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1. Introduction

Under optimistic concurrency, threads' may use shared resources concurrently with other threads
that may make such resources unavailable for further use. Care must be taken to reclaim such
resources only after it is guaranteed that no threads will subsequently use them.

More specifically, concurrent dynamic data structures that employ optimistic concurrency allow
threads to access dynamic objects concurrently with threads that may remove such objects.
Without proper precautions, it is generally unsafe to reclaim the removed objects, as they may yet
be accessed by threads that hold references to them. Solutions for the safe reclamation problem
can also be used to prevent the ABA problem, a common problem under optimistic concurrency.

There are several methods for safe deferred reclamation. The main methods are reference
counting, RCU (read-copy-update), and hazard pointers. Each method has its pros and cons and
none of the methods provides the best features in all cases. Therefore, it is desirable to offer users
the opportunity to choose the most suitable methods for their use cases. See paper P0232R0
(Concurrency ToolKit for Structured Deferral/Optimistic Speculation)[3] for a detailed comparative
analysis of these methods along with atomic shared pointers which is based on an earlier paper
by Paul McKenney [1]. This proposal focuses on the hazard pointer method [2].

We propose adding hazard pointers as a library as part of a collection of a Concurrency ToolKit
methods (P0232R0).

2. Hazard Pointers

A hazard pointer is a single-writer multi-reader pointer that can be owned by at most one thread at
any time. Only the owner of the hazard pointer can set its value, while any number of threads may
read its value. A thread that is about to access dynamic objects optimistically acquires ownership
of a set of hazard pointer (typically one or two for linked data structures) to protect such objects
from being reclaimed. The owner thread sets the value of a hazard pointer to point to an object in
order to indicate to concurrent threads--that may remove such object--that the object is not yet
safe to reclaim.

' Throughout this document, we use to term thread to refer to any thread of execution, including
language-level threads, processes, and signal handlers.
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Hazard pointers are owned and written by threads that act as users (i.e., may use removable
objects) and are read by thread that act as removers (i.e., may remove remove objects). The set
of user and remover threads may overlap, so the same thread may write to its own hazard
pointers when using objects and read the hazard pointers including those of other threads when
reclaiming removed objects.

The key rule of the hazard pointers method is that a removed object can be reclaimed only
after it is determined that no hazard pointers have been pointing continuously to it from a
time before its removal.

In addition to the primary use cases for hazard pointers for memory reclamation, objects protected
by hazard pointers could represent other reclaimable resources such as files, ports, and devices.
Also, the method can be used by signal handlers and among processes as well as among
language-level threads.

2.1. Hazard Pointer Domains

The hazard pointers method allows the presence of multiple hazard pointer domains, where the
safe reclamation of resources in one domain does not require checking all the hazard pointers in
different domains. It is possible for the same thread to participate in multiple domains concurrently.
A domain can be specific to one or more resources, or can encompass all sharing among multiple
processes in a system.
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2.2. Main Structures and Operations

The main structures of the hazard pointers method are:
e Hazard pointers: pointer-sized variables.
e Removed objects awaiting reclamation.
e Container structures for hazard pointer records and removed objects.

The key operations are:

Allocate a hazard pointer.

Acquire ownership of a hazard pointer.

Set the value of a hazard pointer.

Clear the value of a hazard pointer.

Release ownership of a hazard pointer.

Request the deferred reclamation of a removed object.
Read the value of a hazard pointer.

Design details are discussed in following sections.

2.3. Pros and Cons

The main advantages of the hazard pointers method are that:

The number of removed objects that are not yet reclaimed is bounded.

Readers do not interfere with each other or with writers

Cache friendly access patterns.

Constant time complexity for traversal and (expected amortized time for) reclamation
Its operations are lock-free (mostly wait-free), and therefore it is suitable for use in
non-blocking operations that are required to be async signal-safe or immune to
asynchronous process termination.

abkowbd-~

The main disadvantage of the hazard pointers method is that each traversal incurs a store-load
memory order fence, when using the basic form of the method (without blocking or using
interrupts).

3. Design Considerations

3.1. Progress Guarantees

Some use cases of hazard pointers require that all operations be non-blocking from end to end.
An operation is non-blocking if it is guaranteed to complete in a finite number of its own steps, if it
runs without interference from other operations, regardless of where other threads are blocked.
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Lock-free progress is a stronger form of non-blocking progress, it further guarantees collective
forward progress even in the presence of interference among threads. The hazard pointers
method can have end-to-end lock-free implementations.

