Document number: P0343R0

Date: 2016-05-24

Project: ISO/IEC JTC1 SC22 WG21 Programming Language C++
Audience: Library Evolution Working Group

Reply-to: Vicente J. Botet Escriba <vicente.botet@nokia.com>

Meta-programming High-Order functions

Abstract

This paper presents a proposal for some high-order template meta-programming functions based on some
common patterns used in libraries as Meta and Boost.MPL.

Some of these utilities are used in the interface of P0338R0 and P0196R1 and other have been used in

their respective implementations.

Table of Contents

Introduction
Motivation and scope

Proposal
Design rationale

Proposed wording

Implementability

Open points
Acknowledgements

© ® N o ok~ 0D

References

Introduction

This paper presents a proposal for some high-order template meta-programming functions Meta-Callabless
based on some common and well know patterns used in libraries as Meta and Boost.MPL.

Some of these utilities are used in the interface of P0338R0 and P0196R1 and other have been used in
their respective implementations. In particular the following is used:

mailto:vicente.botet@wanadoo.fr
https://github.com/ericniebler/meta
https://github.com/boostorg/mpl
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0338r0.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0196r1.pdf
file:///Users/viboes/github/std_make/doc/proposal/meta/p0343r0.md#introduction
file:///Users/viboes/github/std_make/doc/proposal/meta/p0343r0.md#motivation-and-scope
file:///Users/viboes/github/std_make/doc/proposal/meta/p0343r0.md#proposal
file:///Users/viboes/github/std_make/doc/proposal/meta/p0343r0.md#design-rationale
file:///Users/viboes/github/std_make/doc/proposal/meta/p0343r0.md#proposed-wording
file:///Users/viboes/github/std_make/doc/proposal/meta/p0343r0.md#implementability
file:///Users/viboes/github/std_make/doc/proposal/meta/p0343r0.md#open-points
file:///Users/viboes/github/std_make/doc/proposal/meta/p0343r0.md#acknowledgements
file:///Users/viboes/github/std_make/doc/proposal/meta/p0343r0.md#references
https://github.com/ericniebler/meta
https://github.com/boostorg/mpl
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0338r0.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0196r1.pdf

e is callble<TC(Xs...)>
e invoke<TC, Xs...>

e type constructor

e is type constructor

e quote<Tmpl>

e bind back<Fn, Xs...>

e rebind<T, Xs...>
Others are not used but added for completion, as

e identity
e always

e bind front
The following traits are really optional

e eval
e id

Motivation and scope

C++ has already class templates and template alias that can be seen as meta-programming function that
build other types by instantiation of the template.

The C++ standard library has also type traits that add an additional level of indirection via the nested type
alias type .

As any high-order function library we should be able to pass meta-programming function as parameters and
return meta-programming functions. While the first is possible with class templates, we are unable to return
them, we need an artifice, nest a class template invoke as the result of the returned class.

TinyMeta contains a good description of why high order function is as useful in meta-programming as it is in
functional programs, at the end meta-programming is a functional language. Boost.MPL calls these high-
order meta-programming functions Metafunction Classes. Meta call them Callable. The C++ standard
defines also Callable in function of std::invoke , so we will use here Meta-Callable.

One of the uses of Meta-Callabless as type constructors as any Meta-Callabless return in some way a type.
We call them also type-constructors.

Boost.Hana takes a different direction. Instead of using meta-programming techniques, it uses usual C++14
constexpr functions and use a trick type c<T> to pass types to these functions. It needs also the use of

decltype to get the resulting type and then unwrap it, decltype(t)::type . The authors would like
to see a concrete proposal using this alternative direction but prefer the Hana's author to do it.

http://ericniebler.com/2014/11/13/tiny-metaprogramming-library/
https://github.com/boostorg/mpl
https://github.com/ericniebler/meta
https://github.com/boostorg/hana

PO196R1 and PO338R0 depends on this proposal.

Proposal

Type-Traits helpers

meta::id
Results always in its parameter.
Meta provides the same.
Boost.MPL calls this mpl::identity .
Boost.Hana has an hana::id constexpr function.

Example

template <class T>
struct value_type<optional<T>> : meta::id<T>
meta::eval

Template alias to shortcut the idiom typename T::type .
Meta used to name it meta::eval butnameitnow meta::t

Example

template <class M, class Us>
using rebind_t = eval<rebind<M, Us...>>

Meta-Callables types

Requirements
A Meta-Callable is a class that has a nested template alias invoke .
Meta provides the same.

