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On Quantifying Memory-Allocation Strategies (Revision 2) 

Abstract 

Performance requirements drive many of our most difficult design choices. In memory 

management, such choices can have surprising and far-reaching effects. Although 
performance of global memory allocators has improved markedly in recent years, use 
of local memory allocators can provide significant (sometimes even dramatic) benefits 

in commonly encountered circumstances we have tried to identify here.  

To make reasoned choices on the use of local memory allocators, we need to 
understand where and how their use may affect runtime performance. We have 

identified several measures of how systems can stress a global allocator, and may 
benefit by applying a well-chosen local allocator in its place. If we are to choose wisely 

where and how to apply a local allocator, we need objective measurements. We have 
identified several usage patterns which we have encoded into benchmarks to identify 
precisely where local allocators do (and where they do not) provide substantial 

benefits. This paper presents our results with limited analysis to help support 
informed discussion. 

Possibly the most significant result is that, where use of a local allocator does yield 
dramatic improvements, the number of operations are about the same: The slower 
benchmark run times for the global allocator are dominated by stalls waiting on 

cache interactions with main memory (due to a severe lack of physical and temporal  
locality); the ability to use a local allocator empowers us to act to avoid such stalls. 

Implementations of standard allocators (and others) are freely available today – 
accompanied by copious usage examples – in Bloomberg’s open-source distribution of 
the BDE library at <https://github.com/bloomberg/bde>. Benchmark code and 

results, including those discussed in this paper, can be found in a fork of that 
repository, <https://github.com/bloomberg/bde-allocator-benchmarks>. In light of 
the data compiled here, there can be no remaining doubt about the industrial 

importance of providing program control over the allocators used for C++ containers. 
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0 Changes from P0089R0 

The first version of this paper appeared as N4468.  In both that version and P0089R0 
the tables presented in Section 7 (Benchmark I) were laid out incorrectly: the 
columns for the monotonic allocator (AS3-AS6) contained the data for the multipool 

allocator, and similarly the columns for the multipool allocator (AS7-AS10) contained 
the data for the monotonic allocator.  The data in those tables has been re-arranged 
to be correct in this version, and the accompanying text revised accordingly. 

In addition, P0089R0 omitted the allocator categorization diagram that appears at the 
start of Section 2. 

This version of the paper also corrects typographical errors, and improves the 
wording of some difficult phrases. 

Finally, this version adds a reference to a paper (P0213R0) being prepared 

concurrently with this paper by Graham Bleaney, which attempts to independently 
recreate the data presented in P0089R0.  Graham’s work on P0213R0 led to the 

discovery of the swapped column data in Benchmark I. 

1 Introduction 

Serious engineers appreciate C++ for enabling them to fine-tune code at a low level 
when needed. Resource management is an important aspect of low-level control – 

particularly memory management. 

Should we instrument the standard library for such fine-tuning? The arguments 

against are typically that fine-grained memory management requires more up-front 
design effort, complicates interfaces, and may actually degrade performance where no 
local allocator, or a poorly chosen one, is supplied. These are valid concerns that can 

be addressed only with well-supported facts; by employing careful measurement, we 
must identify precisely how much performance benefit is available, and where. 

Nevertheless, a library instrumented to exploit local allocators enables benefits other 

than just enhanced runtime performance: Allocators can aid testing, debugging, and 
measurement. Not all memory is alike – some is faster for certain processors, some is 

shared, some may be write-protected, and we will need allocators to exploit such 
heterogeneous memory effectively. 
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2 Use an allocator? Which One? 

Before exploring allocator-performance metrics, we should identify what we hope to 

learn. We need help deciding, first, whether injecting a local allocator will help or 
hurt performance. If supplying a local allocator won’t help, we should use the 
system-wide (default) global allocator. 

If an allocator would be helpful, we would then need to determine whether one 
should be “baked in” as a type parameter at compile time (e.g., with the intent of 

squeezing out the last bit of runtime performance) or passed as an abstract base 
class (thereby enabling enhanced interoperability for non-template types). Either way, 
we then need to choose the allocator (or allocators) to use. The rest of this paper 

addresses quantitatively the runtime consequences of these choices.  

 

It is worth noting that we investigated alternative global allocators beside the native 

ones on the various platforms, including tcmalloc and jemalloc, and determined 

that the native allocators (e.g., the one currently shipped with GCC on Linux) 

performed as well or better. In short, it isn’t about how good the global allocator is, 
but instead the relative benefits to having local knowledge of the nature of how 
allocation will occur. In some cases, e.g., Benchmark II, an allocator’s runtime 

performance is entirely irrelevant compared to the physical locality of memory 
accesses it is able to preserve. 

No 

 Supply Allocator? 

Yes 

Use Global Allocator    Via Base Class? 

No Yes 

Which Allocator? 

A B C . . . 
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3  Available Concrete Allocators: Monotonic and Multipool 

In this paper, we have selected the two kinds of allocators from the current Library 

Fundamentals TS: “monotonic” and “multipool”. 

A monotonic allocator supplies memory from a contiguous block, sequentially, until 
the block is exhausted, and then dynamically allocates new blocks of geometrically 

increasing size, typically from the global allocator. Returning memory to a monotonic 
allocator is a no-op: Any returned memory remains unavailable until the monotonic-

allocator object itself is destroyed. 

A multipool allocator is quite different. Each such allocator object consists of an array 
of (adaptive) pools, one for each geometrically increasing request size in a range up to 

some specified maximum. Each time memory is requested, the memory is provided 
from the most appropriately sized pool, and freed memory is returned to that pool. 

When the pool has no free memory, the allocator delivers memory from increasingly 
larger blocks obtained from the backing allocator (possibly the global allocator), up to 
some (empirically determined) limit. Requests that exceed the maximum pool size 

pass directly through to the backing allocator. The combination of a multipool 
allocator backed by a monotonic allocator forms the third allocator candidate that we 
consider in this paper. 

Both monotonic and multipool allocators are “managed”. A managed allocator is an 

allocator that, in addition to its allocate and deallocate methods, has a release 

method that can be used to summarily return all of the memory it manages to its 

backing allocator. The release method is called implicitly upon destruction of a 

managed allocator. 

For objects placed in memory obtained from a managed-allocator instance, and 
managing no non-memory resources themselves, we can avoid running the objects’ 

destructors. Instead, they can be “winked out” en masse by releasing the memory 

they occupy, along with all the memory they manage, via their allocator’s release 

method. 

The runtime benefits of bypassing individual destruction of each element in a 
container can be significant, as de-allocating memory can sometimes be more costly 

than allocating it. Note that this “winking out” technique requires new-ing the 

container object itself into the managed allocator it is to use, so that (1) its destructor 
is not called, and (2) its footprint is also released when the allocator goes out of 

scope. Also note that this behavior is fully defined in the current standard, so long as 
no “winked-out” object is subsequently accessed. 

4 Our Tool Chest of Allocation Strategies 

Before we start considering interesting benchmarks, we need to consider the 

available allocation strategies. Each memory-usage pattern will have different 
properties, and therefore we can reasonably expect different allocation strategies to 

excel. 
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In this paper, we consider up to 14 different allocation strategies for each of the 
benchmarks we will subsequently present. The first of these strategies will be the 

default global allocator (std::allocator, bound at compile time) which will form the 

baseline for each successive comparison. (Supplying the default as a compile-time 
parameter produces the same object code as having it default, and so we have 

omitted that as a separate category.) The second case is the new_delete allocator 

supplied via an abstract base class, which (for the subset of popular compilers that 

do not yet elide runtime dispatch where they clearly could) can be used to compare 
that additional runtime overhead. 

The remaining 12 allocation strategies can best be described by the following cross 
product: 

 

 

 

The first column represents the allocators themselves. The first entry is a monotonic 

allocator, the second is a multipool allocator, and the third is a multipool allocator 
backed by a monotonic allocator. The second column indicates whether the allocator 
is invasively bound into the type of the container or is (non-invasively) passed via an 

abstract base class. The third column indicates whether the container was destroyed 
naturally or, instead, “winked out” by virtue of letting the supplied managed allocator 

go out of scope. 

Monotonic 

Multipool 

Monotonic (Multipool) 

Type Parameter 

Abstract Base 

Normal Destruction 

(Magically) “Winked Out” 
 X  X 
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Label Allocator type Allocator binding Destruction of allocated 
objects 

AS1 Default Global 
Allocator  

Type Parameter Normal Destruction 

AS2 New/Delete Allocator Abstract Base Normal Destruction 

    

AS3 Monotonic  Type Parameter Normal Destruction 

AS4 Monotonic Type Parameter (magically) “Winked Out” 

AS5 Monotonic  Abstract Base Normal Destruction 

AS6 Monotonic Abstract Base (magically) “Winked Out” 

    

AS7 Multipool Type Parameter Normal Destruction 

AS8 Multipool Type Parameter (magically) “Winked Out” 

AS9 Multipool Abstract Base Normal Destruction 

AS10 Multipool Abstract Base (magically) “Winked Out” 

    

AS11 Monotonic (Multipool) Type Parameter Normal Destruction 

AS12 Monotonic (Multipool) Type Parameter (magically) “Winked Out” 

AS13 Monotonic (Multipool) Abstract Base Normal Destruction 

AS14 Monotonic (Multipool) Abstract Base (magically) “Winked Out” 

Table 1: Allocation Strategies 

In each case, exactly one of these fourteen allocation strategies will be the best 
answer from a purely runtime-performance perspective.  
 

It is worth noting that a Multipool allocator comes in two flavors: synchronized and 
unsynchronized (see the bdlma package in <https://github.com/bloomberg/bde>). 

Throughout Benchmarks I and II, we used the synchronized version – even though it 
was unnecessary to do so; in benchmarks III and IV used the unsynchronized version 

(because we could, as there was just one allocator per thread).  The ability to use a 

https://github.com/bloomberg/bde
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local allocator enables the additional choice of not forcing synchronization to be 
present where it is not needed.  Demonstrating the (perhaps considerable) runtime 

improvement for avoiding such synchronization where possible will (for now) be left 
as an exercise for the reader. 

5 Characterizing Memory-Allocator Usage Scenarios  

Knowing when to supply an allocator and which one to use is neither obvious nor is 
it typically taught in school at any level. Rather, effective use of local memory 
allocators is learned only from long real-world experience. In this paper, however, we 

attempt to begin to elucidate some of the important considerations that experts 
consider when evaluating whether or not to take local control over an object’s 

memory management. 

The first step in characterizing a problem such as this one is to identify its basic size 
parameters. Problems of vastly different sizes are not usefully comparable. Problem 

size can be roughly characterized in terms of two parameters: 

N the number of instructions executed 

W the number of active threads 

The relationship between the number of instructions executed and the number of 
active threads is not obvious, and a single number that combines the two does not 

seem useful. Clearly the number of available processors, the size of L1 cache, and a 
host of other machine-specific physical parameters will affect the detailed analysis. 
For the scope of this paper, however, we will limit ourselves to characterizing the 

logical program independently of physical hardware. 