Non-blocking progress is an essential requirement for operations to be async signal safe. It is also
essential for guaranteeing availability of resources in cases where processes may be killed
asynchronously while sharing such resources.

The main trade-offs of guaranteeing lock-free progress are:

e Not using thread local storage (unless TLS is guaranteed to be non-blocking). This implies
the need to implement non-blocking container structures for removed objects.

e Not using the default memory allocator, as it is unlikely to be completely non-blocking. This
implies the need to design the library interface in a way that allows the specification of
custom allocation and deallocation functions, as well as avoidance of memory allocation
when possible.

3.2. Thread Types

Some use cases are by thread types other than typical language-level threads, in particular signal
handlers and processes. Support for signal handlers requires implementation options that avoid
thread local storage and that allow the use of non-blocking allocators. Support for processes
require allowing custom allocation and deallocation functions that can operate on shared memory
(and other shared system resources protected by hazard pointers).

3.3. Memory Allocation and Deallocation

There are several cases (as mentioned above) that require the use of custom allocators:
e The deferred reclamation of objects that are not allocated using malloc (e.g., new).
e End-to-end non-blocking progress is required.
e Sharing resources among processes.

Accordingly, the implementation must provide the capability to specify custom allocation and
deallocation functions in various parts of the library interface.

3.4. Reclamation Frequency

There is a trade-off between:
e The upper bound on the number of removed objects that are not yet reclaimed.
e The time complexity of reclamation per object
e Using thread local storage.

For the purposes of this discussion, let N be the maximum number of hazard pointers (in a
domain), and let M be the number of remover threads.
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Using thread local storage (assuming wait-free TLS), the M removers can perform bulk
reclamation after accumulating a number of removed objects that is at least N+©(N) (e.g., 2*N). In
such case the upper bound on the number of unreclaimed removed objects is O(M*N) and the
amortized expected time per reclaimed object is constant. The progress is wait-free and
contention-free.

Without using thread local storage, removed objects are inserted in shared lock-free structures.
The worst-case unreclaimed removed objects can be bounded by O(N), but contention becomes
possible and progress becomes lock-free instead of wait-free.

3.5. Number of Hazard Pointers and Thread caching

Using a fixed number of hazard pointers simplifies the implementation, but it restricts use and can
be inconsistent with non-blocking progress if a larger number of hazard pointers is needed. For
the sake of flexibility, the implementation must allow the dynamic allocation of hazard pointers.

Caching released hazard pointers between operations can minimize contention related to
acquiring hazard pointers. Caching can be done transparently in the library implementation using
TLS, however TLS is not always guaranteed to be non-blocking. Of course the programmer can
cache hazard pointers explicitly at the cost of some inconvenience and taking responsibility for
explicitly releasing hazard pointers instead of depending on their automatic release by the library.

3.6. Thread Local Storage

As discussed above the use of thread local storage has pros and cons. It reduces or eliminates
contention in acquiring hazard pointers and allows wait-free progress (if TLS is wait-free). On the
other hand, it is incompatible with async signal safety, and TLS implementations are not
guaranteed to be non-blocking.

Due to the performance advantages of using TLS, the library implementation should allow the
programmer to choose implementation paths that benefit from TLS when suitable, and avoid TLS
when incompatible with the use case.

3.7. Exceptions

The sources of exceptions in implementations of the hazard pointers method are related to
memory allocation, in particular the allocation of hazard pointers. All other operations can avoid
memory allocation exceptions at some performance cost in the worst case when allocation is
impossible.

Programmers concerned about such exceptions (for example, in real-time code) can guarantee
that hazard pointer operation will not throw if they meet certain conditions. Implementations of the
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method can guarantee that the total number of hazard pointers never shrinks throughout the
lifetime of the associated domain. Therefore, programmers can pre-allocate the needed number of
hazard pointers and then release them, knowing that all these hazard pointer will remain available
for reallocation throughout the lifetime of the associated domain, provided that care is taken in
managing thread caching of hazard pointers. Alternatively, programmers can avoid creating
hazard pointers ahead of time by creating a simple wait-free allocator that manages sufficient
memory to allocate a large number of hazard pointers (and therefore is guaranteed not to throw)
and provide this allocator as an argument to the hazard pointer constructor.

