
P0339r0: polymorphic_allocator<void> as a vocabulary type Page 1 of 12

Doc No: P0339r0

Date: 2016-05-31

Audience: LEWG

Authors: Pablo Halpern, Intel Corp. <phalpern@halpernwightsoftware.com>

 Dietmar Kühl <mailto:dkuhl@bloomberg.net>

polymorphic_allocator<void> as a vocabulary type

Contents

1 Abstract .. 1
2 Motivation ... 2
3 Proposal Overview ... 3
4 Alternatives Considered .. 5
5 Future directions .. 6
6 Formal Wording .. 6

6.1 Document Conventions .. 6
6.2 Undo changes to uses-allocator construction ... 6
6.3 Remove erased_type from the TS ... 6
6.4 Changes to std::experimental::function ... 6
6.5 Changes to type-erase allocator .. 8
6.6 Definition of polymorphic_allocator<void> ... 9
6.7 Changes to class template promise ... 11
6.8 Changes to class template packaged_task .. 12

7 References .. 12

1 Abstract

The pmr::memory_resource type, recently added to the C++17 working draft, provides a way

to control the memory allocation for an object without affecting its compile-time type – all

that is needed is for the object’s constructor to accept a pointer to pmr::memory_resource.

The pmr::polymorphic_allocator<T> adaptor class allows memory resources to be used in

all places where allocators are used in the standard: uses-allocator construction, scoped

allocators, type-erased allocators, etc.. For many classes, however, the T parameter does not

make sense.

In this paper, we propose an explicit specialization of pmr::polymrophic_allocator for use

as a vocabulary type. This type meets the requirements of an allocator in the standard, but is
easier to use in contexts where it is not necessary or desirable to fix the allocator type at

compile time. The use of pmr::polymorphic_allocator<void> also simplifies the definition

of uses-allocator construction in the TS and situations where allocator type-erasure would

otherwise be used, including in std::function.

This proposal is targeted for the next release of the Library Fundamentals technical
specification.

mailto:phalpern@halpernwightsoftware.com
mailto:dkuhl@bloomberg.net

P0339r0: polymorphic_allocator<void> as a vocabulary type Page 2 of 12

2 Motivation

Consider the following class that works like vector<int>, but with a fixed maximum size

determined at construction:

class IntVec {

 std::size_t m_size;

 std::size_t m_capacity;

 int * m_data;

 public:

 IntVec(std::size_t capacity);

 : m_size(0), m_capacity(capacity), m_data(new int[capacity]) { }

 …

};

Suppose we want to add the ability to choose an allocator. One way would be to make the
allocator type be a compile-time parameter:

template <class Alloc = std::allocator<int>> class IntVec …

But that has changed our simple class into a class template, and introduced all of the

complexities of writing classes with allocators, including the use of allocator_traits. The

constructor for this class template looks like this:

IntVec(std::size_t capacity, Alloc alloc = {})

 : m_size(0), m_capacity(capacity), m_alloc(alloc)

 , m_data(std::allocator_traits<Alloc>::allocate(m_alloc, capacity)) { }

Our next attempt removes the templatization by using pmr::memory_resource to choose the

allocation mechanism at run time instead of at compile time, thus avoiding the complexities

of templates and ensuring that all IntVec objects are of the same type:

IntVec(std::size_t capacity,

 std::pmr::memory_resource *memrsrc = std::pmr::get_default_resource())

 : m_size(0), m_capacity(capacity), m_memrsrc(memrsrc)

 , m_data(memrsrc->allocate(capacity*sizeof(int), alignof(int)) { }

This solution works very well in isolation, but suffers from a number of drawbacks:

1. Does not conform to the Allocator concept

The pointer type, std::pmr::memory_resource*, does not meet the requirements of

an allocator, and so does not fit into the facilities within the standard designed for
allocators, such as uses-allocator construction (section 20.9.7.2 in the standard
working draft, N4582).