Boost.MPL It defines MetaFunctionsClass as something similar and requiring a nested apply type trait

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0196r1.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0338r0.pdf
https://github.com/ericniebler/meta
https://github.com/boostorg/mpl
https://github.com/boostorg/hana
https://github.com/ericniebler/meta
https://github.com/ericniebler/meta
https://github.com/boostorg/mpl

instead of of nested invoke template alias.

Boost.Hana It defines MetaFunctions as something similar but adapted to the run-time function and instead
of requiring invoke it requires a nested apply Boost.Hana-Metafunction

For example

struct identity

template <class T>
using invoke = T

meta: :invoke

As applying the class template invoke is not user friendly TC::template invoke<Xs...> itis
preferable to have a template alias that do that invoke<TC, Xs...>

Meta provides the same.
Boost.MPL calls this mpl::apply .
Boost.Hana doesn't needs it as it uses normal function call syntax.

Example

static_assert(is_same<meta: :invoke<id, int>, int>::value, "meta::invoke error"

Basic operations

meta::identity
Results always its invoke parameter.
Meta not supported to the author knowledge.
Boost.MPL calls this mpl::identity .
Boost.Hana calls the equivalent function hana::id .

Example

https://github.com/boostorg/hana
http://boostorg.github.io/hana/group__group-Metafunction.html
https://github.com/ericniebler/meta
https://github.com/boostorg/mpl
https://github.com/boostorg/hana
https://github.com/ericniebler/meta
https://github.com/boostorg/mpl
https://github.com/boostorg/hana

invoke<conditional_t<is_integral<T>: :value
meta: :identity
meta: :always<void>>
int, string>

meta::always
Results always its template parameter. Is the constant Meta-Callable.
Meta calls it meta::id<T> .
Boost.MPL calls sthis mpl::always .
Boost.Hana calls the equivalent function hana::always .

Example

invoke<conditional_t<is_integral<T>: :value
meta: :identity
meta: :always<void>>
int, string>
meta: :compose
Composes several Meta-Callabless.

Meta provides the same.

Boost.MPL not supported to the author knowledge.

Boost.Hana calls the equivalent constexpr run-time function hana: :compose .

Example

invoke<compose<quote_trait<add_pointer>, quote<optional>>

partial application

The following functions bind some parameters for later invocation.

e meta::bind front

e meta::bind back

Meta provides the same.

int>

https://github.com/ericniebler/meta
https://github.com/boostorg/mpl
https://github.com/boostorg/hana
https://github.com/ericniebler/meta
https://github.com/boostorg/mpl
https://github.com/boostorg/hana
https://github.com/ericniebler/meta

Boost.MPL has lambdas and so it can implement mpl::bind .
Boost.Hana provides only partial application via the constexpr run-time function hana::partial

Example

invoke<bind_back<quote<expected>, error_code>, int>>

Other Meta-Callable factories

Other helper meta-functions are useful to transform a class template or a type trait on an Meta-Callables.

e meta::quote

e meta::quote trait

Example

invoke<compose<quote_trait<add_pointer>, quote<optional>>, int>

Meta provides the same.
Boost.MPL has no compose function.
Boost.Hana provides it with hana::template and hana::metafunction

Boost.Hana provides also hana: :metafunction class thattransforms a Boost.MPL
MetafunctionClass into a Hana Metafunction.

Traits

meta::is_callable<Fn(Args...), R>
Checks if the result of invoking the class T with the arguments Args... isconvertibleto R .
This trait follows the syntax and semantics of std::is_callable .
Meta not supported to the author knowledge.
Boost.MPL not supported to the author knowledge.
Boost.Hana not supported to the author knowledge.

Example

https://github.com/boostorg/mpl
https://github.com/boostorg/hana
https://github.com/ericniebler/meta
https://github.com/boostorg/mpl
https://github.com/boostorg/hana
https://github.com/boostorg/hana
https://github.com/boostorg/mpl
https://github.com/ericniebler/meta
https://github.com/boostorg/mpl
https://github.com/boostorg/hana

static_assert<is_callable<identity(T), T>::value

meta::is_type_ constructor

Sometime we don't have yet the arguments to invoke the Meta-Callable, but we want to check that art least
the class has a nested class template invoke .