Given this overall “size” characterization (N, W), we now introduce five dimensions 

that (we assert) span the space of memory-allocator usage: 

D  Density of allocation operations 

V  Variation in allocated memory sizes 

L  Locality facilitating memory access/manipulation 

U  Utilization of allocated memory 

C  Contention due to concurrent memory allocations 

Each of these dimensions resides on a scale from 0 to 1, where 0 indicates the low-
end of the scale, and 1 the high end. Note that none of these scales is (necessarily) 
linear. It is also important to realize that each of these dimensions applies not to the 

overall program, but instead to just an individual targeted subsystem over some 
relevant subset of program execution. That is, when considering these dimensions, 

we are looking to improve the performance of a particular subsystem over a finite 
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duration of execution, rather than that of the program as a whole. Supporting whole-
program allocation is the remit of the global allocator. 

5.1 Density of allocation operations (D) 

The allocation density is a measure of the relative number of allocation instructions 

(allocate and deallocate) to the total number of instructions executed. A density 

of zero would imply that no allocation operations are employed, while a density of one 
would indicate that every operation involves either allocation or deallocation. As an 

example, a std::vector<int> is incapable of achieving a meaningfully high 

allocation density as the number of allocation operations are at most logarithmic in 

the number of mutating operations, and we sometimes even do a reserve on vectors, 

thereby reducing the number of allocations for this data structure to just 1 (e.g., 

Benchmark I, see section 7). By contrast, a vector of (long) strings could be used in a 
way that admits a relatively high allocation density, as each mutating operation 

would involve allocation or deallocation of the string-element’s memory. Node-based 
containers that (unlike Bloomberg’s bsl https://github.com/bloomberg/bde/tree/master/groups/bsl) do 

not do internal pooling are similarly capable of achieving a very high allocation 

density. Even with a potentially high density for mutating operations, the overall 
density will depend on the proportion of mutating to non-mutating (i.e., accessing or 
other non-allocation/deallocation-related) operations. 

5.2 Variation in allocated memory sizes (V) 

The variation in allocated memory sizes attempts to roughly measure the extent to 
which allocated memory requests vary over the region and duration of interest. A 

variation of 0 would mean that (at most) a single memory size is allocated, while a 
variation of 1 would suggest a much more diverse (e.g., hyperbolic) distribution of 

memory allocation sizes. A low variation value might (in theory) tend to suggest a 
pool-based allocator, whereas a higher value (again in theory) could perhaps favor a 
coalescing allocator (but see the actual data in Benchmark I). Keep in mind that 

requests that are relatively close in size might be treated equivalently. 

5.3  Locality facilitating memory access/manipulation (L) 

The definition of access locality is complex, involving at least three factors: 

I The number of instructions executed in the subsystem over the duration 

M The size of the memory footprint of the subsystem accessed for the duration 

T The number of context transitions out of the subsystem during the duration 

https://github.com/bloomberg/bde/tree/master/groups/bsl
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The locality, L, correlates directly to the instruction count, I, but inversely to both the 
memory footprint size, M, and the transition count, T. We can therefore argue that 

access locality, L, can be characterized (to a zeroth-order approximation) as: 

𝑳 =
𝑰

𝑴 ∗ 𝑻
 

 

In other words, the more instructions that flow through our subsystem (over the 
duration of interest, the more access locality we have. On the other hand, the bigger 
our subsystem’s footprint or the more context transitions that occur away from it, the 

lower the access locality becomes. Physical locality can be independently 
characterized by holding T constant, whereas temporal locality would be similarly 

characterized by holding M constant. Note that access locality – both physical and 
temporal – will turn out to play a dominant role in some long-running programs, even 

when the allocation density is negligible (e.g., Benchmark II, see section 8). 

5.4  Utilization of allocated memory (U) 

Allocated memory utilization is a measure of the relative amount of allocated 

memory in use at any one time; it is defined as the maximum amount of memory in 
use by a subsystem, during the durations of interest, divided by the total amount of 
memory allocated by the subsystem over that period. A utilization of 1 means that, at 

some point, all of the memory ever allocated by a subsystem (over the duration of 
interest) is actively in use. A utilization that approaches zero implies a (typically long-

running) subsystem in which the same memory is allocated and deallocated 
repeatedly. Subsystems exhibiting high utilization are often good candidates for 
monotonic allocators, while a long-running subsystem having low utilization is 

almost always much more suited to a multipool allocator, or perhaps a multipool 
allocator backed by a monotonic one (but see the benchmarks below). 

5.5 Contention due to concurrent memory allocations (C) 

Allocation contention is a measure of the potential bottlenecks that could result 
from multiple threads attempting to access the same synchronized memory allocator. 
We define allocation contention as the expected number of concurrent memory 

allocation operations in any given instant of time, over the duration of interest, 
divided by the number of active threads, W. A contention, C, of 0 indicates that W is 

1 (or the allocation density, D, for all but one thread is 0). A contention of 1 would 
mean that W > 1 and each thread is always trying to allocate or deallocate memory 
on every instruction executed (i.e., D per thread is 1). Many modern global memory 

allocators are “thread aware” and make heroic efforts to mitigate such contention. In 
doing so, however, they typically slow down subsystems in situations that do not 

require synchronization, while – compared to the use of local allocators – also 
degrading performance in situations that do. Note that, because of the strong 
correlation between dimensions C and D, it will turn out to be difficult to observe 

variations in C independently of D (e.g., Benchmark IV, see section 10).  
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DVLUC 
 

Remembering these five dimensions characterizing memory allocation is a challenge 
for anyone, including us, so we offer a mnemonic aid by way of a mascot: The mascot 
is a duck, and his name is DVLUC. 

6 Designing Useful Benchmarks 

After identifying the dimensions of allocation space to explore, we wanted suitable 
benchmarks to elucidate how each of these dimensions affects our design decisions. 

Our first thought was to create a single benchmark that spanned all five of the 
dimensions – the idea being to find the centroid, and then vary the arguments along 
each dimension separately in order to discover its effect on the best allocator-strategy 

choice. 

As it turns out, a single problem that encompasses all five dimensions is not at all 
easy to invent, as some dimensions are strongly correlated with others – e.g., 

Contention (C), and Density (D). Instead, we settled on four separate benchmarks, 
which together seem to cover this five-dimensional space as well as enabling each of 

the fourteen proposed allocation strategies (where appropriate) to have their fair shot. 

Separately, we tried not to assume the answers we expected, and hence strove to 
cover the entire design space without prejudice. Hence, in our benchmarks we 

typically explore a wide range of problem sizes using successive powers of two. To 
better understand secondary effects, we will often choose to trade off comparable 

parameters, such as the subsystem size versus the number of subsystems (physical 
locality) or the number of consecutive accesses of a subsystem versus the number of 

subsystems visited (temporal locality) while holding other benchmark parameters 
constant. 

All the results presented here are from runs on a server having dual Intel Xeon E5-

2620v2 processors, each having 6 cores (for a total of 12 cores) and 15 MB of L3 
cache, running at a fixed clock rate of 2.1 GHz, with 16GB of DDR3-1600 RAM (with 

D = Density of allocation operations 

V = Variation in allocated memory sizes 

L = Locality facilitating memory access/manipulation 

U = Utilization of allocated memory 

C = Contention due to concurrent memory allocations 
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13G available to processes), and otherwise unused. This particular processor has the 
“Sandy Bridge” architecture, from 2010, re-stepped (“v2”) to a smaller die in 2013 

and called “Ivy Bridge EP” (http://ark.intel.com/products/75789). Programs were all 

compiled using gcc-5.1, optimizing “-O3 –march=native”, and run under Linux 

3.18. All experiments used only one core at a time except for Benchmark IV, which 

measures Contention (C) and used more of the available cores.  

In addition, we ran the same programs on several other configurations and platforms, 

including versions built with clang-3.6 on the machine described above, and with gcc 
and clang on an IBM POWER7 under Linux 3.10, and with MSVC2015R1 on an Intel 
Haswell desktop machine under Windows 7.  Results of these runs can be found on 

the github site. 
 

Finally, a separate effort has recently been made to recreate our experiments in order 
to confirm these results (P0213 by Graham Bleaney).  We anticipate that paper will 
appear at approximately the same time as this revision. 

7 Benchmark I: Creating/Destroying Isolated Basic Data Structures. 

In this experiment, we look at the process of creating a variety of isolated composite 
data structures, using them lightly (i.e., writing to each element exactly once using 

memset via a pointer-to-volatile), and then quickly destroying them. The set of data 

structures under test encompasses many of those we use every day, and were chosen 
specifically to explore the first two dimensions discussed earlier (section 5), namely 

Density (D), and Variation (V). Each standard container under consideration 

(std::vector and std::unordered_set) will ultimately consist of “leaf” objects of 

either int or std::string, where each string’s length – chosen randomly over a 

uniform distribution between 33 and 1000 – is deliberately outside the range where 
the short-string optimization pertains. 

The container implementations are the native ones for the platform, using 

scoped_allocator_adaptor to ensure that the same allocator is used for all parts of 

the data structure.  The monotonic and multipool allocators come from the BSL 

library. 

Twelve representative standard-library data structures were chosen – the fifth 

through twelfth being, respectively, std::vectors and std::unordered_sets of 

elements containing each of the first four data structure types: 

http://ark.intel.com/products/75789
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DS1 vector<int> 

DS2 vector<string> 

DS3 unordered_set<int> 

DS4 unordered_set<string> 

 

DS5 vector<vector<int>> 

DS6 vector<vector<string>> 

DS7 vector<unordered_set<int>> 

DS8 vector<unordered_set<string>> 

DS9 unordered_set<vector<int>> 

DS10 unordered_set<vector<string>> 

DS11 unordered_set<unordered_set<int>> 

DS12 unordered_set<unordered_set<string> 

Table 2: Data Structures 

The runtime results for executing these benchmark tests using each of the 12 data 
structures above, employing each of the 14 allocation strategies discussed in section 
4, for a wide variety of problem sizes on just one of the several popular platforms we 

tried (section 6) are presented below. 

Unlike our previous paper, however, all tabular numbers for this benchmark are 
presented (as heat maps) in terms of absolute run times in seconds (rather than 

percentages relative to the first column). Moreover, the color coding of the maps 
applies to an entire chart, rather than each individual row – this to help identify 

patterns – especially in allocation-strategies (columns) – that might otherwise be 
obfuscated. The first column, 26 through 216, indicates the size of the data structure 
constructed – e.g., for data size 28, the outermost data structure is built up to have 

28 = 256 elements before being destroyed. 

This process of creating and destroying each data structure is repeated many times 
to allow for meaningful measurements. In order to allow for comparisons across data 

structures of different sizes, the product of the data structure’s size (in terms leaf 
elements) and the number of iterations of creating and destroying it will be held 

constant, which we have chosen (arbitrarily) to be 227. That is, the data structure 
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associated with row 28 of any of the first four data structures (DS1-DS4) will be 

created and destroyed 227−8 = 219 times during the benchmark. Note that for data 
structures DS5-DS12, where the number of leaf elements being constructed per 

immediate element is increased by a constant factor (e.g., 27), a corresponding drop in 
iterations occurs, thereby keeping the benchmarks roughly comparable in terms of 

total number of leaf elements created (see below). 

Although this benchmark focuses, primarily, on the dimensions of Density (D) and 
Variation (V), discussed in section 5, the relatively short-lived nature of the objects in 

this benchmark – along with their extremely high Utilization (U) – facilitate measuring 
the benefit of allocations strategies, such as AS4, AS6, AS8, AS10, AS12, and AS14, 
that “wink-out” object memory. Finally note that, in each of the tables below, Green 

indicates substantially shorter run times whereas yellow, orange, and especially red 
indicate longer run times. 