The original proposal for memory_resoure, N3916, included modifications to the

definition of uses-allocator construction in order to address this deficiency. Those
changes were not added to the C++17 working draft with the rest of the Fundamentals
TS version 1

2. Lack of reasonable value-initialization

The result of default-initialization of a pointer is indeterminate, and the result of value
initialization is a null pointer, neither of which is a useful value for storing in the

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n3916.pdf

P0339r0: polymorphic_allocator<void> as a vocabulary type Page 3 of 12

class. The programmer must explicitly call std::pmr::get_default_resource(), as

shown above. It is easily forgotten and is verbose.

3. Danger of null pointers

Any time you pass a pointer to a function, you must contend with the possibility of a
null pointer. Either you forbid it (ideally with a precondition check or assert), or you
handle it some special way (i.e., by substituting some default). Either way, there is a
chance of error.

4. Inadvertent reseating of the memory resource

Idiomatically, neither move assignment nor copy assignment of an object using an
allocator or memory resource should move or copy the allocator or memory resource.
With rare exceptions, the memory resource used to construct an object should be the
one used for its entire lifetime. Changing the resource can result in a mismatch
between lifetime of the resource and the lifetime of the object that uses it. Also,
assigning to an element of a container would result in breaking the homogenous use
of a single allocator for all elements of that container, which is crucial to safely and
efficiently applying algorithms like sort that swap elements within the container. Raw
pointers encourage blind moving or copying of member variables during assignment,
which can be dangerous.

Issues 2, 3, and 4 were addressed by another paper, P0148, which proposed a new type,

memory_resource_ptr, that provided a default constructor, and which was not assignable.

This proposal, however, was withdrawn in Jacksonville when we (the authors of that paper)
discovered that there was a simpler and more complete solution possible without introducing

a completely new type: by using polymorphic_allocator. That discovery was the genesis of

this paper.

3 Proposal Overview

We observed that a polymorphic_allocator object, which is basically a wrapper around a

memory_resource pointer, can be used just about anywhere that a raw memory_resource

pointer can be used, but does not suffer from the drawbacks listed above. Consider a minor

rewrite of the IntVec class (above):

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/p0148r0.pdf

P0339r0: polymorphic_allocator<void> as a vocabulary type Page 4 of 12

class IntVec {

 public:

 typedef std::pmr::polymorphic_allocator<int> allocator_type;

 private:

 std::size_t m_size;

 std::size_t m_capacity;

 allocator_type m_alloc;

 int * m_data;

 public:

 IntVec(std::size_t capacity, allocator_type alloc = {});

 : m_size(0), m_capacity(capacity), m_alloc(alloc)

 , m_data(alloc.allocate(capacity)) { }

 …

};

Let’s consider the deficiencies of using a raw memory_resource pointer, one by one, to see

how this new approach compares to the previous one:

1. The definition of the allocator_type nested type and the constructor taking a

trailing allocator argument allows IntVec to play in the world of uses-allocator

construction, including being passed an allocator when inserted into a container that

uses a scoped_allocator_adaptor.

2. Value-initializing the allocator causes the default memory resource to be used,

simplifying the default allocator argument and reducing the chance of error. If IntVec

had a default constructor, the allocator would, again, use the default memory
resource, with no effort on the part of the programmer.

3. A polymorphic_allocator is not a pointer and cannot be null. Attempting to

construct a polymorphic_allocator with a null pointer violates the preconditions of

the polymorphic_allocator constructor. This contract can be enforced by a single

contract assertion in the polymorphic_allocator constructor, rather than in every

client.

4. P0335 proposes that the assignment operators for polymorphic_allocator should be

deleted. If this recommendation is accepted, then the problem of accidentally reseating

the allocator would no longer exist for polymorphic_allocator. The deleted

assignment operators would prevent the incorrect assignment operations from being
generated automatically, forcing the programmer to define them, hopefully with the
correct semantics. See P0335 for more details.

The above list shows that polymorphic_allocator can be used idiomatically to good effect.