3.8. Primitives and Dependencies

The hazard pointers method requires the use of atomic primitives on pointers and size_t
variables and memory ordering primitives. The method has no direct dependencies on any system
calls.

The method in its purely non-blocking form incurs a store-load fence. This gence becomes
unnecessary if the method is used in more restricted cases such as inside lock critical sections, or
by using interrupts to enforce ordering only when a remover thread is about to inspect the hazard
pointers.

4. Design Overview

Based on the above considerations and with a goal of maximizing usability, we believe that hazard
pointer implementations should have the following features or policies:

Use TLS for performance but provide a path that is TLS-free.

Provide an end-to-end lock-free path.

Allow custom allocation and deallocation function objects.

Support an end-to-end async signal safe path.

Support multi-process sharing.

Support multiple hazard pointer domains.

Support dynamic hazard pointer allocation.

Do not throw exceptions except in hazard pointer allocation, and provide use conditions
that guarantee that hazard pointer constructors will not throw exceptions.

Support hazard pointer caching.

Support automatic release of hazard pointers.

Support an interface that can avoid the store-load fence when not needed.
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The above diagram shows the main components of the hazard pointer method's design:

e Hazard pointer domains: Multiple domains may be present concurrently. Threads may
participate in multiple domains in different roles as users, removers, or both. There is one
default domain per process.

e The hazard pointer control block is the defining component of a domain. It manages the
set of all hazard pointer records in the domain, and the shared set of removed
blocks (if any).

e A hazard pointer record contains a hazard pointer and an indicator of whether the
hazard pointer is free or owned by a user thread. Hazard pointers may point to removed
objects or reachable objects in shared structures.

User threads (optionally) manage a small thread cache for hazard pointer records.
Remover threads (optionally) manage a private set of removed objects.

5. Impact on the Standard

Hazard pointers will be a pure Library addition (with no Language elements) likely to Clause 30
Thread support Library [thread], or a new Clause on Concurrency support Library [concurrent]. It
does require Clause 29 Atomic operations library [atomics] for atomic operations and memory
ordering.
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6. Existing Implementations and Target Workloads

The hazard pointer method is used in several proprietary products that require high-availability

and non-blocking progress for safe resource management. Other uses are in supporting lock-free
access in key-value stores and applications with soft real-time requirements. The method is used
in the MongoDB/WiredTiger open-source NoSQL database.

There are several open source implementations, such as Concurrency Kit, Concurrency Building
Blocks, libcds, and Parallelism Shift. These implementations provide different interfaces that have
their pros and cons. In this proposal we aim to maximize flexibility, and use variations of the

flexible features of these interfaces and avoid restrictive features, such as supporting regular
threads only, or requiring the numbers of hazard pointers to be fixed beforehand.

/. Comparison of Deferred Reclamation Methods

Reference Counting | RCU Hazard Pointers
Unreclaimed Bounded Unbounded Bounded
objects
Non-blocking Lock-free Wait-free Lock-free.
traversal
Non-blocking Lock-free Blocking Lock-free
reclamation

Contention among
readers

Can be very high

No contention

No contention

Traversal speed Atomic updates No or low Store-load fence
overhead
Reference Conditional Unconditional Conditional
acquisition
Automatic Yes No No
reclamation
Advantages
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8. Proposal for Adding a haz_ptr Library

The proposed library, haz_ptr, includes three public classes (See Appendix A):
1. haz_ptr_control_block
2. haz_ptr_obj
3. haz_ptr

8.1. haz_ptr_control block class

This class is the root of all shared hazard pointer data structures in a domain. There is exactly one
instance of this class in each domain. It is included in the library header in order to allow the
programmer to create and control hazard pointer domains. The only public functions are the
constructor and the destructor:
e Constructor: Default constructor.
e Destructor: Destroys all shared hazard pointer structures.
e Usage example (using a hypothetical shared memory allocator):
o auto ptr = shared_mem_alloc(sizeof(haz_ptr_control block));
new (ptr) haz_ptr_control_block;
auto cb = static_cast<haz_ptr control block*>(ptr);
/* Pass cb as argument of hazard pointer operations in this
domain. */

This class does not allow copy and move constructors and assignment operators:
haz_ptr_control_block(haz_ptr_control_block&) =delete;
haz_ptr_control block(haz_ptr_control block&&) =delete;
haz_ptr control block& operator=(haz_ptr_control block&) =delete;
haz_ptr_control block& operator=(haz_ptr_control block&&) =delete;