Check if the class has a nested class template invoke .
Meta provides a similar trait meta::is callable .
We have called it is_ type constructor as a Meta-Callable is use to construct types.

Example

static_assert<is_type_constructor<identity>::value

TypeConstructible types

Given a type we want to be able to get a type constructor that could be use to construct the same type
using the meta::invoke .

e meta::type constructor<T> :an Meta-Callables that can be used to construct the type T
Boost.MPL has something similar to type constructor trait mpl::unpack args .

Example

static_assert<is_same<type_constructor_t<quote<optional>>, optional<_t>>::value

TypeConstructible Product types

Given that a Product types P0327R0 gives access to the element types and its size via

e product type::size<T>

e product type::element<T, I> :the I th arg type that can be used to construct the type T

We say that atype T is TypeConstructible Producttype if the meta::type constructor t<T> and
product type::element t<T, I> are well defined and the following conditions are satisfied when
N is product type::size<T>

https://github.com/ericniebler/meta
https://github.com/boostorg/mpl
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0327r0.pdf

invoke<type_constructor<T>, product_type::element_t<T, 1> product_type: :element

Rebindable types

When we have a type, it is often useful to rebind the arg types to construct a similar type with the same type
constructor.

The standard provides already something similar for Allocator via the
A::template rebind<T>::other expression.

Most of the template classes can be rebound, as e.g. optional . Let call those types Rebindable types.

We want the following to be satisfied

rebind_t<invoke<TC, Xs >, Ys > is the same as invoke<TC, Ys >
rebind_t<Tmpl<Xs...>, Ys...> is Tmpl<Ys...>

invoke<type_constructor_t<T>, Xs...> is the same as rebind_t<T, Xs...>

rebind_t<rebind_t<T, Ys...>,Ys...> is the same as rebind_t<T, Ys...>
Any TypeConstructible type can be rebound using
invoke<type_constructor_t<T>, Xs...>

But this is not friendly.

This paper propose to define rebind in function of a nested template alias rebind and defines a partial
specialization for any class template having types as template parameters.

Alternatively we could define rebind as an alias of the previous expression.

Example

static_assert<is_same<rebind_t<optional<int>, char>, optional<char>>::value

What is not proposed yet?

Other functional facilities will also be welcome, but this paper prefer to start with something concrete that is

needed by other proposals.

Lambdas

It is also useful to be able to describe high-order meta-functions using meta-lambda expressions, but this
paper let this facilities for another proposal.

Type list

Sometimes the type arguments are stored on a type list and so we need to unpack the list them before
invoking.

e meta::apply :applying an Meta-Callables to the elements of a type list.
apply<type_constructor_t<T>, elements_t<T>> is T

Any meta-programming utilities working with type lists is out of the scope of this proposal, and so
meta: :apply is not proposed yet.

As elements t has only a sense once we have a good definition of type list. This type trait is not
proposed yet.

Algorithms

While both Meta, Boost.MPL and Boost.Hana defines a lot of algorithms, these libraries have a different

approach. Meta defines them only for concrete types. Boost.MPL defines them following the STL run-time
design and Boost.Hana defines them following the function programming paradigm.

We believe that we need to decide of a direction from the committee. Nevertheless the authors consider
that we need to define the algorithms based on meta-requirements of the types as Boost.MPL does, but
based on the functional paradigm as Boost.Hana do. Most of the algorithms defined in Meta have a
generalization once we find the good concept.

Design rationale

Why the meta-programming approach for C++2x?

Boost.Hana proposes to work with heterogeneous constexpr functions and to consider type as values in

order to do meta-programming Boost.Hana-TypeComputations.

While the approach is a good one, the meta-programming syntax is not as friendly as the authors consider
it is needed.

https://github.com/ericniebler/meta
https://github.com/boostorg/mpl
https://github.com/boostorg/hana
https://github.com/ericniebler/meta
https://github.com/boostorg/mpl
https://github.com/boostorg/hana
https://github.com/boostorg/mpl
https://github.com/boostorg/hana
https://github.com/ericniebler/meta
https://github.com/boostorg/hana
http://boostorg.github.io/hana/index.html#tutorial-integral

Compare
typename decltypeChana: :partial(type_c<Fn>, type_c<Args> citype
to
meta: :bind_front<Fn, Args...>
It is also true that this kind of expressions are only needed in Hana when you need to declare a type in

function of other types.