The novel feature of this paper is not this idiomatic use, therefore, but a new specialization

for polymorphic_allocator<void>. Unlike std::allocator<void>, which does not

actually meet the requirements of an allocator, polymorphic_allocator<void> is designed

to be a complete allocator type. It is similar to polymorphic_allocator<char>, but has

certain features to conveniently expose the capabilities of the underlying memory_resource

pointer.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0335r0.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0335r0.html

P0339r0: polymorphic_allocator<void> as a vocabulary type Page 5 of 12

In addition to normal allocator functions, polymorphic_allocator<void> provides the

following features:

 Being completely specialized, polymorphic_allocator<void> does not behave like a

template, but like a class. This fact can prevent inadvertent template bloat in client
types.

 It can allocate objects of any type without needing to use rebind. Allocating types

other than value_type is common for node-based and other non-vector-like

containers.

 It can allocate objects on any desired alignment boundary. For example, VecInt

might choose to align its data array on a SIMD data boundary.

 It provides member functions to allocate and construct objects in one step.

 It provides a good alternative to type erasure for types that don’t have an allocator
template argument. Note that an important part of this proposal is to simplify

std::function to avoid the problematic two-dimensional type erasure that has

caused problems since C++11.

In addition to the definition of polymorphic_allocator<void> itself, we propose the

following significant simplifications to the memory section of the Library Fundamentals TS:

 Remove changes to the definition of uses-allocator construction and the

uses_allocator trait. (Section 2 of the TS is completely removed.)

 Rewrite the Type-erased allocator section in terms of

polymorphic_allocator<void> instead of memory_resource*. Eliminate the

erased_type struct.

 Eliminate type-erased allocators from the function class template, replacing it with

polymorphic_allocator<void>. (Note that the type-erased allocator was not

implemented by any major standard-library supplier.)

 Update promise and packaged_task to use the new type-erased allocator idiom.

4 Alternatives Considered

P0148 proposed a new type, memory_resource_ptr, which provided many of the benefits

described for polymorphic_allocator<void>. The memory_resource_ptr type did not,

however, conform to allocator requirements and did less to smooth the integration of

memory_resource into the allocator ecosystem than does polymorphic_allocator<void>.

P0148 was withdrawn in favor of this proposal.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/p0148r0.pdf

P0339r0: polymorphic_allocator<void> as a vocabulary type Page 6 of 12

5 Future directions

We should consider using polymorphic_allocator in the interface to

std::experimental::any.

6 Formal Wording

6.1 Document Conventions

All section names and numbers are relative to the March 2016 draft of the Library

Fundamentals TS, N4584. Note that major sections of the TS have been moved into the
C++17 WD. Section numbers are, therefore, subject to significant change.

Existing working paper text is indented and shown in dark blue. Edits to the working paper are shown with

red strikeouts for deleted text and green underlining for inserted text within the indented blue original text.

Comments and rationale mixed in with the proposed wording appears as shaded text.

Requests for LWG opinions and guidance appear with light (yellow) shading. It is expected
that changes resulting from such guidance will be minor and will not delay acceptance of this
proposal in the same meeting at which it is presented.

6.2 Undo changes to uses-allocator construction

Remove section 2 from the TS, which would have made changes to sections 20.7.7.1,
[allocator.uses.trait] and 20.7.7.2 [allocator.uses.construction] of the standard.

6.3 Remove erased_type from the TS

Remove section 3.1 [utility] from the TS, which defines struct erased_type. The changes to

type-erased allocators, below, make this struct no longer necessary.

6.4 Changes to std::experimental::function

In section 4.1 [header.functional.synop] of the TS, remove the specialization of

uses_allocator from the end of the <functional> synopsis:

 template<class R, class... ArgTypes, class Alloc>

 struct uses_allocator<experimental::function<R(ArgTypes...)>, Alloc>;

In section 4.3 [func.wrap.func] of the TS, modify allocator_type and all of the constructors

that take an allocator in std::experimental::function:

 template<class R, class... ArgTypes>

 class function<R(ArgTypes...)> {

 public:

 typedef R result_type;

 typedef T1 argument_type;

 typedef T1 first_argument_type;

 typedef T2 second_argument_type;