8.2. haz_ptr_obj class

This is the base class for objects protected by hazard pointers. It has no public functions.
Usage example:
class Foo {
class Node : public haz_ptr_obj {

}

/* Use hazard pointers to protect Node objects. */
This class contains two pointer-sized variables that are only used after removal, a link for inclusion

in linked containers that do not require further memory allocation and a pointer to a function object
for a reclamation function of the derived object.
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8.3. haz_ptr class

This is the main hazard pointer class. It serves two purposes:
e Objects of this class manage all operations on individual hazard pointers (allocation,
acquisition, setting, clearing, and explicit or implicit release).
e This class provides the interface for programmers to invoke all hazard pointer operations
that are not specific to an individual hazard pointer.

The class defines two enum types:
e tc_policy for the thread caching policy for hazard pointer records.
enum tc_policy {cache, nocache}; // To cache or not to cache
e rem_policy for private vs. shared handling of removed objects.
enum rem_policy {priv, shared}; // Private vs. shared

The class supports the following functions::
e Constructor:
haz_ptr(
tc_policy tc = tc_policy::cache,
std: :function<void*(size_t)>* alloc = nullptr, // Default malloc
std: :function<void(void*)>* dealloc = nullptr, // Default free
haz_ptr_control_block* control_block = nullptr);

o Parameter tc: Controls the policy for thread caching for this hazard pointer. If set
to avoid thread caching (e.g., used in a signal handler) a new hazard pointer
record is acquired and possibly allocated through the control block. If set to use
caching, then the thread cache is checked first for an available record. Thread
caching is allowed by default.

o Parameter alloc: A pointer to a function object for the function to use to allocate a
new hazard pointer record if needed. The default value nullptr is associated with
the default allocation function malloc.

o Parameter dealloc: A pointer to a function object for the function to use to
deallocate the acquired hazard pointer record if it needed to be allocated. The
default value nullptr is associated with the default deallocation function free.

o Parameter control_block: A pointer to the control block to use to manage this
hazard pointer. The default value, nullptr, indicates using the default control block
for the process. There is one default control block (and hence one default domain)
per process. If thread caching is allowed for this constructor and the control block is
different from the control block associated with cached hazard pointers, then the
cached hazard pointers are released to their proper control block.

o The constructor acquires a hazard pointer record (which contains a hazard
pointer). The acquired record may be newly allocated or pre-owned.

o May throw bad_alloc, unless the provided allocation function guarantees not to
throw. This is the only function that may throw in the hazard pointer library.
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Usage examples:
m haz_ptr hptri;
m haz_ptr hptr2(
haz_ptr::tc_policy::nocache,
loch_free_alloc,
lock_free_dealloc,
cb);
The calling thread becomes the only owner of the acquired hazard pointer until the
former releases the latter, either explicitly (by calling release()) or implicitly at the
destruction of the haz_ptr object.
We may add a nothrow version that requires pointers to function objects for
nothrow allocation and deallocation functions.

Destructor:

~haz_

O
(@)

ptr();
The destructor clears and releases the owned hazard pointer.
The clearing and release of the hazard pointer is guaranteed to be ordered after
prior loads and stores.
The released hazard pointer may be cached by the thread if thread caching was
allowed in the constructor and there is an empty slot in the thread cache.
Otherwise, the hazard pointer is released to the associated control block.

template <typename T>

bool
o
(@]
o

void
o

protect(const T* ptr, const std::atomic<T*>* src);
Parameter ptr: A pointer to a block of type T.
Parameter src: A pointer to an atomic pointer to an object of type T.
This function sets the value of the owned hazard pointer to ptr, then checks if
*spc has the value ptr.
Return value: The function returns true if *src is found to have the value ptr after
the setting of the hazard pointer. Otherwise, it returns false.
If this function returns true, then ptr is safe to dereference and comparisons with
ptr are ABA-safe until the hazard pointer is released, cleared or it is used to protect
a different pointer, provided that removers use only haz_ptr::reclaim() to
reclaim the memory of *ptr.
Usage example:
if (hptr.protect<Node>(pnode, &head))
// Now, it is safe to dereference pnode
// and comparisons with pnode are ABA-safe
set(void* ptr);
Parameter ptr: A pointer value representing a resource to be protected by the
hazard pointer.
This function sets the value of the owned hazard pointer to ptr.
This function is similar to protect(), but without validating that ptr points to a
reachable object (i.e., not removed).
This function does not provide any memory ordering guarantees.
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o

