

Class Template Argument Deduction
Assorted NB resolution and issues

Document # : P0512R0
Date : 2016-11-10
Revises : None
Working Group: Core
Reply to : Faisal Vali
 (faisalv@yahoo.com)

Mike Spertus Richard Smith Faisal Vali

Abstract
This paper provides wording for resolutions to NB comments US
19 and US 20 and also clarifies how overload resolution works
with the initializer (especially when it is a braced-init-list) and how
the explicit specifier is handled during class template argument
deduction.

2

Abstract

1 Background

2 Core Wording

3 References/Acknowledgment

P0512R0

3

1 Background
Refer to the latest revision of P0091for background, motivation and rationale regarding the
class template argument deduction feature and P00433 for background on using it within
the standard library.

This paper contains core language wording for national body comments and additional fixes
related to class template argument deduction:

1. US19 – give deduction guides preference over constructors as a tie breaker during
overload resolution

2. US20 – do not allow accidental forwarding references during class template
argument deduction

3. Allow the explicit decl-specifier on deduction guides, and only consider functions
generated from deduction-guides or constructors specified as explicit, during
direct-initialization.

4. Fix the wording so that the initialization expression can be used as arguments to the
generated functions and function templates, and for overload resolution to do the
right thing when the initializer is a braced-init-list (which only works for constructor
calls but not function calls i.e. A{1} can only be valid if 'A' is a class but not if 'A' is a
function) we need to say something more to help connect the dots during overload
resolution.

2 Core Wording

[Drafting note: The following handles US19 - giving deductions guides precedence over
constructors for class template argument deduction if the conversions are as good, and even
if the function template generated from the constructor is more specialized than the one
generated from the deduction guide - this was discussed in EWG - but it is not clear to the
author (who was in the room at the time of the vote) if EWG has had a chance to weigh in
on the details of when a deduction guide would override a constructor generated function
template (i.e before partial ordering or after)]

Add bullet between 13.3.3/1.5 & 13.3.3/1.6
…

– F1 is generated from a deduction-guide (13.3.1.8) and F2 is not [Example:
 template<class T> struct A {

 A(T, int*); // #1

P0512R0

https://wg21.link/P0091

4

 A(A<T>&, int*); // #2
 enum { value };
};

template<class T, int N = T::value> A(T&&, int*) -> A<T>; //#3

A a{1,0}; // uses #1 to deduce A<int> and initializes with #1
A b{a,0}; // uses #3 (not #2) to deduce A<A<int>&> and initializes
 // with #1

– end example] or, if not that,

— F1 is not a function template specialization and F2 is a function template
specialization, or, if not that,

[Drafting note: The following wording handles US20 which prevents accidental forwarding
references during class template argument deduction]

14.8.2.1/3

If P is a cv-qualified type, the top-level cv-qualifiers of P’s type are ignored for type
deduction. If P is a reference type, the type referred to by P is used for type deduction. A
forwarding reference is an rvalue reference to a cv-unqualified template parameter that
does not represent a template parameter of a class template (during class template
argument deduction (13.3.1.8)). If P is a forwarding reference and the argument is an
lvalue, the type “lvalue reference to A” is used in place of A for type deduction.

[Example:

template <class T> int f(T&& heisenreference);
template <class T> int g(const T&&);
int i;
int n1 = f(i); // calls f<int&>(int&)
int n2 = f(0); // calls f<int>(int&&)
int n3 = g(i); // error: would call g<int>(const int&&), which
 // would bind an rvalue reference to an lvalue

template<class T> struct A {
 template<class U>
 A(T&&, U&&, int*); // #1: T&& is not a forwarding reference
 // U&& is a forwarding reference
 A(T&&, int*); // #2
};

 template<class T>
 A(T&&, int*) -> A<T>; // #3: T&& is a forwarding reference

P0512R0

5

 int *ip;
 A a{i, 0, ip}; // error, cannot deduce from #1
 A a0{0, 0, ip}; // uses #1 to deduce A<int> and #1 to initialize
 A a2{i, ip}; // uses #3 to deduce A<int&> and #2 to initialize

—end example]

[Drafting Note: To get class template argument deduction to work so that the
initialization expression can be used as arguments to the generated functions and function
templates, and for overload resolution to do the right thing when the initializer is a
braced-init-list (which only works for constructor calls but not function calls i.e. A{1} can
only be valid if 'A' is a class but not if 'A' is a function) we need to say something more to
help connect the dots during overload resolution.
Additionally do not use deduction guides or constructors specified as explicit during
deduction when the initializer represents copy-initialization]

Modify the end of §14.9p1 [temp.deduct.guide] as follows:
deduction-guide:
 explicitopt template-name (parameter-declaration-clause) ->
simple-template-id ;

Modify 13.3.1.8/1 as follows:
13.3.1.8 Class template argument deduction [over.match.class.deduct]

1 The overload set consists of:
A set of functions and function templates is formed comprising:
(1.1) — For each constructor of the class template designated by the template-name, a
function template with the following properties is a candidate:
(1.1.1) — The template parameters are the template parameters of the class template
followed by the template parameters (including default template arguments) of the
constructor, if any.
(1.1.2) — The types of the function parameters are those of the constructor.
(1.1.3) — The return type is the class template specialization designated by the
template-name and template arguments corresponding to the template parameters
obtained from the class template.

(1.2) — For each deduction-guide, a function or function template with the following
properties is a candidate:
(1.2.1) — The template parameters, if any, and function parameters are those of the
deduction-guide.

P0512R0

6

(1.2.2) — The return type is the simple-template-id of the deduction-guide.

Initialization and overload resolution are performed as described in 8.6 and 13.3.1.3,
13.3.1.4, or 13.3.1.7 (as appropriate for the type of initialization performed) for an object
of a hypothetical class type, where the selected functions and function templates are
considered to be the constructors of that class type for the purpose of forming an overload
set, and the initializer is provided by the context in which class template argument
deduction was performed. Each such notional constructor is considered to be explicit if
the function or function template was generated from a constructor or deduction-guide
that was declared explicit.
[Example:
 template<class T> struct A {
 explicit A(const T&, ...) noexcept; // #1
 A(T&&, ...); // #2
 };

 int i;
 A a1 = { i, i }; // error: cannot deduce from rvalue reference in #2,
 // and #1 is not a candidate during deduction
 // from copy-initialization.
 A a2{i, i}; // OK, #1 deduces to A<int> and also initializes
 A a3{0, i}; // OK, #2 deduces to A<int> and also initializes
 A a4 = {0, i}; // OK, #2 deduces to A<int> and also initializes

 template<class T> A(const T&, const T&) -> A<T&>; // #3
 template<class T> explicit A(T&&, T&&) -> A<T>; // #4

 A a5 = {0, 1}; // error: #3 deduces to A<int&> and #1 & #2 result
 // in same parameter constructors.
 A a6{0,1}; // OK, #4 deduces to A<int> and #2 initializes
 A a7 = {0, i}; // error: #3 deduces to A<int&>
 A a8{0,i}; // error: #3 deduces to A<int&>

 template<class T> struct B {
 template<class U> using TA = T;
 template<class U> B(U, TA<U>);
 };
 B b{(int*)0, (char*)0}; // OK, deduces B<char*>

 --end example]

3 References/Acknowledgment

Jason Merrill for helping with the wording having to do with forwarding references.

John Spicer for helping me better understand certain aspects of template redeclaration

P0512R0

7

collisions vs those similar collisions being avoided during overload resolution.

P0512R0