 

7.1 DS1, vector<int> 

 

 
← global  → ← Monotonic → ← multipool → ← mono + multi → 

  

virtu
al 

  
← virtual → 

  
← virtual → 

  
← virtual → 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 1.2 1.9 0.3 0.4 0.4 0.4 0.8 1.0 0.9 1.1 0.6 0.7 0.8 0.7 

2
7 0.9 1.6 0.3 0.4 0.4 0.4 0.5 0.7 0.6 0.7 0.5 0.5 0.6 0.5 

2
8 0.8 1.0 0.2 0.4 0.4 0.3 0.4 0.6 0.5 0.6 0.3 0.5 0.5 0.5 

2
9 0.8 1.0 0.2 0.4 0.4 0.4 0.3 0.5 0.5 0.5 0.3 0.4 0.4 0.4 

2
10 0.7 0.9 0.2 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 

2
11 0.7 0.9 0.2 0.3 0.4 0.3 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 

2
12 0.7 0.9 0.2 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 

2
13 0.8 0.9 0.2 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 

2
14 0.8 0.9 0.2 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 

2
15 0.8 0.9 0.2 0.3 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 

2
16 0.8 0.9 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 0.2 0.4 0.4 0.4 

Table 3: DS1, vector<int> 

This first data structure (DS1) corresponds to an std::vector<int> ranging in size 

from 26 (top row) to 216 (bottom row). Recall that AS1 is the default (global) allocator 
accessed directly, and that AS2 is the default allocator accessed via pure-virtual 
functions in an abstract base class. The following three large blocks (four columns 

each) correspond to the three local allocator mechanisms: monotonic (AS3-AS6), 
multipool (AS7-AS10), and monotonic backing a multipool (AS11-AS14). The first pair 
of columns within each block (AS3-AS4, AS7-AS8, and AS11-AS12) correspond to 

direct access where the second pair (AS4-AS5, AS9-AS10, and AS13-AS14) 
correspond to access via an abstract base class.  Finally, the first member of each 

pair (AS3, AS5, AS7, AS9, AS11, and AS13) corresponds to the normal destruction 
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process, whereas the second member of each pair (AS4, AS6, AS8, AS10, AS12, and 
AS14) corresponds to “winking out” the memory, bypassing normal destruction. 

 

Note that each std::vector instance used in this benchmark is explicitly pre-sized 

(using reserve) to have exactly the needed capacity. Hence, the measurement data 

for vector<int> (DS1) involves only a single memory allocation/deallocation. Hence,  

for this first data structure, the allocation Density (D) was vanishingly small, and the 
requested memory-size Variation (V) was nil. Although the data for DS1 (above) is 

largely composed of test-apparatus artifacts, it exhibits recurring patterns across the 
various allocation strategies (columns) consistent with what is seen below.   

 
The first observation is that direct access is superior to access via a base class for 
global and local allocators in essentially all cases.  For the global allocator (AS1-AS2), 

this overhead ranged from ~20%-25% for larger vector sizes, but jumped sharply to 
~60%-70% for the two smallest ones shown (64 and 128 elements).  The clear 

winning strategy for each of the three local allocators was direct access without 
“winking out” memory (AS3, AS7, and AS11, respectively).  Any attempt to deviate 
from typical usage dramatically reduced runtime performance (~50%-80%). (A 

plausible conjecture here would be that the optimizer is tuned for the typical case.)  
 

When always “winking out” memory, accessing the allocator directly versus via a pure 
abstract base class generally made no statistically significant difference. Finally note 

that, except for the two smallest vectors (corresponding to the rows labeled 26 and 

27), all of the local allocation strategies (AS3-AS14) were – at least – close to twice as 
fast as directly accessing the default allocator (AS1).  It will turn out that this 

surprising observation can be repeated in each of the eleven remaining experiments 
in this benchmark, again in Benchmark III (except, of course, for the monotonic 
allocator alone (AS3-AS6)), and yet again in Benchmark IV. Note that Benchmark II 

deals entirely with locality of access, and therefore the runtime performance of the 
allocation and deallocation operations themselves is not relevant. 
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7.2 DS2, vector<string> 

 

 
← global  → ← Monotonic → ← multipool → ← mono + multi → 

  
virtual 

  
← virtual → 

  
← virtual → 

  
← virtual → 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 68.9 67.3 12.9 12.8 13.3 12.9 18.1 17.8 18.2 17.7 15.5 14.8 15.6 14.8 

2
7 68.8 68.2 12.8 12.9 13.2 12.9 20.6 20.2 20.6 20.4 15.1 14.3 15 14.4 

2
8 70.8 68.9 13.2 12.8 13.6 12.9 30.8 30.4 30.7 30.3 15.3 14.6 15.4 14.7 

2
9 73.1 71.2 13.5 13.5 13.9 13.5 38.2 37.6 38 37.3 15.9 15.1 15.9 15.1 

2
10 75.4 74.3 13.6 13.5 14 13.7 41.1 40.3 41.6 40.9 16 15.1 15.9 15 

2
11 76.9 74.5 13.6 13.5 14.1 13.6 43.9 43.2 43.7 42.6 16 15 16 15.1 

2
12 76.1 74.8 13.7 13.5 14 13.6 41.2 38.8 40.6 39.4 15.9 14.9 15.8 15 

2
13 76.1 74.8 13.6 13.6 14 13.6 41.4 39.2 41.3 39.9 15.9 15 15.8 14.9 

2
14 78.3 76.5 13.6 13.6 14 13.6 45.8 42.3 44.8 44 16.1 15.2 16.2 15.4 

2
15 90.4 91 20.2 20.1 20.5 20.1 62.2 58.7 62.2 58.2 26 25 26 24.9 

2
16 103 103 21.5 21.3 21.8 21.3 66.5 59.2 65.1 59.9 27 25.3 27.1 25.2 

Table 4: DS2, vector<string> 

For DS2, vector<string>, we insert 2n strings, where n again ranges from 26 (top 

row) to 216 (bottom row). Each string is of randomly chosen, uniformly distributed 

length (in the range [33..1000] bytes), its data is accessed (written via memset), and 

then the entire vector is destroyed, all of which is repeated for a total of 227-n 
iterations. Because each mutating operation in this benchmark involves an allocation 

or deallocation (and all other operations are few), the Density (D) is extremely high, 
and the Variation (V), due to the randomly chosen string lengths (greater than 32) is 
also quite high. 

Looking at the data for DS2 (above), we quickly observe that the choice of the 
underlying allocator mechanism used dominates. First we see that run time of using 
the default allocator (AS1-AS2), which is roughly the same irrespective of how it is 
accessed, is dramatically more (~75%-575%) than that of any of the local-allocator-
based strategies (AS3-AS14). Next we observe that using just a monotonic allocator 

(AS3-AS6) works best with respect to the run time of the global allocator (~20%, or 
5x), followed by a combination of monotonic and multipool allocators (~25%, or 4x), 

with a multipool allocator alone bringing up the rear (~60%, or 1.7x.), yet all are still 
significantly and consistently faster than the global allocator. We can also easily 
observe that there is an abrupt jump in run time (across the board) when the data 

structure size rises beyond 214 string elements, yet the relative performance of all of 

the allocation strategies remains roughly the same. Looking more closely, we can see 
that the effects of accessing each of the allocators directly, versus via a virtual-
function interface, makes little or no difference, although there is some slight 

recurring bias favoring direct access. Finally we note that “winking out” tends to 
somewhat reduce run time (~1%-9%) – the most pronounced being when a monotonic 



P0089R1: On Quantifying Memory-Allocator Strategies Page 17 of 57 

allocator is involved and, secondarily when the allocator is accessed via a virtual 
function. 

7.3 DS3, unordered_set<int> 

 

 
← global  → ← monotonic → ← multipool → ← mono + multi → 

  
virtual 

  
← virtual → 

  
← virtual → 

  
← virtual → 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 10.2 11 5.08 4.88 5.62 5.34 7.16 7.12 7.5 7.2 6.19 5.73 6.4 5.81 

2
7 12.5 13.3 5.04 4.81 5.68 5.24 6.37 6.22 6.71 6.31 5.8 5.46 6.08 5.5 

2
8 15.8 16.4 4.99 4.79 5.54 5.22 5.95 5.81 6.21 5.92 5.65 5.32 5.82 5.4 

2
9 18.3 19 5.01 4.8 5.53 5.18 5.78 5.56 6.01 5.7 5.56 5.2 5.76 5.21 

2
10 21.4 22.3 4.99 4.83 5.55 5.2 5.72 5.46 5.95 5.55 5.52 5.27 5.68 5.24 

2
11 25.5 26.1 4.98 4.81 5.56 5.16 5.67 5.44 5.86 5.65 5.53 5.23 5.69 5.26 

2
12 27.1 28 5.02 4.81 5.55 5.2 6.42 6.1 6.57 6.25 5.51 5.12 5.68 5.27 

2
13 27.9 28.8 5.03 4.81 5.59 5.21 7.34 6.91 7.46 7.03 5.61 5.16 5.71 5.24 

2
14 28.5 29 5.03 4.8 5.58 5.26 7.03 6.59 7.18 6.68 5.64 5.19 5.8 5.34 

2
15 28.3 29.2 5.03 4.78 5.56 5.28 7.11 6.65 7.2 6.83 5.68 5.17 5.78 5.24 

2
16 31.6 31.8 5.02 4.76 5.6 5.22 6.79 6.37 6.93 6.46 5.68 5.17 5.79 5.24 

Table 5: DS3, unordered_set<int> 

For DS3, unordered_map<int>, we repeated the initial experiment, DS1, on elements 

of type int, but this time substituting unordered_map for vector as the container 

type. Although the appended data does not itself involve memory allocation, creating 
each container node to hold it (absent bsl-style internal pooling, which was the case 
on this platform) does; hence, Density (D) for this data set is high, while Variation (V) 

is nil. 

Our first observation with respect to the DS3 data (above) is that run time using the 

global allocator (AS1-AS2) is always the largest, and grows substantially with 
(physical) data-structure size, while such growth doesn’t appear for any of the (local) 
allocation strategies (AS3-AS14). For this data structure, there is indication that 

access via a virtual function call (AS2, AS5-AS6, AS9-AS10, AS13-AS14) is typically 
somewhat slower (~1%-10%) than direct access (AS1, AS3-AS4, AS7-AS8, and AS11-

AS12); however, the DS3 data shows consistently that the “winking-out” feature (AS4, 
AS6, AS8, AS10, AS12, AS14) is a clear win (5%-10%) everywhere that it can be done. 
Finally, we note that monotonic (alone) AS3-AS6 is the best allocator choice, with 

direct access and “winking out” (AS4) being the overall best allocation strategy: We  
observe a runtime improvement (over the global allocator) approaching 700% for 
larger data structures (e.g., 216 nodes). 
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7.4 DS4, unordered_set<string>  

 
 
 
 

← global → ← monotonic → ← multipool → ← mono + multi → 

  
virtual 

  
← virtual → 

  
← virtual → 

  
← virtual → 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 103 120 52.2 51.9 52.4 51.2 58.4 57.6 59.7 58.9 55.1 54.1 56.9 55.3 

2
7 103 122 52.5 52.1 52.9 51.8 63.3 61.9 64.4 63.8 55.3 54 56.8 55.7 

2
8 109 128 53.6 53 53.7 52.6 76.3 74.7 77.4 75.9 56.5 54.9 57.9 56.7 

2
9 113 134 54.5 53.4 54.9 53 83.1 81.7 82.8 81.4 57.3 56.7 58 56.4 

2
10 119 143 56.6 54.9 56.9 54.6 87.6 85.9 88.1 86.5 58.8 56.9 59.2 57.3 

2
11 122 144 57 55.3 57.7 54.9 90.7 89.2 90.7 88.4 59.4 57.6 60 57.8 

2
12 122 146 57.9 55.9 58.4 55.7 93.2 90.7 93.2 90.7 60.5 58.3 60.7 58.4 

2
13 124 148 58.2 56.3 58.5 55.9 95.1 91.5 94.3 92 60.5 58.2 60.7 58.7 

2
14 139 166 59.1 57.3 59.6 56.8 98.5 94.1 97.8 95.8 61.8 59.6 62.2 60 

2
15 176 211 66 62.7 66.2 62.4 121 115 122 115 76.5 73.3 76.8 74 

2
16 196 232 78.5 72 79.1 71 137 127 136 127 87.1 82.4 87.8 82.9 

Table 6: DS4, unordered_set<string> 

Next, we again used an unordered_set as our container, but this time, like DS2, 

used, as elements, strings of uniformly distributed random length (again in the range 

of 33 to 1000 to thwart the short-string optimization). This time we have a high 
Density (D) with moderately high (unimodal) Variation (V).  
 