Usage example:
hptr.set(pnode);

e void clear();

(@)
O

o

This function clears the value of the owned hazard pointer.
The clearing of the hazard pointer is guaranteed to be ordered after prior loads and
stores.
Usage example:
hptr.clear();

e static void reclaim(
haz_ptr_obj* ptr,
std: :function<void(void*)>* dealloc = nullptr, // Default free
haz_ptr_control_block* control_block = nullptr,
rem_policy rem = rem_policy::priv,
size_t mult = 2);

O
(@)

Parameter ptr: A pointer to a removed object to be reclaimed.
Parameter dealloc: A pointer to a function object for the function to be used to
reclaim the removed object. The default value nullptr is associated with the
default deallocation function free.
Parameter control_block: A pointer to the hazard pointer control block
associated with the removed object. The default value, nullptr, represents the
default control block for the current process.
Parameter rem: The policy for accumulating the removed object in a private (i.e.,
thread local) or shared (in the control block) structures.
Parameter mult: The reclamation multiplier. The hazard pointers are checked after
accumulating a number of removed objects that is at least mult times the number
of hazard pointers in the control block.. This parameter can help a thread increase
its chances of performing a higher or lower fraction of the reclamation work
compared to other threads. For example, a high-priority thread can set this
parameter to a higher value to increase its chances of doing less reclamation work
than other threads.
This function sets in motion the reclamation (possibly deferred until safe) of the
removed object.
The caller thread of this function need not own any hazard pointers.
Usage example:

m haz_ptr::reclaim(pnode);

m haz_ptr::reclaim(pblock, deleteBlockFn, cb,

haz_ptr::rem_policy::shared, 3);

e static void swap(haz_ptr& a, haz_ptr& b);

@)
O

Parameters a and b: References to haz_ptr objects.

This function swaps the hazard pointer records ownerships between the two
objects. The function does not change the values of the owned hazard pointers
themselves. Throughout the swap, each of the owned hazard pointers continues to
protect the object that it is protecting (if any). See the linked list set example.
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e static size_t count(haz_ptr_control_block* = nullptr);
o Parameter control_block: A pointer to a hazard pointer control block.The default
value, nullptr, represents the default control block for the current process.
o Return value: The total number of allocated hazard pointer including free ones
associated with the control block.
o This function can be used by programmers to optimize the usage of hazard
pointers.
The caller of this function need not own any hazard pointers.
Usage example:
if (haz_ptr::count() < THRESHOLD) ...
e static void release_cached();
o This function releases any hazard pointers cached by the current thread.
e static void empty_private_removed();
o This function moves any privately accumulated removed objects to the control
block, and possibly performing reclamation, effectively relieving the current thread
from the responsibility for reclaiming the remaining objects.

This class does not allow copy and move constructors and assignment operators:
haz_ptr(haz_ptr&) =delete;
haz_ptr(haz_ptr&&) =delete;
haz_ptr& operator=(haz_ptr&) =delete;
haz_ptr& operator=(haz_ptr&&) =delete;

9. Sample Interface and Implementation

A C++ Standard Library sample interface code is in Appendix A. An implementation of the
interface was tested using C++11 standard mode on PowerPC Little Endian Redhat 8 with gcc
4.8 and clang 3.9 (top of trunk), and x86_64 Ubuntu 14.04 with gcc 4.8.

10. Use Examples

Highlighted code uses the haz_ptr library interface.

10.1.Lock-Free LIFO List

This example demonstrates some variations of the basic operations of the hazard pointer method.

template <typename T> class LockFreelLIFO {
/* Derived from base hazard pointer-protected object class */
struct Node : public haz_ptr_obj {
T value;
Node* next;
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Node(T v, Node* n) : value(v), next(n) { }
¥

std: :atomic<Node*> head;

/* Using malloc to match default haz_ptr deallocation function free. */
Node* allocNode(T v, Node* n) {

auto ptr = malloc(sizeof(Node));

new (ptr) Node(v, n);

return static_cast<Node*>(ptr);

}
public:
LockFreeLIFO() : head(nullptr) { }

void push(T val) {
auto pnode = allocNode(val, head.load());
while (!head.compare_exchange_weak(pnode->next, pnode));