It is also true that with type deduction, we don't need very often this kind of expressions. Maybe meta
could be built on top of hana .

Why meta namespace?

We use the nested namespace meta to avoid conflicts with other names used already in std as

invoke and is callable .
There will be also conflict with other meta utilities that will be proposed lateronas 1list , apply .
An alternative could be to prefix them with the meta_ prefix, for example.

Another alternative is to have the nested namespace meta and introducein std the aliases that we
consider are the most useful and that don't have naming issues. This proposal doesn't goes yet in this
direction.

Why type constructor ?

Having access to the type constructor allows to base some operations on the type constructor instead of in
the type itself.

Examples of operation that work well with type constructors are for example

none<TC>() / make<TC>(v) .

Why placeholder:: t ?

We can define the type constructors using any name. However the current proposal has a
type constructor<quote<Tmpl>> specialization that consists in applying the template to the
placeholder:: t .

Removing this specialization would mean mean that the user will need to specialize for example

type constructor<quote<optional>> .

About rebind and Allocator?

The standard provides already something similar for Allocator via the
A::template rebind<T>::other expression.

rebind t usesthe nestedtype type instead other as allocators does. This is done for
coherency purposes. However, this would mean that Allocators are not Rebindable .

Impact on the standard

These changes are entirely based on library extensions and do not require any language features beyond
what is available in C++14.

Proposed wording

The proposed changes are expressed as edits to N4564 the Working Draft - C++ Extensions for Library
Fundamentals.

General utilities library

Insert a new section or include in 20.10.2

20.10.x Header synopsis

namespace std
namespace experimental
inline namespace fundamental_v3

namespace meta

// Type alias for T::type
template <class T>
using eval = typename T::type

http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4564.pdf

// Variable alias for T::value
template<class T>
using eval_v = T::value;

// identity meta-function
template <class T>
struct id {
using type = T;
s

template <class T>
using id_t = eval<id, T>;

// Callables

// invoke a type constructor TC with the arguments Xs
template<class TC, class... Xs>
using invoke = typename TC::template invoke<Xs...>;

// Meta-function class
template <class TC>
struct is_type_constructor;

template <class TC>
constexpr bool is_type_constructor_v = is_type_constructor<TC>

template <class, R = void>
struct is_callable; // not defined
template <class Fn, class ...Args, class R>
struct is_callable<Fn(Args...), R>;

template <class Sig, R = void>
constexpr bool is_callable_v = is_callable <Sig, R>::value;

// invokes a type constructor TC with the arguments Xs
template<class TC, class TL>

using apply;

// identity Meta-Callables
struct identity
{

template <class T>

using invoke = T;

g

// constant Meta-Callables that returns always its argument T
template <class T>
struct always

::value;

{

template <class...>
using invoke = T;

5

// Compose the Meta-Callabless Fs.
template <class ...Fs>
struct compose;

// lifts a class template to a Meta-Callables

template <template <class ...> class Tmpl>
struct quote
{
template <class... Xs>

using invoke = Tmpl<Xs...>;

s

// 1lifts a type trait to a Meta-Callables
template <template <class ...> class Trait>
using quote_trait = compose<quote<eval>, quote<Trait>> ;

// An Meta-Callables that partially applies the Meta-Callables F by binding the ar

template <class F, class... Args>
struct bind_front
{
template <class... Xs>
using invoke = invoke<F, Args..., Xs...>;
%
// An Meta-Callables that partially applies the Meta-Callables F by binding the ar
template <class F, class... Args>
struct bind_back
{
template <class... Xs>
using invoke = invoke<F, Xs..., Args...>;
¥
//
template <class M, class ...U>

struct rebind : id<typename M::template rebind<U...>> {};

template <template<class ...> class TC, class ...Ts, class ...Us>
struct rebind<TC<Ts...>, Us...> : 1d<TC<Us...>> {};

template <class M, class ...Us>
using rebind_t = eval<rebind<M, Us...>>;

inline namespace placeholders

// regular placeholders:
struct _t

// Type Constructor trait

template <class T>

struct type_constructor

template <template <class...> class Tmpl >

struct type_constructor<meta: :quote<Tmpl>> : type_constructor<Tmpl<_t> >

template <class T>
using type_constructor_t = eval<type_constructor<T>>

Change 20.10.6 [meta.rel], Table 51 — Type relationship predicates, add new rows with the following
content:

Template

template <class T>
struct id

Condition

Always T .

