Document Number: P0265R0

Date: 2016-02-15

Authors: Michael Wong, fraggamuffin@gmail.com

with other members of the transactional memory study group (SGS), including:
Hans Boehm, boehm@acm.org
Brett Hall, bretthall@fastmail.fm
Victor Luchangco, victor.luchangco@oracle.com

Jens Maurer, jens.maurer@gmx.net

Maged Michael, maged.michael@acm.org
Torvald Riegel, triegel@redhat.com

Michael Scott, scott@cs.rochester.edu

Tatiana Shpeisman, tatiana.shpeisman@intel.com

Michael Spear, spear@cse.lehigh.edu

Project: Programming Language C++, SG5 Transactional Memory,
Reply to: Michael Wong, fraggamuffin@gmail.com (Chair of SG5)

SG5 is NOT proposing Transactional
Memory for C++17

1. Introduction
2. Current Status of Transactional Memory

1. Introduction

SG5 feels that the Transactional Memory Technical Specification should not be standardized
yet because there needs to be more user experience. The principal purpose of a TS is to gather
implementation experience and usage, which can happen only when the implementation has
had enough time for users to use it and to give feedback. This has not happened yet.

Technical Specifications introduce experimental syntax and semantics that seem promising but
whose value has not yet been demonstrated at a level that justifies inclusion in the Standard.
Although we are optimistic about the utility and importance of transactional memory in C++, this
optimism should be confirmed (or contradicted) by experience from the field before the features
should be standardized.

While TM has been included in many languages, the only significant usage in the field (aside
from Haskell, which is not performance-oriented) is from Wyatt Technology (see next section on
Status). While that implementation uses C++, it is not specific to our TS.


mailto:bretthall@fastmail.fm
mailto:tatiana.shpeisman@intel.com
mailto:spear@cse.lehigh.edu

We have had a few requests from the field expressing interest in trying to use transactional
memory support in C++ for financial, low-latency high-performance computing, and games:

in the wake of talks at CERN, Barcelona SuperComputing Centre, Bloomberg, and
Activision/Blizzard Entertainment, all have expressed interest. But experimentation in the
context of a TS is entirely appropriate for these groups, as long as the TS is implemented and
available in standard tool chains.

An earlier draft of TM has been available since GCC 4.7 with essentially the same semantics
but slightly different syntax. When GCC 6 is released with a software implementation of TM TS
in the first half of 2016 (possibly to be followed soon by an implementation in Clang or other
commercial compilers), we will have a valid implementation of the TS. This is of course as one
would expect: a TS motivates implementation even before standardization.

When there are field reports based on experience with these compilers, then we can consider
adding some of all of the TM TS into the C++ Standard—but not before.

2. Current Status of Transactional Memory

The current status of the TM TS is that it has been published.

e N4513 is the official working draft
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4513.pdf

e N4514 is the published PDTS:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf

e N4515 is the Editor's report:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.html

e Github is where the latest repository resides (updated to reflect the PDTS draft published
post-Lenexa):
https://github.com/cplusplus/transactional-memory-ts

The work of SG5, and the TM TS in particular, build on an earlier draft design created by an
informal industry consortium:
https://gcc.gnu.org/wiki/TransactionalMemory

The following blog indicates that substantial functionality, based on that earlier design and
similar to the TM TS is already included in GCC 4.7:
http://developerblog.redhat.com/tag/transactional-memory/



http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4513.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4513.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.html
https://github.com/cplusplus/transactional-memory-ts
https://github.com/cplusplus/transactional-memory-ts
https://gcc.gnu.org/wiki/TransactionalMemory
https://gcc.gnu.org/wiki/TransactionalMemory
http://developerblog.redhat.com/tag/transactional-memory/

An implementation of the TM TS will be available in GCC 6.0, expected to be out in a few
months, except for support of atomic_cancel and a few minor details.

Clang support will also likely start soon.

One interesting usage experience is from Wyatt technologies:
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4438.pdf

While the TM TS is agnostic with respect to hardware support, it is designed to enable the use
of that support on machines where it is available. Currently, such machines include mainstream
commercial offerings from IBM and Intel. And while we have no inside information from these
vendors, public indications are that they intend to continue TM support in future hardware
generations.


http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4438.pdf