}

bool pop(T& val) {
/* Acquire a hazard pointer, but don't use thread caching. */
haz_ptr hptr(haz_ptr::tc_policy::nocache);
Node* pnode;
while (true) {
if ((pnode = head.load()) == nullptr) break;
/* Try to protect pnode using hptr. If protection cannot be
validated, then skip the hazards. */
if (!hptr.protect<Node>(pnode, &head)) continue;
/* Now, pnode is protected. */
/* Dereference of pnode is safe. */
auto next = pnode->next;
/* Comparison with pnode is ABA-safe. */
if (head.compare_exchange weak(pnode, next)) break;
}
/* Clear the hazard pointer, */
hptr.clear();
if (!pnode) return false;
val = pnode->value;
/* Reclaim *pnode only after no hazard pointers point to it. */
haz_ptr::reclaim(pnode);
return true;
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/* The hazard pointer is released automatically at the end of the
scope */

};

10.2.Single-Writer Multi-Reader Singly-Linked List

This example demonstrate the use of haz_ptr::swap for hand-over-hand traversal,

/**
* Set implemented as an ordered singly-linked list.
k
* A single writer thread may add or remove elements. Multiple reader
* threads may search the set concurrently with each other and with
* the writer's operations.
*/
template <typename T> class SWMRListSet {
struct Node : public haz_ptr obj {
T elem;
std: :atomic<Node*> next;
Node(T e, Node* n) : elem(e), next(n) { }
¥

std: :atomic<Node*> head;

Node* allocNode(T e, Node* n) {
auto ptr = malloc(sizeof(Node));
new (ptr) Node(e, n);
return static_cast<Node*>(ptr);

}

/* Used by the single writer */
void locate_lower_bound(T v, std::atomic<Node*>*& prev) {
auto curr = prev->load(std::memory order_relaxed);
while (curr) {
if (curr->elem >= v) break;
prev = &(curr->next);
curr = curr->next.load(std: :memory order_relaxed);

}

return;
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public:
SWMRListSet() : head(nullptr) { }

bool add(T v) {
auto prev = &head;
locate_lower bound(v, prev);
auto curr = prev->load(std::memory_order_relaxed);
if (curr && curr->elem == v) return false;
prev->store(allocNode(v, curr), std::memory_order_release);
return true;

bool remove(T v) {
auto prev = &head;
locate_lower bound(v, prev);
auto curr = prev->load(std::memory order_relaxed);
if (!curr || curr->elem != v) return false;
prev->store(curr->next.load(std: :memory_order_relaxed),
std: :memory_order_release);
/* Reclaim *curr only after no hazard pointers point to it. */
haz_ptr::reclaim(curr);
return true;

/* Used by readers */
bool contains(T val) {
/* Acquire two hazard pointers for hand-over-hand traversal. */
haz_ptr hptr_prev;
haz_ptr hptr_curr;
T elem;
bool done = false;
while (!done) {
auto prev = &head;
auto curr = prev->load(std::memory order_relaxed);
while (true) {
if (!curr) { done = true; break; }
/* Alternative way to protect curr instead of protect().
* First, Set hazard pointer value.
* Then validate protection.
* If validation fails skip the hazards.
*/
hptr_curr.set(curr);
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std: :atomic_thread_fence(std::memory order_seq cst);

if (prev->load(std::memory_order_relaxed) != curr) break;
/* Now, curr is protected. */

/* Dereference of curr is safe. */

auto next = curr->next.load(std::memory_order_relaxed);
elem = curr->elem;

/* Comparison with pnode is ABA-safe. */
std::atomic_thread_fence(std: :memory_order_acquire);

if (prev->load(std::memory order_relaxed) != curr) break;
if (elem >= val) { done = true; break; }

prev = &(curr->next);

curr = next;

/* Swap the haz_ptr objects. The swap does not change the
* values of the owned hazard pointers themselves. After the
* swap, The hazard pointer owned by hptr_prev continues to
* protect the node that contains the pointer *prev. The
* hazard pointer owned by hptr_curr will continue to protect
* the node that contains the old *prev (unless the old prev
* was &head), which no longer needs protection, so
* hptr_curr's hazard pointer is now free to protect *curr in
* the next iteration (if curr != null).
*/
haz_ptr::swap(hptr_prev, hptr_curr);
}
}
return elem == val;
/* The hazard pointers are released automatically. */

}
}s

10.3.Wide Compare and Set

This example demonstrates the use of a function object for deferred deallocation, and the use of a
custom hazard pointer control block. In this case each object of this class constitutes its own
domain and has its own control block.