The DS4 results largely mirror those of DS3, but with some notable differences. The 
run time for the global allocator (AS1-AS2) is again substantially larger than that of 

any local allocator, and grows aggressively with increasing data structure size. On the 
other hand, that same relative growth is this time reflected in each of the other (local) 
allocation strategies (AS3-AS12). There is some tendency for access via a virtual-

function interface to be slower than direct access, but much less so: ~1% for all local 
allocators compared to ~20% for the global one. For this data structure, we again see 
that the monotonic allocator (AS3-AS6) is clearly optimal, and that “winking out” is a 

consistent win (~1%-10%) across all (local) allocators, the relative runtime benefit of 
which tends to grow quickly with increasing data structure size. Finally, using a 

monotonic allocator (alone) and employing “winking out” (AS4 and AS6) were fastest 
at roughly 2x better than the default global allocator (AS1 and AS2).  Note that access 
via a virtual function (AS6) consistently won out (~2%-4%) over direct access (AS4). 

For the remaining eight benchmark scenarios (DS5 – DS8 and DS9 – DS12), each of 
the (composite) elements correspond, respectively, to the four preceding 
configurations (DS1 – DS4), and were chosen (arbitrarily) to have 27 =128 leaf 

elements (of type either int or std::string). Each outer container again has 2n 

(composite) elements (each of those having 128 leaf elements), and is constructed 

and destroyed 227-7-n times, for a total of 227 leaf-element insertions, as was the case 
for DS1-DS4. In this way, we keep the total number of operations involving leaf 
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objects across all 12 distinct data structures (DS1 – DS12) in this benchmark 
comparable (section 6). 

7.5 DS5, vector<vector<int>> 

 
 ← global  → ← monotonic → ← multipool → ← mono + multi → 

  
virtual 

  
← virtual → 

  
← virtual → 

  
← virtual → 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 0.97 1.00 0.19 0.13 0.20 0.17 0.24 0.20 0.20 0.21 0.21 0.19 0.20 0.21 

2
7 0.96 0.96 0.22 0.16 0.18 0.14 0.21 0.20 0.19 0.20 0.16 0.20 0.21 0.19 

2
8 0.99 1.00 0.19 0.13 0.18 0.17 0.27 0.30 0.27 0.29 0.19 0.19 0.20 0.21 

2
9 0.99 1.02 0.19 0.13 0.18 0.14 0.36 0.33 0.33 0.36 0.19 0.15 0.20 0.20 

2
10 1.01 1.04 0.19 0.18 0.19 0.14 0.37 0.36 0.36 0.38 0.22 0.19 0.20 0.22 

2
11 1.02 1.05 0.19 0.13 0.19 0.14 0.36 0.35 0.36 0.36 0.20 0.15 0.20 0.22 

2
12 1.03 1.05 0.19 0.19 0.22 0.18 0.33 0.36 0.32 0.32 0.20 0.21 0.20 0.19 

2
13 1.02 1.05 0.19 0.13 0.22 0.19 0.35 0.35 0.34 0.33 0.20 0.21 0.22 0.19 

2
14 1.05 1.10 0.19 0.17 0.19 0.16 0.38 0.36 0.38 0.37 0.17 0.19 0.20 0.19 

2
15 1.13 1.18 0.22 0.19 0.19 0.16 0.50 0.45 0.47 0.45 0.21 0.21 0.17 0.18 

2
16 1.29 1.32 0.22 0.19 0.20 0.17 0.54 0.47 0.52 0.50 0.22 0.21 0.22 0.21 

Table 7: DS5, vector<vector<int>> 

This first composite data structure, vector<vector<int>> (DS5) has a low 

allocation Density (D) and a nil requested memory-size Variation (V). 

The data for DS5 suggest that (1) every local allocator strategy considered is far, far 
better (~300%-700%) than the global one (AS1-AS2), (2) any runtime differences 

between virtual-function interface versus direct access are not statistically 
significant, (3) “winking out” this data structure is typically a relative win (~10%-
30%), especially for the most runtime-performant allocator in these tests, namely 

monotonic (AS3-AS6).  In passing, we also observe an across-the-board “platform 
boundary” in the form of an “elbow” to increasing run time as the size of the outer 
vector exceeds 214 composite elements (last two rows).  Note that this increase is per 
leaf element inserted as precisely the same number of leaf elements are inserted for 
each row of each table corresponding to each of the twelve experiments in this 

benchmark. 
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7.6 DS6, vector<vector<string>> 

 
 ← global  → ← monotonic → ← multipool → ← mono + multi → 

  
virtual 

  
← virtual → 

  
← virtual → 

  
← virtual → 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 72.6 72.7 9.06 9.06 9.36 8.98 41.7 40 41.2 39.2 11.2 10.3 11.2 10.3 

2
7 74.9 76 8.92 8.98 9.29 8.89 46.5 44.8 46 43 11.4 11 12.7 10.3 

2
8 85.5 85.2 17.1 17.4 17.3 16.9 62.9 58.4 61.3 58.4 22.8 22.5 23.3 22 

2
9 96.4 96.3 18.4 18.7 19 18.4 66.2 59 64.7 59.3 24.2 22.7 24.5 22.3 

2
10 102 102 18.7 18.6 19.1 18.6 67 59.6 65.9 59 24.8 22.5 24.8 22.5 

2
11 102 101 18.4 18.7 19.2 18.2 62.4 55 61.3 54.2 24.8 22.6 25.1 22.3 

2
12 104 103 18.5 18.7 19.4 18.3 61.6 54.2 60.5 53.4 24.9 22.7 25.1 22.3 

2
13 103 104 18.8 18.4 19 18.6 61.8 53.4 59.9 53.5 25.3 22.6 25.1 22.6 

2
14 97.1 96.3 19.2 19.6 20.1 19.2 60.6 53.7 60.2 52.9 29 26.7 29.2 26.3 

2
15 88.1 88.7 23.4 23.2 23.7 23.4 62.6 54.4 60.9 53.9 33.4 30.6 33.2 30.7 

2
16 76.7 76.7 25 25.3 25.8 25 63.4 54.8 62.9 54.3 35 32.8 35.5 32.4 

Table 8: DS6, vector<vector<string>> 

Next we consider vector<vector<string>> (DS6), which has both a high allocation 

Density (D) and a high Variation (V). 

The data for DS6 (above) suggests that the default global allocator (AS1-AS2) is the 
least performant choice, and that direct versus virtual-function access makes no 

significant difference. The monotonic allocator (AS3-AS6) again proves to be the best 
allocator choice, but “winking out” doesn’t seem to have much of a (consistent) effect 

for this allocator.  Yet “winking out” clearly does exhibit a significant improvement 
(~5%-15%) when the monotonic allocator is used to back a multipool allocator (AS11-
AS14), and especially when used alone (AS3-AS6). We also note that the global 

allocator (unlike all local allocators) exibited a reduction in run time as the outer 

data-structure size increased beyond 213 composite (vector<string>) elements.  

   

Note that there appears to be an across-the-board “platform boundary” when the 

number of (composite) elements increases from 27 to 28 where all allocation times –  
especially the local ones, and particularly those involving a multipool – jump abruptly 

(~12%-100%). A second “platform boundary” occurs for just the global allocator (AS1-

AS2) when the number of (composite) elements increases from 29 to 210, where the 

(per-element) runtime cost plateaus (see rows 29-210). Yet a third “platform boundary” 
occurs for the 12 local allocator strategies (AS3-AS14) when the number of composite 

elements increases from 213 and 214, where the (per-element) cost begins to 
accelerate,  and – at the same time – the (per-element) global allocator run times also 

begin to decrease sharply (see rows 213-216). 

 



P0089R1: On Quantifying Memory-Allocator Strategies Page 21 of 57 

7.7 DS7, vector<unordered_set<int>> 

 

 
← global  → ← monotonic → ← multipool → ← mono + multi → 

  
virtual 

  
← virtual → 

  
← virtual → 

  
← virtual → 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 28.8 28.7 2.97 2.69 3.43 2.98 4.89 4.37 5.33 4.73 3.21 2.65 3.64 3.05 

2
7 28.3 28.5 2.97 2.66 3.36 2.95 4.99 4.44 5.43 4.91 3.2 2.62 3.61 2.97 

2
8 28.2 28.1 2.94 2.62 3.33 2.92 5.02 4.53 5.53 4.97 3.23 2.6 3.6 3.01 

2
9 31.8 31.7 2.92 2.61 3.33 2.93 5.08 4.54 5.52 4.92 3.16 2.58 3.58 2.96 

2
10 46.6 47.2 2.92 2.61 3.33 2.89 5.07 4.49 5.48 4.93 3.15 2.58 3.57 2.98 

2
11 54.3 54.1 2.92 2.61 3.33 2.89 5.63 4.75 5.88 5.37 3.16 2.6 3.61 2.98 

2
12 54.7 54.8 2.96 2.66 3.34 2.91 6.9 5.79 7.28 6.23 4.15 3.05 4.58 3.4 

2
13 55.1 56 3.51 2.95 3.77 3.21 7.01 6.03 7.47 6.35 4.27 3.08 4.65 3.48 

2
14 51 50.9 3.53 2.99 3.81 3.25 7.08 6 7.47 6.46 4.29 3.14 4.71 3.47 

2
15 44.8 45.4 3.58 3.01 3.83 3.26 7.07 6.04 7.55 6.52 4.35 3.14 4.75 3.53 

2
16 38.2 38.2 3.58 3.06 3.86 3.3 7.14 6.11 7.58 6.47 4.37 3.18 4.8 3.54 

Table 9: DS7, vector<unordered_set<int>> 

Then we have vector<unordered_set<int>> (DS7), which has a fairly high 

allocation Density (D) and nil Variation (V). 