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/n4584.html

P0339r0: polymorphic_allocator<void> as a vocabulary type Page 7 of 12

 typedef erased_typepmr::polymorphic_allocator<void> allocator_type;

 function() noexcept;

 function(nullptr_t) noexcept;

 function(const function&);

 function(function&&);

 template<class F> function(F);

 template<class A> function(allocator_arg_t,

 const Aallocator_type&) noexcept;

 template<class A> function(allocator_arg_t,

 const Aallocator_type&, nullptr_t) noexcept;

 template<class A> function(allocator_arg_t,

 const Aallocator_type&, const function&);

 template<class A> function(allocator_arg_t,

 const Aallocator_type&, function&&);

 template<class F, class A> function(allocator_arg_t,

 const A allocator_type&, F);

And replace get_memory_resource() with get_allocator():

 pmr::memory_resource* get_memory_resource();

 allocator_type get_allocator() const noexcept;

 };

In sections 4.2.1 [func.wrap.func.con] and 4.2.2 [func.wrap.func.mod], eliminate all
references to type erasure and memory resources:

4.2.1 function construct/copy/destroy [func.wrap.func.con]

When a function constructor that takes a first argument of type allocator_arg_t is invoked, the second

argument is treated as a type-erased allocator (8.3) shall be a polymorphic allocator (C++14 §20.11.3

[memory.polymorphic.allocator.class] or LFTS §8.6 [memory.polymorphic.allocator.class]). A copy of the

allocator argument is used to allocate memory, if necessary, for the internal data structures of the constructed

function object, otherwise pmr::polymorphic_allocator<void>{} is used. If the constructor

moves or makes a copy of a function object (C++14 §20.9), including an instance of the

experimental::function class template, then that move or copy is performed by using-allocator

construction with allocator get_memory_resource()get_allocator().

In the following descriptions, let ALLOCATOR_OF(f) be the allocator specified in the construction of

function f, or allocator<char>() if no allocator was specified.

function& operator=(const function& f);

Effects: function(allocator_arg, ALLOCATOR_OF(*this)get_allocator(),
f).swap(*this);

Returns: *this.

function& operator=(function&& f);

Effects: function(allocator_arg, ALLOCATOR_OF(*this)get_allocator(),
std::move(f)).swap(*this);

Returns: *this.

function& operator=(nullptr_t) noexcept;

P0339r0: polymorphic_allocator<void> as a vocabulary type Page 8 of 12

Effects: If *this != nullptr, destroys the target of this.

Postconditions: !(*this). The memory resourceallocator returned by

get_memory_resource()get_allocator() after the assignment is equivalent to the memory

resourceallocator before the assignment. [Note: the address returned by get_memory_resource() might

change — end note]

Returns: *this.

template<class F> function& operator=(F&& f);

Effects function(allocator_arg, ALLOCATOR_OF(*this)get_allocator(),
std::forward<F>(f)).swap(*this);

Returns: *this.

Remarks: This assignment operator shall not participate in overload resolution unless

declval<decay_t<F>&>() is Callable (C++14 §20.9.11.2) for argument types ArgTypes...

and return type R.

template<class F> function& operator=(reference_wrapper<F> f);

Effects: function(allocator_arg, ALLOCATOR_OF(*this)get_allocator(),
f).swap(*this);

Returns: *this.

4.2.2 function modifiers [func.wrap.func.mod]

void swap(function& other);

Requires: *this->get_memory_resource() == *other.get_memory_resource()

this->get_allocator() == other.get_allocator().

Effects: Interchanges the targets of *this and other.

Remarks: The allocators of *this and other are not interchanged.

Add a new section describing the get_allocator() function:

allocator_type get_allocator() const noexcept;

Returns: A copy of the allocator specified at construction, if any; otherwise a copy of

allocator_type{} evaluated at the time of construction of this object.

