
Document Number: P0246R0
Date: 2016-02-12
Proje: ISO SC22/WG21 C++ Standard, Evolution Working Group
Authors: John Lakos, Alisdair Meredith, Nathan Myers
Reply to: Nathan Myers nmyers12@bloomberg.net

Contra Support Merged Proposal

Introduion

ere has been a great deal of discussion since Kona, resulting in key simplifications as
proposed here. e design that follows is a careful aempt at reconciling the most
urgent concerns expressed, but is still a work in progress. e design supports:

declarative statements of pre- and post-conditions in funion headers, suitable for
static analysis without access to funion bodies.

runtime eing of these statements and of additional assertions in funion
bodies.

control, according to seleions made at build time, of whether ea e is
evaluated at runtime.

control, according to a seleion made at program link time, of the programmed
response to violations discovered at runtime.

is design does not include features that have been suggested but that we did not
know how to specify, or that may be added without impa on the design. A few su
features have been called out below, with invitations for detailed proposals. Please refer
to P0247 “Criteria for Contra Support” for discussion and code examples.

e syntax and names below should be taken as placeholders. A list of open questions
can be found at the end.

Glossary (to aid precise discussion)

Funion Contra

A set of statements (informally, “preconditions”) about argument values,
well-defined program state, and past and future events for whi the effes of
calling a funion are well-defined, along with statements of those effes
(informally, “postconditions”). e statements need not be expressible in C++, and
may depend on details of the entire execution history of the program. (Example:
operator delete(void* p) requires that p was obtained from

operator new(size_t) and not deleted since it was last so obtained.)

Widen a Contra

To alter a function contract su that one or more preconditions is relaxed.

Narrow a Contra

To alter a function contract su that an additional precondition is placed on the
arguments and/or environment of a call to the funion.

Precondition Expression

An executable predicate, expressed in C++ and associated with a funion, that
may depend on the funion’s argument values and on program state accessible to
the caller at a call site, as evaluated at the point of the call. If the expression (were
it to be evaluated at that point) would evaluate to false then the corresponding
precondition is violated. Example: [[pre: p != 0]] would be violated for null
p at the time of the call.

Postcondition Expression

An executable predicate, expressed in C++ and associated with a funion, that
may depend on the values of the funion’s arguments and return value at the
point of funion return, and on program state at that point accessible to the
caller. If the expression (were it to be evaluated at that point) would evaluate to
false, then the corresponding postcondition is violated. Example:
[[post: return != 0]] would be violated if the funion returns zero.

Assert Expression

An executable predicate expression-statement in C++, that could be evaluated, in
context, aer any lexically preceding statement, and before any following
statement. If the predicate would evaluate to false (were it to be evaluated at that
point), the assertion is violated. Example: [[assert: p != 0]] would be
violated if p were zero at this point in the program.

Che

A precondition expression, postcondition expression, or assert expression.

Contra Annotation

A “pre”, “post”, or “assert” aribute specifying a e.

Cheing Level

: Either “audit” or “check”, in a contra annotation, or, when compiling, as a seleion
of whi es (if any) to evaluate at runtime. “check” is the default level for any
e. “audit” is intended for es that would violate usability guarantees of the
funion, particularly “big-O” performance, relative to the running time of typical uses
of the funion. As a translation-time seleion, the level determines whi es are
evaluated and aed upon at runtime.

Specifications

Declarations may be annotated with precondition and postcondition contract
annotations to support function-contract verification.

Proposed syntax, by example:

auto function(ArgType1 arg1, ArgType2 arg2, ArgType3 arg3)
 [[pre: arg1 != 0]]
 [[pre: arg1 < arg2]]
 [[pre: global_predicate(arg3)]]
 [[post: return > 0]]
 [[post: other_predicate(return, arg1)]]
 -> ResultType;

“[[assert: ...]]” es are not permied in a funion declaration-part.
Declaration-level contra annotations appear immediately aer the closing
parenthsesis of the declaration-part, and appertain to the entire declaration.

1.

Funion definition bodies may be similarly annotated:2.

auto binary_search(RAIterator b, RAIterator e, Ordered v) -> bool
 {
 [[assert audit: std::is_partitioned(b, e,
 [v](Value v2) { return v2 < v; })]];
 [[assert: b <= e]];

while (b < e) {
 [[assert: *b <= *e || v < *b || *e < v]]
 ...
 }
 }

Predicate expressions appearing in es are assumed to have no side effes.
Any side effe that would be caused by evaluation of su an expression might
not occur when the program is executed, even when the predicate expression is
specified to be eed at runtime.