/** A class that supports atomic load and compare and set on memory
* blocks of arbitrary width

*/

template <size t M> class WideCAS {

/* Clases of objects protected by hazard pointers must be derived
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from the base class haz_ptr_obj */
class Block : public haz_ptr_obj {
char a[M];

friend WideCAS;

Block(const char* b) { memcpy(a, b, M); }

void get(char* b) const { memcpy(b, a, M); }

bool cmp(const char* b) const { return memcmp(a, b, M) == 0; }

}s
std::atomic<Block*> block;

/* Special hazard pointers control block. Must be included in all
related hazard pointers operations for consistency. */
haz_ptr_control block* cb = new haz_ptr_control block;

/** void(void*) destructor for use by hazard pointers deferred
* reclamation.
*/
static void deleteBlock(void* ptr) {
auto pblock = static_cast<Block*>(ptr);
/* Delete the control block and all associated hazard pointers and
structures. */
delete pblock;

}

/* Function object to encapsulate the deleteBlock function */
static std::function<void(void*)>* deleteBlockFn;

public:
WideCAS(char* b) : block(new Block(b)) { }

~WideCAS() {
delete block.load(std::memory order_relaxed);
delete cb;

}

void load(char* b) const {
/* Acquire a hazard pointer, with special control block. */
haz_ptr hptr(haz_ptr::tc_policy::nocache, cb);
do {
auto pblock = block.load(std::memory order_relaxed);
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/*

if
/*
/*
pb
br
} wh
retu

Try to protect pblock using hptr. If protection cannot be
validated, then skip the hazards. */
(!'hptr.protect(pblock, &block)) continue;

Now, pblock is protected. */

Dereference of pblock is safe. */

lock->get(b);

eak;

ile (true);

rn;

/* Ownership of the hazard pointer is released automatically at

t

bool c
/* A

haz_|

auto
do {
au
/*

if
/*
/*
if
/*
if

}
} wh

he end of the scope. */

ompare_and_set(const char* expval, const char* newval) {

cquire a hazard pointer, with the same special control block.

ptr hptr(haz_ptr::tc_policy::nocache, cb);
newblock = new Block(newval);

to pblock = block.load();

Try to protect pblock using hptr. If protection cannot be
validated, then skip the hazards. */
(!'hptr.protect(pblock, &block)) continue;

Now, pblock is protected. */

Dereference of pblock is safe. */

(!pblock->cmp(expval)) { delete newblock; return false; }
Comparison with pblock is ABA-safe. */
(block.compare_exchange weak(pblock, newblock)) {

/* Clear the hazard pointer. */

hptr.clear();

/* Request reclamation of the removed block. Must use the
special control block and a deallocation function object
that matches the allocation function. Also, set the
reclamation multiplier to 3 (i.e., check the hazard
pointers after accumulating a number of removed objects
that is at least 3 times the number of hazard pointers in
the domain of the control block). */

hpns::haz_ptr::reclaim(pblock, deleteBlockFn, cb,

haz_ptr::rem_policy::shared, 3);
return true;

ile (true);

/* Ownership of the hazard pointer is released automatically at

t

he end of the scope. */

*/
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};

/* Initialize the function object for custom deallocation function.

template<size_t M>
std: :function<void(void*)>* WideCAS<M>::deleteBlockFn =
new std::function<void(void*)>(WideCAS<M>: :deleteBlock);

11. Appendix A: Draft Library Header

class haz_ptr; /* Main hazard pointer class */
class haz_ptr_rec; /* Hazard pointer record */
class haz_ptr_control_block; /* Control block - One per domain */

class haz_ptr_user; /* One thread local per thread */
class haz_ptr_remover; /* One thread local per thread */

/** haz_ptr_obj
*

* Base class for objects protected by hazard pointers.
*/
class haz_ptr_obj {

/* Pointer used in constructing lists of removed objects awaiting

reclamation, without requiring additional allocation. */
haz_ptr_obj* next_removed_;

/* Pointer to a destructor function object. */
std: :function<void(void*)>* dealloc_;

friend haz_ptr;
friend haz_ptr_control block;

}s

/** haz_ptr_control_block

*

* Control block for hazard pointers. One per domain.
*/

class haz_ptr_control_block {
/* Head of a linked list of hazard pointer records. */

