
P1675R2: rethrow_exception must be allowed to copy
Billy O’Neal

Audience: CWG, LWG

Changes since R1
• Reformulated the proposed resolution to address LWG feedback that the bulleted list did not

follow a natural progression of “do this then do this then do that”.

• Changed working draft referenced in the proposed resolution to N4878. (The paragraph

numbers happened to not change)

Changes since R0
• Retargeted at LWG after EWG and CWG review.

• Removed italics from exception object in the proposed resolution.

• Removed drafting note CWG resolved.

• Used ‘throws’ in wording instead of emits as requested by Daniel Krugler. (I really really really

dislike statements that the library is throwing an exception when the library is in fact

transparently.

• Applied LWG wording feedback.

Discussion – MSVC++’s current behavior
The current_exception wording was carefully written to allow both ABIs like MSVC++’s where the

exception objects are generally constructed on the stack, and ABIs like the Itanium C++ ABI where the

exception objects are generally constructed on the heap (and possibly reference counted).

Implementations are given the freedom they need to (possibly) copy the exception object into the

memory held by the exception_ptr, and similar. See http://eel.is/c++draft/propagation#8.

Unfortunately, such care was not taken for rethrow_exception. The language at

http://eel.is/c++draft/propagation#10 suggests that the same exception object needs to be used for the

rethrown exception. This is not possible on MSVC++’s ABI today, because the catch block handler calls

the destructor for the exception object (if necessary). If we threw the same object stored in the

exception_ptr, it would end up having its destructor called each time it was rethrown.

The existing implementation MSVC++ uses copies the stored exception into an alloca’d memory block

in rethrow_exception, and changes the currently active exception TLS value to that alloca’d block,

then rethrows that as if by throw;.

Previous WG21 examination of this area
In reflector discussion “[isocpp-core] [isocpp-lib] std::rethrow_exception might throw another exception

type” Herb Sutter did some archaeology and found that the committee has considered this area in the

past. Quoting his response on the reflector:

Just to be crisp: It could be not just a different exception object of the same type, but a different
exception object of an arbitrarily different type entirely. Here’s a distilled example:

http://eel.is/c++draft/propagation#8
http://eel.is/c++draft/propagation#10

 struct X: std::exception {
 // … data members whose copy could throw…
 X() { }
 X(X const&) { if(oh_no()) throw 42; /* else success */ }
 };

 int main() {
 try {
 std::exception_ptr eptr;
 try { throw X(); }
 catch(X& x) { std::cout << "caught X with address " << (void*)&x; eptr =
std::current_exception(); }
 std::rethrow_exception(eptr);
 }
 catch(X& x) { std::cout << " caught X with address " << (void*)&x; }
 catch(int) { std::cout << " caught int"; }
 }

I think what Billy is saying is that all of the following results need to be possible:

a) "caught X with address XYZZY caught X with address XYZZY"

b) "caught X with address XYZZY caught X with address PLUGH"

c) "caught X with address XYZZY caught int"

... because on Windows it is impossible to do (a), an implementation can do only (b) or (c) (and
can't guarantee (b) because the copy can throw, so also (c)). Correct?

It appears (b) was considered and rejected, and (c) was never considered.

Archaeology:

In Toronto (2007-07), N2179 was adopted. It says what the standard says now, to rethrow the
same exception.

The Core wiki notes at that meeting mention only one issue (related to whether exception_ptr
can be null), “Otherwise no issues found.” So this was not discussed as an issue for
implementations.

In Oxford (2007-04), the LWG wiki notes says only that N2179 was discussed and “has strong
support” (but no details).

The predecessor paper was N2107.

https://nam06.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fpapers%2F2007%2Fn2179.html&data=02%7C01%7Cbion%40microsoft.com%7Cb9047402020b43ceaf5d08d6ead09ba4%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C636954579023379275&sdata=gp5UXjJpVG57Oqut%2BYYgFt%2Fxoe85wZGF9f1ezzfuya4%3D&reserved=0
https://nam06.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwiki.edg.com%2Fbin%2Fview%2FWg21toronto%2FCoreWorkingGroup%23N2179_Language_Support_for_Trans&data=02%7C01%7Cbion%40microsoft.com%7Cb9047402020b43ceaf5d08d6ead09ba4%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C636954579023399292&sdata=h9Z8T1BvwZEOt9M81OMz0TYe2UEEwLAKBgYxZ7EiplE%3D&reserved=0
https://nam06.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwiki.edg.com%2Fbin%2Fview%2FWg21oxford%2FLibraryWorkingGroup&data=02%7C01%7Cbion%40microsoft.com%7Cb9047402020b43ceaf5d08d6ead09ba4%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C636954579023399292&sdata=bQ6g5cCfPO8Qs6xFNnQb%2Buhn0kM2VZgjv0wlL7DsuFs%3D&reserved=0
https://nam06.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwww.open-std.org%2Fjtc1%2Fsc22%2Fwg21%2Fdocs%2Fpapers%2F2006%2Fn2107.html&data=02%7C01%7Cbion%40microsoft.com%7Cb9047402020b43ceaf5d08d6ead09ba4%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C636954579023409300&sdata=a5VYhmOXl%2BM35%2BGIyWRF%2BSXncFu0ZPkbMG81hnke41g%3D&reserved=0

In Portland (2006-10), the EWG wiki notes say N2107 presented on Monday (no details, but
presumably went against Option 1 (see next) because we never saw it mentioned again), and
the Concurrency wiki notes say it was discussed on Friday (but no details).