3.

Contra annotations in a funion body may include, immediately aer “pre”,4.

“post”, or “assert”, and before the colon, a eing level. If omied, the level is
taken to be “check” (the default). e eing level designation helps to
determine whether the e is evaluated at runtime.

All es on declarations of identically the same funion must mat
everywhere that the funion is declared. No su relationship is assumed
between overloads, between a virtual base and its overrides, or between a
template and its explicit specializations. Indire calls, whether via a funion
pointer, a virtual-funion base-class interface, or a base-case template, are
eed according to the declaration used at the call site, and also according to
any es on the declaration of the funion aually called. No aempt is made
to e consistency or redundancy of es that are not required to be identical.
e same e appearing on two different declarations may be evaluated once, or
more than once, where evaluated at all.

5.

Ches are evaluated, or not, at runtime according to the eing level specified
at translation time. “audit” e expressions are evaluated only at “audit”
eing level; “check” es (including es that do not specify a eing
level) are evaluated at “audit” and “check” levels. Programs built with eing
“off” evaluate no es. Example:

6.

 $ cc --check-audit -c bsearch.cc # check everything
 $ cc -c bsearch.cc # no "audit" checks evaluated
 $ cc --check-off -O -c bsearch.cc # check nothing

If a single eing level is seleed for all translation units in a program, then the
above fully determines whether any given e is evaluated at runtime. Where
the eing levels seleed when translating different TUs differ, it is unspecified
whi of the seleed levels determines, at a call site, whether to evaluate es
found in a funion declaration obtained via an “#include” direive.
(Implementers may oose to provide more detailed specifications for this case.)
Ches specified in modules will be evaluated according to the level specified by
that module for calls into it, if any, or by the level specified at translation time for
calls from the TU to that module, whiever more aggressively enables runtime
eing.

7.

When translation units are combined, a translation unit may provide (in the
manner of a user-specified operator new()) a definition of a handler that takes
an argument describing the caller’s context, as in N4259. e handler is called if a
e is specified to be evaluated and found to be false. e response to a
violation if no su handler is provided is “as if” to call std::abort(). e
standard places no requirements on the values passed in the argument, but
implementations are encouraged to provide informative values. Example:

8.

 $ nm --demangle handler.o

 00000 t contract_violation_handler(std::source_location const&)
 $ cc -c qualify.o bsearch.o handler.o -o qualify

Predicates expressed in es must be well-formed regardless of the eing
level designated or seleed. Names used in precondition- and postcondition
expressions are looked up in the lexical context of the annotated funion’s body,
but with no access to names not accessible by the caller. A call that violates a
precondition- or postcondition expression at translation time (i.e. in a constexpr
expression) is ill-formed. Che expressions on funions decalared constexpr
must themselves be constexpr.

9.

rowing an exception from the handler called in response to a violation in
calling a funion identified as “noexcept” results in an immediate call to
terminate().

10.

If a violation-handler funion returns, execution resumes aer the e.
Implementations may have a build mode in whi returning is not permied,
resulting in termination or UB. (We note that to transition a program to using a
library with eing enabled, it is common to pass through a stage in whi
some es fail, and the failure must be logged and execution resumed in order
to identify more than one violation per run. When the Standard C++ Library gets
annotated with es, we expe most large programs will be found to trigger
myriad violations.)

11.

We do not here specify any effe of es that are not evaluated. Implementers
may provide a mode to treat es as definitive expressions of program state for
improved code generation or error eing. (Su a mode would be incompatible
with allowing the violation handler to return.)

12.

Che aributes are not part of the funion type. Che aributes on a funion
pointer refer to the obje, not its value. When calling through a funion pointer,
the es specified on the funion pointer apply in addition to any on the body
of the funion called.

13.

Open issues:

e default eing level for postcondition expressions has been suggested
to be “off”, rather than “check”, refleing postconditions’ primary use in
static analysis.

a.

Proposals are invited for standard-library convenience funions that a
handler may call to implement common violation-handling policies. E.g.,
one that calls through a static funion pointer, and another that does a
longjmp via a named static jmp_buf.

b.

Proposals are invited for syntax to enable a postcondition e to specifyc.

14.

state, including argument values and program state, to be caed at funion
entry and subsequently usable in a postcondition expression.

Proposals are invited for syntax to specify a runtime aion if a particular
e is violated, in effe converting that e to part of the
implementation.

d.

It is our intention that implementations should be compatible with extant
ABIs. e specification may need to be altered to fulfill this intention.

e.