*/
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std::atomic<haz_ptr_rec*> hptr_head_ {nullptr};

/* Upper bound on number of hazard pointer records in list. */

std::atomic<size t> hptr_count_ {0};

/* Head of linked list of removed objects. */
std::atomic<haz_ptr_obj*> removed_ {nullptr};

/** Estimate of number of removed objects in list. Intended to be a
cumulative lower bound. Overestimations are always offset by

prior underestimations. */
std::atomic<size t> removed count_ {0};

haz_ptr_control_block(haz_ptr_control _block&) =delete;
haz_ptr_control block(haz_ptr control block&&) =delete;
haz_ptr control block& operator=(haz_ptr_control block&) =delete;
haz_ptr_control block& operator=(haz_ptr_control block&&) =delete;

friend haz_ptr;

haz_ptr_rec* hptr_head load();

bool hptr_head _cas(haz_ptr rec*&, haz_ptr_rec*);

size t hptr_count_load();
void hptr_count_increment();

void push_removed(haz_ptr _obj*, haz_ptr obj*, size t);
void pop_removed(haz_ptr_obj*&, size_ t&, size t);

public:
haz_ptr_control block() =default;
~haz_ptr_control_block();

};

/** haz_ptr_rec

%

* Hazard pointer record.
*/

class haz_ptr_rec {
/* Hazard pointer. The key structure. */
std::atomic<void*> hptr_ {nullptr};

/* Pointer to next hazard pointer record.

haz_ptr_rec* next_;
/* True if owned. */

*/
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std::atomic<bool> valid_ {true};
/* Function to reclaim the memory of this record. */
std: :function<void(void*)>* dealloc_;

haz_ptr_rec(haz_ptr_rec&) =delete;
haz_ptr rec(haz_ptr_rec&&) =delete;
haz_ptr rec& operator=(haz_ptr _rec&) =delete;
haz_ptr rec& operator=(haz_ptr rec&&) =delete;

friend haz_ptr;
friend haz_ptr_user;
friend haz_ptr_control block;

haz_ptr rec(haz_ptr_rec* next, std::function<void(void*)>* dealloc);

template <typename T>

bool protect(T* ptr, const std::atomic<T*>* src) {
hptr_.store(ptr, std::memory_order_relaxed);
std::atomic_thread_fence(std::memory order_seq cst);
return src->load(std::memory_order_relaxed) == ptr;

}

bool acquire();

void set(void* ptr);
void clear();

void release();

};

/** haz_ptr
%

* Wrapper class for RAII automatic allocation and release of hazard

* pointers, and interface for user calls to hazard pointer functions.

*/

class haz_ptr {

public:
enum tc_policy {cache, nocache};
enum rem_policy {priv, shared};

private:
/* Pointer to owned hazard pointer record. */
haz_ptr_rec* rec_;
/* Pointer to control block. */
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haz_ptr_control_block* cb_;
/* To cache or not to cache. */
tc_policy cache_ {tc_policy::cache};

haz_ptr(haz_ptr&) =delete;
haz_ptr(haz_ptr&&) =delete;

haz_ptr& operator=(haz_ptr&) =delete;
haz_ptr& operator=(haz_ptr&&) =delete;

void release();

friend haz_ptr_rec;
friend haz_ptr_user;
friend haz_ptr_remover;

static void drain(haz_ptr_control_block*);
static void scan_private(haz_ptr_control block*);
static void scan_shared(haz_ptr control block*, size t);

static std::function<void*(size_t)>* mallocfn;
static std::function<void(void*)>* freefn;

public:
haz_ptr(tc_policy tc = tc_policy::cache,
haz_ptr_control_block* control block = nullptr,
std::function<void*(size_t)>* alloc = nullptr,
std: :function<void(void*)>* dealloc = nullptr);
~haz_ptr();

template <typename T>
bool protect(T* ptr, const std::atomic<T*>* src) {
return rec_->protect<T>(ptr, src);

}

void set(void* ptr);
void clear();

static void reclaim(haz_ptr_obj* ptr,
std: :function<void(void*)>* dealloc = nullptr,
haz_ptr_control block* control block = nullptr,
rem_policy rem = rem_policy::priv,
size_t mult = 2);

static void swap(haz_ptr& a, haz_ptr& b);
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static size t count(haz_ptr_control block* = nullptr);
static void release_cached();
static size t private_removed count();

}s
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