6.5 Changes to type-erase allocator

Make the following changes to section 8.3 Type-erased allocator
[memory.type.erased.allocator]:

8.3 Type-erased allocator [memory.type.erased.allocator]

A type-erased allocator is an allocator or memory resource, alloc, used to allocate internal data structures for

an object X of type C, but where C is not dependent on the type of alloc. Once alloc has been supplied to X

P0339r0: polymorphic_allocator<void> as a vocabulary type Page 9 of 12

(typically as a constructor argument), a copy of alloc can be retrieved from X only as a pointer rptr of static

type std::experimental::pmr::memory_resource* (8.5) via an object named (for exposition)

pmr_alloc of type pmr::polymorphic_allocator<void> (C++14 §20.11.3

[memory.polymorphic.allocator.class] or LFTS §8.6 [memory.polymorphic.allocator.class]). The process by

which rptrpmr_alloc is computedinitialized from alloc depends on the type of alloc as described in

Table 13:

Table 13 — Initialization of type-erased allocator

If the type of alloc is then the value of rptr pmr_alloc at X construction time is

non-existent — no alloc specified The value of

experimental::pmr::get_default_resource()at the

time of construction value initialized.

nullptr_t The value of

experimental::pmr::get_default_resource()at the

time of construction value initialized.

a pointer type convertible to
pmr::memory_resource*

static_cast<experimental::pmr::memory_resource

*>(alloc)initialized with alloc

pmr::polymorphic_allocator<U> initialized with alloc.resource()

any other type meeting the Allocator

requirements (C++14 §17.6.3.5)

initialized with a pointer to a value of type

experimental::pmr::resource_adaptor<A> where A is

the type of alloc. rptrpmr_alloc remains valid only for the

lifetime of X.

None of the above The program is ill-formed.

Additionally, class C shall meet the following requirements:

— C::allocator_type shall be identical to

std::experimental::erased_typepmr::polymorphic_allocator<void>.

— X.get_memory_resource()X.get_allocator() returns rptrpmr_alloc.

6.6 Definition of polymorphic_allocator<void>

In section 8.4 [memory.resource.synop] of the TS, add the void specialization of

polymorphic_allocator to the synopsis for <experimental/memory_resource>:

template <class Tp> class polymorphic_allocator;

template <> class polymorphic_allocator<void>;

Editorial note: Since section 8.4 has been copied into the C++17 WD, it is not clear if it will
remain in the TS. Some editorial re-arrangement of these changes may be necessary.

In section 8.6.1 [memory.polymorphic.allocator.overview], add the following specialization

immediately after the general definition of polymorphic_allocator<Tp> (underline

highlighting omitted for ease of reading):

P0339r0: polymorphic_allocator<void> as a vocabulary type Page 10 of 12

The specialization of polymorphic_allocator<void> provides additional member functions for

managing memory in bytes, providing convenient access to the facilities in the underlying

memory_resource. Except where specified, the definition of member functions and constructors is identical

to that of the primary template.

template <>

class polymorphic_allocator<void> {

 memory_resource* m_resource; // For exposition only

public:

 typedef void value_type;

 polymorphic_allocator() noexcept;

 polymorphic_allocator(memory_resource* r);

 polymorphic_allocator(const polymorphic_allocator& other) = default;

 template <class U>

 polymorphic_allocator(const polymorphic_allocator<U>& other) noexcept;

 polymorphic_allocator&

 operator=(const polymorphic_allocator& rhs) = delete;

 void* allocate(size_t bytes);

 void* allocate(size_t bytes, size_t alignment);

 void deallocate(void* p, size_t bytes);

 void deallocate(void* p, size_t bytes, size_t alignment);

 template <class T, class CtorArgs...>

 T* new_object(CtorArgs&&... ctor_args);

 template <class T>

 void delete_object(T* p);

 template <class T, class... Args>

 void construct(T* p, Args&&... args);

 // Specializations for pair using piecewise construction

 template <class T1, class T2, class... Args1, class... Args2>

 void construct(pair<T1,T2>* p, piecewise_construct_t,

 tuple<Args1...> x, tuple<Args2...> y);

 template <class T1, class T2>

 void construct(pair<T1,T2>* p);

 template <class T1, class T2, class U, class V>

 void construct(pair<T1,T2>* p, U&& x, V&& y);

 template <class T1, class T2, class U, class V>

 void construct(pair<T1,T2>* p, const std::pair<U, V>& pr);

 template <class T1, class T2, class U, class V>

 void construct(pair<T1,T2>* p, pair<U, V>&& pr);

 template <class T>

 void destroy(T* p);