The data for DS7 (above) shows that the default global allocator (AS1-AS2) is again, 
this time by far, the least performant choice, and that direct versus virtual-function 

access makes no significant difference for the global allocator, but does have a 
noticable effect for all local allocators (~5%-15%). The best allocator choice in this 

scenario is again the monotonic allocator (AS3-AS6) but this time by a factor of 
almost 20x over the default. The second most striking observation in this data is the 
across-the-board improvement (~5%-35%) (for local allocators) of “winking out” the 

data structure, especially for larger physical sizes, with the largest percentage benefit 
– by far – coming from the composite allocator (AS11-AS14).  Notice that, just like 

DS6, the global allocator’s (per-leaf element) run times peak and then recede, 

whereas the local allocator times tend to grow monotonically and, except between 211 

to 213, very slowly. 
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7.8 DS8, vector<unordered_set<string>> 

 
← global  → ← monotonic → ← multipool → ← mono + multi → 

  
virtual 

  
← virtual → 

  
← virtual → 

  
← virtual → 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 114 116 26 23.8 26.3 24 56.2 54.7 56.9 54.6 27.5 25.8 27.9 26 

2
7 123 130 26.5 24.4 25.7 23.5 62.7 60.1 62.7 60.5 27.5 26.3 28.2 26.1 

2
8 162 171 31.7 27.3 32.2 27.8 78 74.2 79.2 73.9 35 32 35.5 32.5 

2
9 175 181 36.8 28 38.1 28 81.7 74.1 81.2 74.9 36.3 32.1 37.2 32.1 

2
10 176 183 40 28.9 37.4 28.2 82.1 74.5 82.1 74.7 36.9 32 37.4 32.2 

2
11 176 183 39.3 28 37.3 28 81.4 74.4 82 74.3 36.9 32.1 37.8 32.1 

2
12 179 185 39.4 28 37.1 28 81.8 74.1 81.6 74.4 37 32 37.8 32.2 

2
13 173 178 39.6 27.9 36.9 28.2 81.8 73.6 81.5 74.3 37.2 32 37.8 32.4 

2
14 157 160 41 29.9 38.8 29.9 81.5 74.1 82.2 74 44 39.3 45.1 39.2 

2
15 122 131 47.6 35.8 44.8 36.2 85.2 75.5 83.7 76.1 50.5 45.2 51 45.5 

2
16 95.4 106 51.4 40.5 48.1 38.9 84.8 76.2 88.7 75.9 53.1 48.5 54.8 48.2 

Table 10: DS8, vector<unordered_set<string>> 

Now we consider the final data structure in this second set of four employing 

std::vector as the outermost container, vector<unordered_set<string>> (DS8), 

which has a high allocation Density (D) and a moderately high (unimodal) memory-
size Variation (V). 

 
The above data for DS8 again shows that the global allocator (AS1-AS2) is the least 
performant, and that the monotonic allocator by itself (AS3-AS6) is the best choice. 

Access via a virtual-function-based interface (when compared to direct access) seems 
to have a consistant overhead for the global allocator (~10%), but not nearly so for 
the local allocators, especially the monotonic allocator (AS3-AS6), for which run time 

using a pure abstract base class for data structures having 210 or more (composite) 
elements was consistently better (~5-7%). “Winking out” is again a relative win (~5%-
25%) across all local allocators. Note that the global-allocator times (AS1-AS2), much 

like DS6 and DS7, peak and then recede with data structure size, where as all of the 

local-allocator times (AS3-AS14) above 27 elements are largely monotonically non-

decreasing. 
 

We pause here briefly to mention that the detailed raw data presented throughout 
this paper reflects execution on just a single platform. In preparations for the first 
revision of this paper (P0089R0), however, we ran these benchmarks using multiple 

compilers on multiple machine types. An interesting result, the details of which can 
be viewed online, is that, for the Clang compiler (only), the runtime overhead of 
accessing via an abstract base class on the hardware platforms we tested was two to 

three times that of using an allocator directly, but only for the previous four (out of 

twelve) data structures (DS5-DS8), which have an std::vector at the top-level.  
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We now turn to consider the third and final set of four data structures, each having 

instead an std::unordered_set as the outer-most container. 

 

7.9 DS9, unordered_set<vector<int>> 

 

 
← global  → ← monotonic → ← multipool → ← mono + multi → 

  
virtual 

  
← virtual → 

  
← virtual → 

  
← virtual → 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 

AS1
1 AS12 AS13 AS14 

2
6 0.97 0.94 0.23 0.19 0.24 0.21 0.26 0.27 0.30 0.26 0.25 0.26 0.25 0.24 

2
7 1.40 1.43 0.22 0.21 0.22 0.19 0.24 0.26 0.25 0.27 0.24 0.26 0.24 0.24 

2
8 1.35 1.39 0.25 0.22 0.24 0.23 0.30 0.35 0.34 0.33 0.24 0.23 0.25 0.24 

2
9 1.29 1.32 0.22 0.18 0.22 0.17 0.37 0.38 0.37 0.36 0.23 0.22 0.19 0.22 

2
10 1.32 1.38 0.24 0.22 0.22 0.19 0.41 0.39 0.42 0.39 0.23 0.24 0.23 0.22 

2
11 1.34 1.36 0.23 0.21 0.22 0.17 0.44 0.42 0.43 0.41 0.23 0.23 0.25 0.22 

2
12 1.34 1.41 0.22 0.20 0.22 0.16 0.46 0.42 0.45 0.43 0.23 0.17 0.27 0.22 

2
13 1.46 1.54 0.22 0.18 0.22 0.16 0.48 0.49 0.49 0.48 0.23 0.21 0.25 0.21 

2
14 1.53 1.61 0.22 0.17 0.22 0.18 0.43 0.42 0.45 0.41 0.24 0.22 0.24 0.22 

2
15 1.61 1.76 0.25 0.21 0.24 0.19 0.50 0.49 0.50 0.49 0.24 0.18 0.23 0.21 

2
16 1.79 1.92 0.28 0.25 0.29 0.24 0.55 0.51 0.56 0.55 0.30 0.23 0.32 0.24 

Table 11: DS9, unordered_set<vector<int>> 

 

The first data structure in our final group of four, unordered_set<vector<int>>,  

has a high allocation Density (D), and a nil Variation (V). 

The data for DS9 (above) again suggest that the global allocator is clearly the least 

effective choice (~300%-~900%), and that the relative overhead of access via a virtual-
function interface (compared to direct access) is quite small (~1%-5%) for the global 

allocator, and non-existent for all local allocators. For this data structure, the best 
allocator choice again appears to be monotonic (AS3-AS6), however the composite 
allocator – i.e. a multipool backed by a monotonic allocator (AS11-AS14) is a very 

close second. Note that the substantial (per-leaf-element) increase in run time (with 
respect to increasing data-structure size) for the global allocator (AS1-AS2) is not 

reflected in local allocators employing a monotonic allocator (AS3-6, AS11-AS14).  For 
larger data-structure sizes, there was also a consistent benefit to “winking out” local 
memory (~2%-30%), especially where a monotonic allocator was involved. 
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7.10 DS10, unordered_set<vector<string>> 

 
 

← global  → ← monotonic → ← multipool → ← mono + multi → 

  virtual   ← virtual →   ← virtual →   ← virtual → 

    (wink)  (wink)  (wink)  (wink)  (wink)  (wink) 
data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 

AS1
3 AS14 

2
6 73 73.2 9.41 9.39 9.34 8.97 41.7 39.7 41.1 39.3 11.2 10.4 11.2 10.3 

2
7 74.7 75.3 9.32 9.34 9.24 8.87 46.2 43.7 45.3 44.2 12.7 10.6 11.4 10.8 

2
8 83.1 85.4 18 17.3 16.9 17.2 62.2 58.9 61.9 57.6 23.2 22.3 23.1 22.4 

2
9 91.4 94.9 19 19 18.8 18.6 65 59.9 64.4 58.9 24.3 22.6 24.1 22.6 

2
10 98.2 101 19.2 18.9 19.1 18.6 66.5 59.7 65.4 59.1 24.8 22.6 24.6 22.7 

2
11 99.5 101 19 19.1 19.3 18.4 66.9 59.5 66.1 58.7 24.9 22.7 25.1 22.5 

2
12 102 105 19.4 19 19.2 18.8 67 58.9 65.8 59.4 25.3 22.6 25.1 22.7 

2
13 103 104 19 19.2 19.4 18.4 66.7 59.2 66.2 58.2 25.3 22.9 25.5 22.6 

2
14 95.8 97.2 19.8 20 20.3 19.3 62.8 55.6 61.9 54.3 29.2 26.8 29.6 26.5 

2
15 87.1 89.8 24 23.7 24 23.5 64.3 55 61.9 54.9 33.6 30.8 33.5 31 

2
16 77.1 78.2 25.6 25.7 26 25.1 63.9 55.5 63.3 54.5 35.3 33 35.7 32.6 

Table 12: DS10, unordered_set<vector<string>> 

Next we consider unordered_set<vector<string>> (DS10), which has a high 

allocation Density (D) and a moderately high (unimodal) memory-size Variation (V). 

The results for DS10, unordered_set<vector<string>> (above) are, unsurprisingly, 

not dissimilar for those of DS8, vector<unordered_set<string>>. The global 

allocator is yet again the least efficient choice, and the best choice yet again appears 
to be the monotonic allocator alone (~300%-600%), with the overhead of non-direct 
access minimal: ~1%-3% for the global allocator (AS1-AS2), and non-existent for all 

local allocators (AS3-AS14). The technique of “winking out” the data structure is not 
as consistant a win for the monotonic allocator alone (AS3-AS6) as it was in DS8, but 

continues to be so for the other two (less runtime performant) local allocator 
mechanisms (AS7-AS14).  
 

Interestingly, as with DS8, there appears to be an across-the-board “platform 

boundary” (i.e., where run times differ sharply) for data structures between 27 and 28 
(composite) elements, and another one, more closely tied to the monotonic allocators 

(AS3-AS6, AS11-AS14) between 214 and 215 elements. Global allocator times (AS1-
AS2) again peak and then recede, whereas all local allocator times (AS3-AS14), for 

systems above 27 composite elements, are again – for the most part – monotonically 
increasing. 
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7.11 DS11, unordered_set<unordered_set<int>> 

 

 
← global  → ← monotonic → ← multipool → ← mono + multi → 

  
virtual 

  
← virtual → 

  
← virtual → 

  
← virtual → 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 

AS1
3 AS14 

2
6 28.7 29.1 3.06 2.75 3.55 3.14 4.96 4.4 5.41 4.84 3.24 2.73 3.73 3.15 

2
7 29.1 29 3.02 2.71 3.47 3.06 5.03 4.52 5.49 4.89 3.23 2.66 3.68 3.08 

2
8 28.8 29.1 3 2.68 3.45 3.04 5.18 4.55 5.57 4.98 3.24 2.66 3.65 3.06 

2
9 31.8 32.3 2.99 2.64 3.43 2.98 5.12 4.54 5.55 4.95 3.22 2.6 3.65 2.99 

2
10 46.5 47.1 2.95 2.65 3.4 2.99 5.13 4.57 5.62 4.96 3.21 2.58 3.62 2.97 

2
11 53.3 53.5 2.94 2.64 3.43 2.96 5.58 4.84 5.75 5.39 3.2 2.63 3.67 3.01 

2
12 54.6 55 3.02 2.66 3.43 2.98 6.47 5.94 6.99 6.28 3.83 3 4.21 3.38 

2
13 56.5 56.5 3.38 2.98 3.72 3.26 7.04 6.04 7.48 6.45 4.15 3.03 4.58 3.39 

2
14 52.1 52.2 3.5 2.99 3.88 3.25 7.35 6.07 7.83 6.59 4.33 3.05 4.76 3.38 

2
15 45.7 46.2 3.62 2.99 3.95 3.27 7.7 6.39 8.11 6.83 4.43 3.06 4.81 3.44 

2
16 39.3 39.3 3.72 3.05 4.03 3.31 7.57 6.3 8.09 6.61 4.52 3.1 4.92 3.45 

Table 13: DS11, unordered_set<unordered_set<int>> 

We next consider unordered_set<unordered_set<int>> (DS11), which has a high 

allocation Density (D) and a fairly low (entirely bimodal) memory-size Variation (V). 