In N2107, the only mention of a copy is in Option 1 where a copy could happen (but the wording
for that option still said “reactivates the _currently handled_ exception” [emphasis added], and
Option 2 is that it can’t copy at all (which was what Peter wrote up on N2179).

Based on that history, changing this text to allow even outcome (b), a copy, would be a design
change that was an option not approved (and appears to have been disapproved) by EWG in
2006. And I can’t find any suggestion anywhere that you could end up with outcome (c), a totally
different exception type. Allowing either (b) or (c) changes the design of the feature as approved
by EWG (and Concurrency, LWG, Core) and affect how we teach users to use it.

Additionally Ville Voutilainen points out that there appears to have been an NB comment against C++11

arguing to force implementations to make a separate copy, tracked as LWG 1369 (discussion).

That previous consideration and rejection is different than proposed here. Then, the discussion was

whether to force the Itanium-like ABIs to make a separate copy, not proposed here. This proposes only

the minimum change necessary to make MSVC++’s ABI function (and presumably other ABIs where the

rethrow exception objects must be distinct).

Unclear that the current wording reflects the original intent
Peter Dimov, the author of N2179 which appears to be the source of the current wording, also reported:

> ... and Option 2 is that it can’t copy at all (which was what Peter wrote

> up on N2179).

To clarify, this is not quite what I wrote, or at least not what I intended

to write. N2179 is a bit light on specification, but that's because it

wasn't clear, at the time it was written, whether a tightened version would

be implementable. Still,

 Throws: the exception to which p refers.

is intended to mean that `rethrow_exception` throws as-if

 throw *p;

where `p` refers to the original exception or a copy of the original

exception, as captured by `current_exception`.

That is, a copy is allowed, and if the copy throws, the behavior is intended

to match that of `throw x` when the copy constructor of `x`, if not elided,

https://nam06.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwiki.edg.com%2Fbin%2Fview%2FWg21portland%2FEvolutionWorkingGroup&data=02%7C01%7Cbion%40microsoft.com%7Cb9047402020b43ceaf5d08d6ead09ba4%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C636954579023499380&sdata=Ad884tjh0m8bokIGuCZ0Y29T85kkrPGdPXFbDabEaYM%3D&reserved=0
https://nam06.safelinks.protection.outlook.com/?url=http%3A%2F%2Fwiki.edg.com%2Fbin%2Fview%2FWg21portland%2FConcurrencySubgroup&data=02%7C01%7Cbion%40microsoft.com%7Cb9047402020b43ceaf5d08d6ead09ba4%7C72f988bf86f141af91ab2d7cd011db47%7C1%7C0%7C636954579023509388&sdata=q9k2%2BOAa66IqHj%2BsO3dEYWK2UOPTML8eiA2rnwtkW4U%3D&reserved=0
http://lwg.github.io/issues/lwg-closed.html#1369
http://wiki.edg.com/bin/view/Wg21madrid/MinutesExceptionDataRaces

throws.

Throwing the exact same object, down to the same address, was never intended

to be required; you can call `rethrow_exception` more than once, so throwing

a copy creates fewer problems, on net.

Moreover, even the current standards text seems to acknowledge that a copy might be made here. In

http://eel.is/c++draft/propagation#7 the text says (emphasis mine):

[ Note: If rethrow_exception rethrows the same exception object (rather than a copy),

concurrent access to that rethrown exception object may introduce a data race. Changes in the

number of exception_ptr objects that refer to a particular exception do not introduce a data

race. — end note ]

Proposed Resolution
This wording is relative to N4878. Change [propagation]/9-10 as indicated:

[[noreturn]] void rethrow_exception(exception_ptr p);

-9- Expects: p is not a null pointer.

-10- Throws: The exception object to which p refers.

-?- Effects: Let u be the exception object to which p refers, or a copy of that exception object. It is

unspecified whether a copy is made, and memory for the copy is allocated in an unspecified way.

- if allocating memory to form u fails, throws an instance of bad_alloc; otherwise,

- if copying the exception to which p refers to form u throws an exception, throws that

exception; otherwise,

- throws u

Proposed Resolution from R1 (Superseded)
This wording is relative to N4810. Change [propagation]/9-10 as indicated:

[[noreturn]] void rethrow_exception(exception_ptr p);

-9- Expects: p is not a null pointer.

-10- Throws: The exception object to which p refers.

-?- Effects: Either throws the exception object to which p refers, or a copy of that exception

object. It is unspecified whether a copy is made. If the implementation makes a copy:

- the memory for the copy is allocated in an unspecified way; if this is not possible,

rethrow_exception throws an instance of bad_alloc

- if copying the exception to which p refers throws an exception, rethrow_exception

throws that exception

http://eel.is/c++draft/propagation#7

- otherwise, rethrow_exception throws the copied exception.

Thanks
Special thanks to Herb Sutter, Ville Voutilainen, and Peter Dimov for finding these references, and to

Jonathan Wakely and Jens Maurer for representing the Itanium ABI position in reflector discussions, and

to LWG for wording suggestions.