 // Return a default-constructed allocator (no allocator propagation)

 polymorphic_allocator select_on_container_copy_construction() const;

 memory_resource* resource() const;

};

P0339r0: polymorphic_allocator<void> as a vocabulary type Page 11 of 12

Add descriptions for specialized member functions after section 8.6.3
[memory.polymorphic.allocator.mem] (underline highlighting omitted for ease of reading):

8.6.4 polymorphic_allocator<void> specialized functions [memory.polymorphic.allocator.voidalloc]

Relative to the primary template, the specialization of polymorphic_allocator with a void template

parameter has slightly different semantics for the allocate and deallocate member functions, as well as

providing additional overloads of those functions. The void specialization also provides two additional

member functions, new_object and delete_object.

void* allocate(size_t bytes);

Returns: equivalent to m_resource->allocate(bytes, m), where m is the smallest alignment

suitable for any non-over-aligned object with a size of bytes.

void* allocate(size_t bytes, size_t alignment);

Returns: equivalent to m_resource->allocate(bytes, alignment).

void deallocate(void* p, size_t bytes);

Effects: Equivalent to m_resource->deallocate(p, bytes, m), where m is the smallest

alignment suitable for any non-over-aligned object with a size of bytes.

Throws: Nothing.

void deallocate(void* p, size_t bytes, size_t alignment);

Effects: Equivalent to m_resource->deallocate(p, bytes, alignment).

Throws: Nothing.

template <class T, class CtorArgs...>

 T* new_object(CtorArgs&&... ctor_args);

Effects: Allocates and constructs an object of type T as if by

void* p = allocate(sizeof(T), alignof(T));

try {

 new (p) T(std::forward<CtorArgs>(ctor_args)...);

} catch (...) {

 m_resource->deallocate(p, sizeof(T), alignof(T));

 throw;

}

Returns: The address of the newly constructed object (i.e., p).

template <class T>

 void delete_object(T* p);

Effects: Equivalent to p->~T(); deallocate(p, sizeof(T), alignof(T)).

6.7 Changes to class template promise

Make the following changes to the class definition of promise in section 11.2

[futures.promise] of the TS, consistent with the change in type-erased allocators:

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/n4584.html#memory.polymorphic.allocator.mem

P0339r0: polymorphic_allocator<void> as a vocabulary type Page 12 of 12

 template <class R>

 class promise {

 public:

 typedef erased_typepolymorphic_allocator<void> allocator_type;

…

 pmr::memory_resource* get_memory_resource();

 pmr::polymorphic_allocator<void> get_allocator() const noexecpt;

 };

6.8 Changes to class template packaged_task

Make the following changes to the class definition of packaged_task in section 11.3

[futures.task], consistent with the change in type-erased allocators:

 template <class R, class... ArgTypes>

 class packaged_task<R(ArgTypes...)> {

 public:

 typedef erased_typepolymorphic_allocator<void> allocator_type;

…

 pmr::memory_resource* get_memory_resource();

 pmr::polymorphic_allocator<void> get_allocator() const noexecpt;

 };

7 References

N4584 Working Draft, C++ Extensions for Library Fundamentals, Version 2, Geoffrey Romer,
editor, 2016-03-08.

N3916 Polymorphic Memory Resources - r2, Pablo Halpern, 2014-02-14.

P0148 memory_resource_ptr: A Limited Smart Pointer for memory_resource Correctness,

Pablo Halpern and Dietmar Kühl, 2015-10-14.

P0335 Delete operator= for polymorphic_allocator, Pablo Halpern, 2016-05.

http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/n4584.html
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2014/n3916.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2015/p0148r0.pdf
http://www.open-std.org/JTC1/SC22/WG21/docs/papers/2016/p0335r0.html