Preconditions

T shall be a complete type.

Template

template <class TC>
struct is_type_constructor

Condition

If TC::template invoke is well formed then true else false.

Preconditions
TC shall be a complete type.

Template

template <class, R = void>

struct is_callable; // not defined
template <class TC, class Xs, class R>
struct is_callable<TC<Xs>, R>

Condition
e |[f TC::template invoke<Xs...> is well formed then

o if R isvoid std::true type

o else std::is convertible<meta::invoke t<Xs...>, R>
e else std::false type .
Preconditions
TC and all types in the parameter pack Xs shall be a complete types.

Template

template <class Fs>
struct compose

Condition

The definition must satisfy

invoke<compose<>, Ts..>> is ill-formmed
1s_same<invoke<compose<F>, Ts..>>, invoke<F, Ts..>>

is_same<invoke<compose<F, Fs...>, Ts..>>, invoke<F, invoke<compose<Fs...>, Ts...

Definition

>>>

template <typename Fs>
struct compose

template <typename F>
struct compose<F>

template <typename Ts>
using invoke = invoke<F, Ts...>
template <typename F@, typename Fs>

struct compose<F@, Fs.. . >

template <typename Ts>
using invoke = invoke<F@, invoke<compose<Fs...>, Ts...>>

Preconditions
Fs shall be a complete types.

Template

template <class T>
struct type_constructor

Condition
If T::type constructor is wellformedthen id<TC::type constructor> .
Preconditions

T shall be a complete types.
Remarks

This template can be specialized by the user.

Example of customizations

Next follows some examples of customizations that could be included in the standard

optional

namespace std
namespace experimental

// Holder specialization

template <>
struct optional<_t>: meta::quote<optional>

expected

See P0323R0.

namespace std
namespace experimental

// Holder specialization
template <class E>
struct expected<_t, E>: meta::bind_back<quote<expected>, E>

namespace meta

template <class T, class E>
struct type_constructor<expected<T, E>> : id<expected<_t, E>>

future / shared future

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0323r0.pdf

namespace std {
// Holder specializations
template <>
struct future<experimental::_t> : experimental::meta::quote<future> {};;
template <>
struct future<experimental: :_t&>;
template <>
struct shared_future<experimental::_t> : experimental::meta: :quote<shared_fuL
template <>

struct shared_future<experimental: :_t&>;

namespace experimental {
namespace meta {

// type_constructor customization

template <class T>

struct type_constructor<future<T>> : id<future<_t>> {};
template <class T>

struct type_constructor<future<T&>> : id<future<_t&>> {};

template <class T>

struct type_constructor<shared_future<T>> : id<shared_future<_t>> {};
template <class T>

struct type_constructor<shared_future<T&>> : id<shared_future<_t&>> {};

13}

unique ptr

namespace std

// Holder customization
template <class D>
struct unique_ptr<experimental::_t

template <class T>
using invoke = unique_ptr<T

D>

experimental: :meta: :eval<experimental: :meta: :rebind<D, T...>>>

namespace experimental
namespace meta

template <class T, class D>

struct type_constructor<unique_ptr<T,D>> : meta::id<unique_ptr<_t, D>>

shared ptr

namespace std
// Holder customization
template <>
struct shared_ptr<experimental: :

pair

t>

experimental: :meta: :quote<shared_ptr>

namespace std

// Holder customization
template <>
struct pair<experimental::_t, experimental::_t>

template <class Ts>
using invoke = pair<Ts...>
namespace experimental
namespace meta
// type_constructor customization
template <class T1, class T2>

struct type_constructor<pair<T1l,T2>> : meta::id<pair<_t, _t>>

template <>
struct type_constructor<meta: :quote<pair>> : meta::id<pair<_t, _t>>

tuple

namespace std

// Holder customization
template <>
struct tuple<experimental::_t> : experimental::meta::quote<tuple>

namespace experimental
namespace meta
// type_constructor customization

template <class Ts>
struct type_constructor<tuple<Ts...>> : meta::id<tuple<_t>>

Implementability

This proposal can be implemented as pure library extension, without any compiler magic support, in C++14.

