec.auto (9.2.9.6)_. [...]

Modify [expr.prim.lambda.closure]/4 as follows:

4 [...] An attribute-specifier-seq in a lambda-declarator appertains to the type of the
corresponding function call operator or operator template. An attribute-specifier-seq in a
lambda-expression preceding a lambda-declarator appertains to the corresponding function
call operator or operator template. The function call operator or any given operator template
specialization is a constexpr function if [...]

Note: Some standard attribute descriptions talk about an attribute being “applied to” a
declarator-id, whereas others talk about them being “applied to” the entity being declared by
that declarator-id. Since lambda expressions do not involve a declarator-id, the other
formulation seems preferable. The following changes are to consistently use that other
formulation.

Modify [dcl.attr.depend]/1 as follows:

1 [...] The attribute may be applied to the declarator-id of a parameter-declaration in parameter
of a function declaration or lambda, in which case it specifies that the initialization of the
parameter carries a dependency to (6.9.2) each lvalue-to-rvalue conversion (7.3.1) of that
object. The attribute may also be applied to the declarator-id of a function declaration or a
lambda call operator, in which case it specifies that the return value, if any, carries a
dependency to the evaluation of the function call expression.

Modify [dcl.attr.nodiscard]/1 as follows:

1 The attribute-token nodiscard may be applied to the declarator-id in a function declaration
or a lambda call operator or to the declaration of a class or enumeration. [...]

Modify [dcl.attr.noreturn]/1 as follows:

1 [...] The attribute may be applied to the declarator-id in a function declaration or a lambda
call operator. [...]