The data for DS11 (above) strongly suggest – even more so than any other data set 
considered in this benchmark – that the global allocator is by far the least effective 

choice: ~10x-20x slower when compared to the best ones, which in this case is either 
a monotonic allocator alone (AS3-AS6), or possibly one backing a multipool allocator 

(AS11-AS14), that “winks out” allocated memory, and provides direct access to the 
allocator, as opposed to via a base class (i.e., AS4 or AS12). The relative overhead of 
access via a virtual-function interface (compared to direct access) is negligible (~0%-

1%) for the global allocator (AS1-AS2), and somewhat larger (~5%-10%) for all the 
local allocators (AS3-AS14) – at least on a percentage basis; the maximum absolute 

runtime overhead, however, remains roughly the same at ~0.5s. The multipool 
allocator alone (AS7-AS10) was again less effective (~2x) than the other local allocator 
strategies (AS7-AS14), but still a considerable improvement (~5x-10x) over the global 

one (AS1-AS2). The relative advantage of “winking out” memory was significant 
across the board (~10%-45%), especially when a monotonic allocator was involved, 
and the composite allocator (AS11-AS14) in particular. 

 
We note that the global allocator (AS1-AS2) seemed to hit a “platform boundary” 

between 29 and 211 (composite) elements, where the (per-leaf-element) run time 

increased dramatically (~50%), before eventually receding (see rows 213-216).  This 
anomaly did not appear to be reflected in any of the local allocators (AS3-AS14), 
although there did appear to a fairly abrupt increase in run time (~10%-%25) for all 

local allocators, when the data size increased from 211 to 213 (composite) elements. 
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7.12 DS12, unordered_set<unordered_set<string>> 

 

 
← global  → ← monotonic → ← multipool → ← mono + multi → 

  
virtual 

  
← virtual → 

  
← virtual → 

  
← virtual → 

    
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

 
(wink) 

data 
size AS1 AS2 AS3 AS4 AS5 AS6 AS7 AS8 AS9 AS10 AS11 AS12 AS13 AS14 

2
6 121 125 25.9 23.7 26.1 23.9 56.3 54.5 56.7 54.7 27.4 25.8 27.8 26 

2
7 141 145 26.4 24.3 25.6 23.4 62.1 59.6 62.5 60 27.9 25.8 28.3 25.8 

2
8 165 173 31.5 27.3 32.2 27.7 77.4 73.7 77.8 74.2 34.8 31.9 35.6 32.2 

2
9 171 178 35.9 27.6 34.4 27.8 80 73.7 79.7 74.6 35.7 32 36.5 31.9 

2
10 177 182 38.7 28.6 35.6 27.9 81.1 74.3 81.3 74.3 36.7 31.8 37.1 32 

2
11 177 183 38.2 27.6 36.2 27.7 81.3 74.3 82.2 74.1 37 32 37.8 31.9 

2
12 179 186 39.1 27.7 36.5 28 81.6 73.5 81.5 74.1 37.3 31.8 37.9 32.1 

2
13 165 169 39 27.8 36.7 27.8 81.3 73.9 82.8 73.5 37.3 32.1 38.3 32.1 

2
14 153 156 40.9 29.6 38.7 29.6 81.5 74.1 82.4 73.7 44.4 39.2 45.4 39.1 

2
15 122 131 47.6 35.7 44.8 36.1 85.7 75.2 83.9 75.4 51 45.1 51.4 45.5 

2
16 100 111 51.4 40.4 48 38.8 85.1 75.5 86.2 75.6 53.6 48.4 54.6 48.2 

Table 14: DS12, unordered_set<unordered_set<string>> 

In this final data structure, we consider unordered_set<unordered_set<string>> 

(DS12), which has a very high allocation Density (D) and a moderately low (bimodal) 
Variation (V). 

The data for DS12 (above) again suggests that the global allocator (AS1-AS2) is the 

least runtime performant choice (~300% to 500%) compared with the most 
performant one, monotonic (AS3-AS6), but not nearly as much so as in the preceding 

data structure, DS11, where the leaf component was instead of type int. There 

seems to be a “platform boundary” between 27 and 28 (composite) elements, where 
run time jumps abruptly (~15%-25%) for all allocators. The overhead of accessing 
through an abstract base class (versus directly) for the global allocator (AS1-AS2) was 

generally minimal (~1%-3%), but increased (to ~10%) above another apparent across-

the-board “platform boundary” between 214 to 215 (composite) elements, in which the 

run time of the global allocator decreased by ~20%, while the run times of all local 
allocators increased by roughly the same percentage. This unusual trend continued 

between 215 to 216 elements.  

 
The overhead for accessing local allocators via a base class varied, sometimes more, 
sometimes less, but, for the monotonic allocator alone (AS3-AS6) for data structures 

having at least 29 elements, the “overhead” was consistently negative (~5%-10%) – 
that is, access via a virtual function was typically faster than direct access.  Finally 

we note that, for all local allocators, “winking out” for this particular data structure 
was always a very significant win: ~10%-40%.  (Due to unexpected results observed 
for this specific data structure, we nominate it – in particular – as a prime candidate 

for further study.) 
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The DS9-DS12 experiments show similar relative performance to DS5-DS8 for the 
corresponding allocation strategies. Again, multipool allocators perform significantly 

better when the leaf-most element type is int rather than string, while the 

monotonic allocator retains most of its gains in such cases. 

We now make several general empirical observations deliberately avoiding any (naïve) 

attempts at trying to explain their underlying causes. The most obvious result, 
looking at the heat-mapped charts, is that monotonic allocators are always a big win, 

generally giving a speedup in the range of 4x-20x. The relative cost of direct versus 
abstract-base-class access to allocators (where it exists at all) appears to be mostly in 
the ~2%-10% range. The multipool allocator appears to provide much less of a gain, 

although still observable, which is generally in the ~20%-100% range.  Note, however, 
that the multipool allocator seems competitive with the monotonic allocator for the 

data structures incorporating unordered_set<int> (DS7 and DS11), generally 

offering more than a 5x speedup. 

Similarly, the “wink-out” strategy generally offers a modest, but predictable win in 

most cases, with a particular affinity for combining some form of monotonic allocator 

with containers incorporating the composite element unordered_set<T>.  When the 

type of T is string, best performance is achieved with a simple monotonic allocator, 

but when the type of T is int, best performance is achieved with a monotonic 

allocator backing a multipool allocator.  In the two cases of data structures 

incorporating the composite element vector<string> (DS6 and DS10) with a simple 

monotonic allocator (AS3-AS6), however, the “wink-out” strategy seems to have no 
effect, neither positive nor negative. 

As previously stated (section 7.8), looking at additional data (available online) from 

runs using a variety of compilers, operating systems, and hardware platforms, there 

is an odd effect for Clang specific to data structures DS5-DS8, vectors of containers. 

The time taken to run the benchmark for allocation via an abstract base class is two 

to three times that of using an allocator directly, although the monotonic allocator 
dispatched through an abstract base class still handily outperforms the standard 

(default) allocator by around a factor of 5x-10x (rather than by a factor of x20). N.B., 
we speculate that the likely effect is that other compilers are doing a better job at 
devirtualization in these examples. We also note that, at the time these experiments 

were conducted, devirtualization was an active topic on the Clang development lists. 

A second outlier is the Microsoft platform, which shows a much lower benefit than 

the Unix platforms from applying custom allocation strategies (AS3-AS14), rarely 
showing more than a doubling of performance. Similarly, data structures featuring 

containers of int appear to pay a runtime cost of ~50%-100% for allocating through 

an abstract base class compared to using an allocator directly, while data structures 

of containers of string show a runtime overhead of around 5%.  Comparing the run 

time for Microsoft Visual C++ 2015 with the Linux-Intel results, the (containers-of-

)containers-of-string experiments complete in a similar time, while the (containers-

of-)containers-of-int experiments complete in around ~10%-25% of the time when 

run on Windows.  The final oddity on Windows is that, for the largest experiment 
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sizes, unless a monotonic allocator is used, the last 3 or 4 rows of many of the tables 
either fail to complete, or suddenly become excessively expensive, such as taking an 

hour to run rather than <30 seconds. 

Comparing across platforms, the Linux/Power7 results show similar (relative) 

performance across the benchmarks when using the same compiler.  However, the 
gcc results for the standard (default) allocator are substantially (3x-4x) slower for 

vector<int> and containers of vector<int> (DS1, DS5, and DS9).  This specific 

result is not observed when using Clang.  However, the poor results for Clang when 
allocating via a virtual-function interface are even more pronounced on the Power7 
platform. 

8 Benchmark II: Variation in Locality (Long Running) 

Perhaps the most valuable aspects of local (“arena”) allocators is that, besides 
speeding up short-running programs, as demonstrated in the previous benchmark, 

they keep long–running ones from slowing down over time. All global allocators 
eventually exhibit diffusion – i.e., memory initially dispensed and therefore 

(coincidentally) accessed contiguously, over time, ceases to remain so, hence runtime 
performance invariably degrades. This form of degradation has little to do with the 
runtime performance of the allocator used, but rather is endemic to the program 

itself as well as the underlying computer platform, which invariably thrives on locality 
of reference. 

 
N.B., diffusion should not be confused with fragmentation – an entirely different 

phenomenon pertaining solely to (“coalescing”) allocators (not covered in this paper) 
where initially large chunks of contiguous memory decay into many smaller (non-
adjacent) ones, thereby precluding larger ones from subsequently being allocated – 

even though there is sufficient total memory available to accommodate the request. 
Substituting a pooling allocator, such as the one used in this benchmark (AS7), is a 

well-known solution to the fragmentation problems that might otherwise threaten 
long-running mission-critical systems. 
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To demonstrate this common degradation phenomenon resulting from memory 

diffusion across subsystems over time, we created a simple program that acts like a 
long-running time-multiplexed system, similar in nature to one employing 

Boost.Asio. Given that this experiment is all about access Locality (L) in a long-

running program, the allocation Density (D) approaches (is effectively) zero, and the 
memory-size Variation (V), though entirely irrelevant here, happens to be nil as well. 

The overall system, G, will consist of an std::vector<Subsystem*> of size k, where 

each subsystem, S, is modeled as an std::list<int> initially having |S| links; 

hence, |G| = k * |S|, and the number of subsystems, k, will be the (integral) 

ratio |G|/|S|. At the start of the program, each subsystem, S, is new-ed in turn, and, 

when constructed, populates itself with the specified |S| links. The system, G, is now 

in its initial state. 

The first experiment is geared towards identifying opportunities for the use of 
allocators – specifically a multipool-allocator-based strategy (e.g., AS7 or AS9) – 

before actually plugging one in. To that end, we want to contrast the runtime 
performance of subsystems where memory has been allocated contiguously and then 
accessed immediately, and where it has been first “shuffled” (which inevitably occurs 

over time in practice) to be less so, and then similarly accessed. We therefore define a 

parameter, sf, that represents the shuffle factor.  

