
Document: P0466R0
Date: 2016-10-15
Reply-to: Lisa Lippincott <lisa.e.lippincott@gmail.com>
Audience: Library Evolution Working Group

Layout-compatibility and

Pointer-interconvertibility Traits

Lisa Lippincott

Abstract

Over dinner at CppCon, Marshall Clow and I discussed a bit of code
that relied on a reinterpret cast between pointers to layout-compatible
types. As it happened, the types weren’t layout-compatible after all. I
opined that there should be a way to statically assert layout-compatibility,
so that the error would be caught at compile time, rather than dinner time.
Marshall replied, “Write a proposal.” This is that proposal.

In addition to a test for layout-compatibility, I propose tests corre-
sponding to reinterpret cast to and from the initial subobject of a class
type, and for correspondence in the common initial sequence of two class
types.

Currently, a program may rely on layout-compatibility, but cannot assert
that the layout-compatibility it relies upon pertains. Even when a programmer
carefully verifies layout-compatibility, a future change to the types involved may
break the compatibility, silently introducing a bug.

A compiler, having full information about the types, can easily check layout-
compatibility. But the compiler currently has no way to determine which types
need to be layout-compatible. This gap can be bridged straightforwardly with
a type trait expressing the layout-compatibility relationship:

template <class T, class U> struct are_layout_compatible;

Using this trait, a function may statically assert the layout-compatibility it relies
upon.

Delving deeper into the problem, I found another situation where the user
of a reinterpret cast might rely on a fact about the type system that can’t
be asserted: casting between a pointer to an object and a pointer to its initial
base or member subobject. A simple type trait handles the base subobject case:

template <class Base, class Derived> struct is_initial_base_of;

The member subobject case turns out to be trickier. The pattern suggests
a trait like this:

1

template <class S, class M> struct initial_member_has_type;

But that’s not really useful. A programmer relying on such a cast almost cer-
tainly has a particular member in mind. The test should take a member pointer
as a parameter:

template <class S, class M, M S::*m> struct is_initial_member;

That works, but with three template parameters, it’s really cumbersome. In
use, the first two parameters are redundant — the type of m determines S and
M. But, because this is a class template, the earlier parameters can’t be inferred.
A function template is easier to use:

template <class S, class M>

constexpr bool is_initial_member(M S::*m) noexcept;

The use of this function is a little more broad: it can be called in a non-
constexpr context. But the implementation is simple. Knowing the internal
structure of a pointer-to-member, an implementation may test that the offset
of m is zero.

template <class S, class M>

constexpr bool is_initial_member(M S::*m) noexcept

{

static_assert(is_object<M>::value,

"Only data members may be initial.");

return is_standard_layout<S>::value

&& __member_offset(m) == 0;

}

A similar situation can occur with layout-compatibility: a programmer may
rely on particular members of layout-compatible types overlaying each other.
More generally, the overlap of the common initial sequence of two types (9.2
[class.mem]) can only be relied upon if the programmer is sure that particular
members correspond. So I’m proposing a second function for testing correspon-
dence in the common initial sequence:

template <class S1, class M1, class S2, class M2>

constexpr bool

are_common_members(M1 S1::*m1, M2 S2::*m2) noexcept;

Once again, the runtime implementation of this function relies on turning the
member pointers into an offsets. But this time a compiler intrinsic is required:
the offset of the end of the common initial sequence.

template <class S1, class M1, class S2, class M2>

constexpr bool

are_common_members(M1 S1::*m1, M2 S2::*m2) noexcept;

2

{

static_assert(is_object<M1>::value,

"The common initial sequence is only data.");

static_assert(is_object<M2>::value,

"The common initial sequence is only data.");

if (!is_standard_layout<S1>::value

|| !is_standard_layout<S2>::value)

return false;

const auto offset1 = __member_offset(m1);

const auto offset2 = __member_offset(m2);

return offset1 == offset2

&& offset1 < __end_of_common_initial_sequence<S1,S2>();

}

1 are layout compatible

Add to table 40 in 20.15.6 [meta.rel]:

Template Condition Comments

template <class T,

class U> struct

are layout compatible;

T and U are layout-
compatible (3.9 [ba-
sic.types])

Add to 20.15.2 [meta.type.synop], in the section corresponding to 20.15.6
[meta.rel]:

template <class T, class U> struct are_layout_compatible;

2 is initial base of

Add to table 40 in 20.15.6 [meta.rel]:

Template Condition Comments

template <class Base,

class Derived> struct

is initial base of;

Derived is a standard-
layout class with no
non-static data mem-
bers, and Base is the
first base of Derived.

An object is pointer-
interconvertible (3.9.2
[basic.compound])
with its initial base
subobject.

Add to 20.15.2 [meta.type.synop], in the section corresponding to 20.15.6
[meta.rel]:

template <class Base, class Derived> struct is_initial_base_of;

3

3 is initial member

This pretty clearly belongs in <type traits> (20.15 [meta]), but I don’t see an
clear choice of subsection to put it in. Perhaps it goes in 20.15.6 [meta.rel], or
perhaps a new subsection, “Member relationships” is appropriate.

Wherever it fits, here is some text to add:

template <class S, class M>

constexpr bool is_initial_member(M S::*m) noexcept;

Returns true if and only if S is a standard-layout class type and either S is
a union or m points to the first non-static data member of S. [Note: An ob-
ject is pointer-interconvertible (3.9.2 [basic.compoind]) with its initial member
subobjects. —end note]

A program which instantiates this template where M is not an object type is
ill-formed.

Add to 20.15.2 [meta.type.synop], in the corresponding section:

template <class S, class M>

constexpr bool is_initial_member(M S::*m) noexcept;

4 are common members

Add this text to the same subsection as is initial member:

template <class S1, class M1, class S2, class M2>

constexpr bool

are_common_members(M1 S1::*m1, M2 S2::*m2) noexcept;

Returns true if and only if both S1 and S2 are standard-layout types, and m1

and m2 point to corresponding members of the common initial sequence (9.2
[class.mem]) of S1 and S2.

A program which instantiates this template where either M1 or M2 is not an
object type is ill-formed.

Add to 20.15.2 [meta.type.synop], in the corresponding section:

template <class S1, class M1, class S2, class M2>

constexpr bool

are_common_members(M1 S1::*m1, M2 S2::*m2) noexcept;

4