There is an implementation at

https://github.com/viboes/std-make/include/experimental/meta.hpp .

Open points
The authors would like to have an answer to the following points if there is at all an interest in this proposal:

e Should this be part of the Fundamentals TS or a separated Meta TS?

e Should the namespace meta be used for the meta programming utilities?

e Do we want nested template alias or nested type trait for invoke ?

e Do we want the nested to be named invoke or apply ?

e Isthere anintereston is callable ?

e |sthere anintereston is type constructor ?

¢ |s there an interest on placeholder type t ?

e Should the type constructors for pair , tuple , optional , future , unique ptr ,
shared ptr be part of this proposal? As specializations using the placeholder _t or with a suffix
_tc ?

e |Isthere anintereston id , eval ?

e [sthere anintereston identity ?

¢ Isthere anintereston compose ?

e Isthere anintereston bind front , bind back ?

e |sthere anintereston quote , trait quote ,

e |sthere anintereston rebind ?

e Ifyes, should rebind define a nested type alias type or a nested type alias other as
allocators does?

e |sthere anintereston type constructor ?

Future work

Add Meta-Product concept

Boost.Hana defines a Product as a type that allows to getthe first(t) and second(t) .

We believe that a Meta-Product could be generalized to any number of arguments. Meta-Product can be
seen as a subset of Product types that don't require to have a value.

We believe that product type::element<PT, N> and product type::size<PT> could be
appropiated.

Add Meta-Foldable concept

https://github.com/boostorg/hana

Boost.Hana defines a Foldable.

We believe that a Meta-Foldable should require fold left .

Add Meta-Sequence concept

Boost.Hana defines a Sequence as a refinement of lterable and Foldable.

Add a type meta::1ist as a model of Meta-Product and
Meta-Sequence

Add more Meta-Callables related operations

e "‘meta::flip -> MetaCallable
e meta::arg<size t> -> MetaCallable

e meta::elements<MetaCallable> -> Meta-Product

Add algorithms on Meta-Products

e meta::apply<MetaCallable, MetaProduct> -> Type
e meta::front<MetaProduct> -> Type
e meta::back<MetaProduct> -> Type

e meta::is empty<MetaProduct> -> bool constant

Add algorithms on Meta-Foldable

e meta::fold right<MetaCallable, Type, MetaFoldable> -> Type
e meta::apply<MetaCallable, MetaFoldable> -> Type
e meta::for each<MetaFoldable, MetaCallable> -> MetaFoldable

e meta::size<MetaFoldable> -> size constant

Add algorithms on Meta-Sequence

e meta::size<MetaFoldable>

Add lambdas

https://github.com/boostorg/hana
https://github.com/boostorg/hana

Acknowledgements

Many thanks to Eric Nibbler for his Meta library and Louis Idionne for his Boost.Hana library, which have
both been used as inspiration of this proposal.

References

e N4564 - Programming Languages — C++ Extensions for Library Fundamentals, Version 2 PDTS
http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4564.pdf

e PO196R1 Generic none() factories for Nullable types
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0196r1.pdf

e PO323R0 - A proposal to add a utility class to represent expected monad (Revision 2)
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0323r0.pdf

e P0327R0 Product types access
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0327r0.pdf

e PO338R0O-A make factory
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0338r0.pdf

e Meta
https://github.com/ericniebler/meta

e Boost.Hana
https://github.com/boostorg/hana

e Boost.Hana-Metafunction

http://boostorg.github.io/hana/group__ group-Metafunction.html

e Boost.Hana-TypeComputations

http://boostorg.github.io/hana/index.html#tutorial-integral
e Boost.MPL Boost.MPL

https://github.com/boostorg/mpl

https://github.com/ericniebler/meta
https://github.com/boostorg/hana
http://open-std.org/JTC1/SC22/WG21/docs/papers/2015/n4564.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0196r1.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0323r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0327r0.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0338r0.pdf
https://github.com/ericniebler/meta
https://github.com/boostorg/hana
http://boostorg.github.io/hana/group__group-Metafunction.html
http://boostorg.github.io/hana/index.html#tutorial-integral
https://github.com/boostorg/mpl

e TinyMeta Tiny Metaprogramming Library

http://ericniebler.com/2014/11/13/tiny-metaprogramming-library/

http://ericniebler.com/2014/11/13/tiny-metaprogramming-library/