Specifying a shuffle factor of 0 leaves the system in its initial sate. A shuffle factor of 

one (sf = 1) means that each S (linked list) is visited (in turn) and popped exactly 

once (from the front), immediately after which a new value is pushed onto (the back 

of) the list in some randomly chosen S in G. After each S has been visited, this 

traversal process is repeated until each element in each list has been popped exactly 

once – i.e., a total of sf * |G| = 1 * |G| pop/push operation pairs has occurred. A 

shuffle factor of two means that the process is repeated until sf * |G| = 2 * |G| 

pop/push operation pairs have been executed (though there is no longer any 

 

   G: 

S S S S S S S . . . S 

Physical System Size |G| = k * |S| 

k 
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assurance that all of the lists still have the same length that they had initially). The 
larger the shuffle factor, the more non-contiguous and “random” the memory 

associated with each subsystem becomes. 

In order to determine the extent to which local memory allocators might be useful – 

prior to actually installing them – we wanted to measure the effect on memory access 
times within each subsystem as we vary the amount of shuffling. To do that, we will 
want to iterate through the linked list in each subsystem some number of times, 

accessing each integer datum in turn, before moving to the next subsystem. An 

access factor, af, of two denotes two complete passes through a subsystem’s linked 

list before moving to the next one in the vector of subsystems comprised by G. While 

we are at it, we will also want to vary the number subsystems, k, and, inversely, 

subsystem-size, |S|, so as to keep the overall physical system size, |G|, constant. 

Keep in mind that this first experiment was done entirely using the default (global) 

allocator (AS0). 
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0 1 2 3 4 5 6 7 8 9 

107 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

106 1.0 11.4 15.6 16.2 16.0 15.8 15.6 15.8 15.7 16.2 

105 1.0 7.7 7.8 7.8 7.8 8.0 8.0 8.0 8.0 8.2 

104 1.0 8.0 8.1 8.1 8.1 7.9 8.2 8.2 8.3 8.2 

103 1.0 5.4 5.4 5.4 5.4 5.7 5.3 5.4 5.3 5.4 

102 1.0 3.8 4.0 4.1 4.2 4.1 4.2 4.3 4.2 4.2 

101 1.0 3.4 3.6 3.6 3.6 3.6 3.6 3.9 3.6 3.6 

100 1.0 4.7 5.7 5.8 5.7 5.8 5.8 5.7 5.5 5.6 

Table 15: Shuffle Effects 
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The graph and corresponding table (above) illustrate the effect of shuffling on an 
overall problem size of 107 links. Each row (back to front in the graph) corresponds to 

a different system size, where 107 (top row) represents a single subsystem of size 107 

links, and 100 (bottom row) represents 107subsystems, each having (on average) just 
a single link. The columns (left to right in the graph) represent the number of times 

each linked list (on average) was shuffled.  

The element values in the table – and corresponding height of the graph at the 

various (shuffle factor and subsystem size) coordinates, represents the ratio of access 
times – after shuffle / before shuffle – once the shuffle times themselves (which 
should be the same for both) have been, respectively, subtracted. For this initial 

experiment, the access factor, af, was held constant at 10. Again, keep in mind that 

all memory accesses so far in this benchmark are via the default allocator (AS0). It 
will turn out (below) that what’s important is whether the memory is accessed before 

(-) or after (+) it is “shuffled”. 

Each entry in every row of the table is scaled to the run without prior shuffling (sf = 

0); hence, column 0 is (by definition) identically 1.0 for each subsystem size |S| in 

the range [107.. 100] (shown, top to bottom, on successive rows in the table). 

Similarly, when the subsystem size |S| is the same as the overall system’s size |G| 

(top row), there is no distinction between a local and a global allocator; hence, each of 

the entries in the top row of the table, corresponding to a single subsystem S of size 

|S| = |G| = 107 is naturally expected to be 1.0 as well. 

Recall that the physical size of each overall system |G| is held constant at 107 (links), 

and that the access factor is maintained throughout at 10 (i.e., each linked list of a 

subsystem, S, is accessed sequentially 10 times before moving on to the next 

subsystem), and that each subsystem is visited, in turn, exactly once, leading to high 

temporal locality, while the physical locality varies from low (top row of the table, 
back edge of the graph) to high (bottom row of the table, front edge of the graph). 

The graph was provided to help to visualize the data in the table. What the graph fails 
to demonstrate, however, is how quickly the shuffling effects take hold before 
reaching a horizontal asymptote (left to right), after which no additional performance 

degradation is observed; it turns out that the table makes this specific point much 
more lucidly. 

What the graph does clearly indicate, however, is that the adverse effect of shuffling 

on memory access times is more pronounced for fewer, larger subsystems (e.g., |S| 

= 10
6) than for many smaller ones (e.g., |S| = 103). For any given non-zero shuffle 

factor, the data indicates that the deleterious effects due to memory diffusion over the 

middle of the range of |S| are generally increasing with respect to increasing |S| – 

i.e., with decreasing physical locality (per subsystem). 

Given a demonstrably ample degree of memory “shuffle” (say, sf = 5), we next seek 

to determine more precisely under what specific circumstances locality (logical as well 

as physical) within subsystems most adversely affects the relative runtime of 
accessing memory, and therefore fairly begs for a local allocator.  
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So far, we have been able to fully characterize our system with just four parameters 

(|G|, |S|, af, and sf). Recall from section 5, however, that locality is defined in 

terms of three factors: number of instructions (I), size of memory involved (M), and 
number of transitions away from the subsystem (T). 

In order to model the difference between higher temporal locality (where I/T is 

relatively large) and lower temporal locality (where I/T is relatively small), we need to 

introduce a fifth parameter called the repeat factor, rf, that specifies the number of 

times to traverse the vector of subsystems – each time performing the appropriate 

number of local accesses as governed by af. By keeping the product of the local 

accesses (af) and the subsystem iterations (rf) constant (e.g., af * rf = 256), we 

can observe the relative effects of high versus low temporal locality for the same 
number of total accesses. The repeat factor can also be used to increase the run time 
of the relevant part of the experiment. Note that, for this first revision of the paper we 

increased this product by an order of magnitude (i.e., to 2,560) in order to reduce 
noise in the observed results (at the cost of literally weeks for dedicated run time). 

If we are to make a fair comparison regarding the relative runtime overhead due to 
diffuse (i.e., “shuffled”) memory, we’ll need to do the same amount of work shuffling 
memory either way. We will therefore hijack the sign of the shuffle factor to imply 

whether the access occurs before (-) or after (+) the indicated data access pattern: 

                                             ( |G|,  |S|,  af,  sf,  rf ) 

Try to remember that the sign of sf (-/+ -> before/after) applies to the access, and 

not the shuffle. (This interface was clearly a horribly bad design, sorry.) One more 
time: A negative shuffle factor, sf, implies the data access occurs before the 

shuffle. (Another, somewhat less arbitrary, way to remember sf is that, in terms of 

run time, negative should be less than positive. 

For additional syntactic convenience, we will also assume that a negative global 

physical size for |G| implies a positive binary exponent for both that value and the 

subsequent subsystem size, |S|. 

Using this notation, we can concisely characterize arbitrary runs of the program: 

 -20 18 32 -3 8: The global physical system size, |G|, is 220. The initial size of 

each of the (four) subsystems, |S|, is 218. The number of times the link-list 

within a subsystem will be traversed (before proceeding to the next one), af, is 

32. The number of shuffles that will occur after the data is accessed, sf, is 3. 

The number of times the sequence of subsystems in the overall system, G, will 

be traversed, rf, is 8. 

 -20 18 32 +3 8: Same as above, except that the shuffling of data occurs 

before accessing the data (i.e., the access comes after, and is typically slower). 

 -20 18 8 +3 32: Same as above, except that the number of times each of the 

subsystems’ linked lists is traversed is decreased to only 8 times before moving 

to the next subsystem, whereas the number of iterations over the sequence of 
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subsystems (comprised by G) is increased to 32, thereby reducing temporal 

locality, while keeping the overall number of memory accesses the same (i.e., 

256 * |G| = 228). 

 -21 18 8 +3 32: Same as above, except the overall physical size of the 

problem, |G|, has doubled, yielding eight (221-28) subsystems, each of size 28. 

 -21 19 8 +3 32: Same as above, except the size of each individual subsystem, 

|S|, has doubled (resulting in half as many subsystem, k = |G|/|S| = 4). 

 -21 19 8 +5 32: Same as above, except the number of times each subsystem 

is shuffled (before the data is accessed) has increased by two. 

 -21 19 0 +5 32: Similar to the above in that there are again 32 traversals of 

the (four) subsystems, however, no accesses are performed (this is how we 
determine the combined shuffle and traversal runtime costs in calculations, 

which are then subtracted from the total runtime). 

 -21 19 8 +5 0: Similar to the above except that there is no traversal of the 

subsystems (what we could have used to determine just the shuffle, but not the 
traversal costs, which would have somewhat less accurately reflected the 
relative runtime costs of pure access). 

In order to explore the entire space, we assumed (based on the previously 

presented data) a constant shuffle factor, sf, of 5, and examined a sequence of 

increasingly large physical problems sizes, |G|, contrasting both physical and 

temporal locality for each. From section 5.3, we conclude that physical locality is 
proportional to the ratio of the number of instructions, I, executed within a 

subsystem to the size of the subsystem, M ~|S|, holding the number of 

transitions away from the subsystem, T, constant (all with respect to the duration 
of interest), whereas temporal locality is proportional to I/T, holding M constant. 

When the size of a problem is sufficiently small, one might reasonably assume 
that all relevant memory fits in high-speed cache, and there is no need for a local 

memory allocator. The data we observed bears this hypothesis out. For physical 

sizes, |G|, below 218, there was no observable benefit for using local allocators on 

any of the platforms on which we ran this benchmark. Once the problem size 

exceeds a certain threshold, however, local memory allocators become relevant. 

The results of two specific runs of this benchmark, the first of size |G| = 221 and 

the second of size |G| = 225 follow. The shuffle factor, sf, as discussed above, is 

held constant at 5, the product of the access factor, af, and the repeat factor, rf, 

are held constant at 256 * 10 = 2,560 (varying inversely by powers of 2) and 

subsystem size, |S|, varies (also by powers of 2) from 1 to |G|. 
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2−0 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 

21 1 1.06 1.01 1.09 1.04 0.96 0.98 0.97 0.99 

20 11.3 11.5 11.3 11.4 11.2 11.3 11.3 11 11.6 

19 14.8 15 14.7 14.8 14.7 14.8 14.3 13.1 13.8 

18 18 18 18 17.9 17.7 18.4 16.7 16.6 15.4 

17 6.04 6.17 6.3 6.51 8.64 9.95 9.17 11.5 15 

16 5.07 5.07 5.13 5.19 7.16 7.24 7.52 10.8 14.9 

15 6.08 6.08 6.15 6.05 5.37 7.3 7.72 10.4 15.2 

14 6.77 6.81 6.78 6.67 6.25 7.23 7.73 10.9 15.2 

13 7.55 7.59 7.46 7.36 6.92 7.51 7.99 10.8 14.9 

12 4.82 4.79 7.7 7.6 7.08 7.26 7.55 11.4 14.9 

11 5.05 4.99 3.21 6.66 6.23 5.85 6.27 9.83 14.9 

10 4.65 4.87 4.93 2.92 5.71 5.99 6.15 10.7 15 

9 2.01 2.23 2.38 4.15 3.03 6.14 6.18 9.67 14.8 

8 2.32 2.4 2.6 2.08 3.63 4.86 6.01 9.25 14.6 

7 1.68 1.75 1.92 2.36 2.3 3.51 6.12 10.5 14.2 

6 1.22 1.31 1.44 2.06 2.76 4.18 6.16 9.93 13.2 

5 1.15 1.24 1.39 1.75 2.4 3.45 6.35 9.5 10.9 

4 1.13 1.23 1.37 1.72 2.53 4.05 6.6 11 9.77 

3 1.1 1.19 1.37 1.72 2.55 3.66 6.42 11.6 10.5 

2 1.04 1.14 1.36 1.79 2.43 4.61 8.51 11.7 8.91 

1 0.93 1.06 1.26 1.66 2.55 4.86 11.6 12.9 10 

0 0.78 0.9 1.1 1.61 2.88 7.75 16.2 17.2 4.06 

Table 16: Problem size 221, without allocators 
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2−0 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 

25 0.97 1.72 0.98 1.02 1.04 1.00 1.00 1.00 1.01 

24 0.5 12.71 12.81 13.02 13.08 13.02 13.01 12.95 13.11 

23 14.2 14.03 14.10 14.07 14.14 14.05 14.07 14.13 14.14 

22 16.7 16.71 16.50 16.55 16.49 16.62 16.55 16.56 16.53 

21 17.8 17.90 17.87 17.72 17.85 17.83 17.83 17.76 17.89 

20 18.6 18.60 18.52 18.54 18.45 18.64 18.43 18.62 18.66 

19 20.1 20.16 19.96 19.85 19.80 19.64 19.25 19.12 18.93 

18 23.4 23.54 23.51 23.20 23.13 22.72 21.85 20.45 19.34 

17 9.81 10.00 10.06 10.29 10.69 11.53 13.01 15.53 19.30 

16 6.81 6.87 6.98 7.21 7.70 8.64 10.41 13.75 19.33 

15 6.8 6.88 7.00 7.17 7.66 8.63 10.38 13.66 19.32 

14 6.82 6.86 7.00 7.20 7.66 8.56 10.39 13.66 19.18 

13 7.03 7.08 7.19 7.39 7.85 8.79 10.56 13.77 19.15 

12 6.72 6.75 6.90 7.12 7.62 8.52 10.21 13.62 19.30 

11 4.86 4.92 5.07 5.35 5.88 6.92 9.01 13.00 19.16 

10 3.36 3.49 3.71 4.07 4.69 5.91 8.25 12.32 18.43 

9 3.15 3.29 3.51 3.86 4.54 5.87 8.25 12.37 18.28 

8 2.76 2.89 3.13 3.54 4.33 5.66 8.12 12.43 18.16 

7 2.52 2.66 2.96 3.45 4.25 5.67 8.16 12.65 18.10 

6 1.94 2.14 2.49 3.03 3.91 5.45 8.02 12.72 17.64 

5 1.34 1.49 1.78 2.33 3.24 4.79 7.54 12.41 15.84 

4 1.17 1.28 1.51 1.96 2.83 4.39 7.39 13.22 16.25 

3 1.12 1.24 1.45 1.89 2.73 4.30 7.85 14.74 17.32 

2 1.06 1.19 1.43 1.90 2.71 4.70 9.98 18.32 20.54 

1 0.97 1.11 1.36 1.78 2.91 5.68 13.74 22.91 24.73 

0 0.82 0.97 1.22 1.88 3.50 8.30 18.92 30.99 5.68 

Table 17: Problem size 225, without allocators 

 

Each of these two runs (above) clearly shows that the greatest opportunity for 

effective use of local memory allocators occurs when subsystem size, |S|, is relatively 

(but not maximally) large – i.e., physical locality is low (as shown near the back of the 
graph, top of the table), and quickly tapers off (towards the front, bottom, 

respectively) with reduced subsystem size (i.e., increasing physical locality). On the 
other hand, when temporal locality is minimal (right side), the opportunity for 
significant performance improvement using local allocators spans a much wider 

range of subsystem sizes as evidenced by the impressively high ratio values (~10x-
20x) observed near the extreme right of the graphs/tables. 

The graphs based on data sets for system sizes of 221 and 225, using just the global 
allocator (AS0), are reminiscent of the middle of the process of inflating a hot-air 
balloon: The area of low temporal locality (towards the right) and low physical locality 

(towards the back) is fully inflated, while the area of higher temporal locality (towards 
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the left), and higher physical locality (towards the front) is only partially so. We assert 
that, the greater the value in the table (depicted as the vertical height of the surface), 

the more opportunity there is for a local allocator to be useful at improving runtime 
performance by preserving access Locality (L).  
We see, however, that there are some anomalies with the data that we are, so far, 
unable to explain. In particular, the entire family of graphs we have looked at shows 

an unexpected spike when the temporal and especially the physical locality are 
pathologically low. In particular, we are unable to explain why the input parameters 

|S| = 1 and rf = 20 produce such a disproportionately high result value, seen in 

both runs, and then just one step to the right (lower locality) produces such an 
unexpectedly low one. Given that this is a pathological “corner” of the graph – i.e., a 

subsystem, S, consisting of just a single link accessed just twice before a context 

switch to another subsystem versus a similarly tiny subsystem accessed exactly once  
– we do not feel that these results, although reliably repeatable, impact the validity of 

our overall conclusions, but clearly they warrant further investigation. 

Now, suspecting that (and where) there may be substantial opportunities for runtime 
improvements, we re-ran benchmark for the two example system configuration sizes 

(221 and 225) above, but this time providing each subsystem, S, with its own local 

multipool-based allocation strategy (AS7) used directly and without “winking out” the 
remaining data. The results are compelling: Providing a local allocator uniformly kept 

degradation below a factor of three, and – in almost all cases – well below a factor of 
two! Compare these results with degradations shown in the previous pair of graphs 

(and corresponding tables) reflecting the increased run times with no local allocator, 
which often exceeded an order of magnitude! 
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2−0 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 

21 1.06 1.02 0.98 1.02 1.02 1.04 1 1.11 1.01 

20 1.53 1.52 1.62 1.63 1.55 1.63 1.58 1.54 1.53 

19 1.65 1.75 1.65 1.65 1.65 1.66 1.66 1.68 1.69 

18 1.51 1.49 1.46 1.42 1.43 1.47 1.52 1.66 1.75 

17 1.48 1.48 1.48 1.51 1.48 1.54 1.59 1.65 1.81 

16 1.48 1.52 1.49 1.5 1.55 1.56 1.56 1.67 1.82 

15 1.48 1.48 1.48 1.49 1.51 1.55 1.6 1.69 1.88 

14 1.47 1.48 1.48 1.49 1.5 1.54 1.61 1.72 1.9 

13 1.48 1.49 1.5 1.5 1.53 1.58 1.66 1.79 1.99 

12 1.54 1.51 1.54 1.55 1.57 1.65 1.72 1.91 2.11 

11 1.48 1.53 1.53 1.55 1.6 1.65 1.82 2 2.42 

10 1.47 1.49 1.51 1.54 1.57 1.7 1.88 2.11 2.49 

9 1.02 1.04 1.06 1.13 1.22 1.39 1.69 2.14 2.67 

8 1.03 1.05 1.08 1.13 1.22 1.42 1.73 2.18 2.62 

7 1.03 1.05 1.09 1.14 1.24 1.43 1.75 2.22 2.59 

6 1.03 1.06 1.09 1.12 1.24 1.44 1.72 2.08 2.23 

5 1.05 1.03 1.08 1.13 1.22 1.38 1.61 1.84 1.94 

4 1.02 1.04 1.06 1.11 1.21 1.35 1.53 1.63 1.43 

3 1.01 1.01 1.03 1.07 1.15 1.21 1.29 1.25 1.17 

2 0.95 0.95 0.97 1.01 1 1.04 1.04 0.99 1.1 

1 0.85 0.86 0.89 0.9 0.93 0.97 0.89 1.1 1.04 

0 0.68 0.71 0.71 0.75 0.83 0.91 0.97 0.77 0.74 

Table 18: Problem size 221, with allocators 
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2−0 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 

25 1.00 0.97 1.01 1.00 1.00 1.01 1.04 0.99 1.01 

24 1.00 1.54 1.57 1.55 1.55 1.53 1.55 1.56 1.53 

23 1.71 1.67 1.70 1.69 1.68 1.68 1.68 1.69 1.67 

22 1.75 1.75 1.76 1.76 1.75 1.72 1.76 1.76 1.83 

21 1.79 1.78 1.78 1.80 1.79 1.74 1.80 1.80 1.80 

20 1.80 1.80 1.80 1.81 1.81 1.82 1.81 1.81 1.82 

19 1.79 1.78 1.79 1.80 1.79 1.80 1.80 1.82 1.82 

18 1.47 1.47 1.47 1.49 1.50 1.53 1.58 1.67 1.83 

17 1.49 1.49 1.49 1.50 1.51 1.54 1.59 1.67 1.84 

16 1.50 1.50 1.53 1.51 1.53 1.55 1.61 1.70 1.88 

15 1.51 1.51 1.51 1.52 1.53 1.56 1.63 1.74 1.92 

14 1.51 1.51 1.52 1.52 1.54 1.58 1.65 1.78 1.97 

13 1.51 1.52 1.52 1.53 1.55 1.60 1.67 1.82 2.05 

12 1.53 1.54 1.54 1.56 1.59 1.64 1.74 1.92 2.20 

11 1.54 1.54 1.55 1.57 1.60 1.67 1.84 2.08 2.43 

10 1.54 1.55 1.56 1.58 1.61 1.74 1.93 2.25 2.63 

9 1.07 1.08 1.11 1.16 1.26 1.44 1.87 2.22 2.76 

8 1.06 1.10 1.12 1.18 1.27 1.47 1.85 2.29 2.80 

7 1.07 1.06 1.12 1.17 1.28 1.48 1.82 2.32 2.67 

6 1.07 1.08 1.10 1.16 1.26 1.46 1.75 2.13 2.31 

5 1.05 1.06 1.09 1.14 1.23 1.40 1.62 1.86 1.93 

4 1.04 1.05 1.07 1.12 1.22 1.38 1.54 1.65 1.44 

3 1.02 1.03 1.05 1.08 1.15 1.23 1.30 1.29 1.20 

2 0.96 0.97 0.99 1.02 1.02 1.04 1.05 1.00 1.12 

1 0.85 0.86 0.89 0.90 0.94 0.99 0.90 1.08 1.06 

0 0.69 0.70 0.72 0.75 0.84 0.92 0.98 0.79 0.74 

Table 19: Problem size 225, with allocators 

 
Let’s stop for a moment and take a closer look at the data presented in the graphs 

and tables above.  The first thing to note is that the shape of the graphs is strikingly 

similar across the family of experiments based on overall system size |G|, leading us 

to believe that the remarkable salutary effects of local allocators to preserve locality 

are both robust and systemic. Whether or not we have local allocators, we observe 
that runtime performance degrades (albeit much more slowly) with decreasing 
temporal locality, but with allocators, seems to be more pronounced at the upper-mid 

ranges (low-mid rows) of physical locality, rather than the lower-mid range (upper-
mid rows) without them. 

 
It bears repeating that we’ve run these benchmarks on a variety of popular platforms 
(hardware and compilers) for a substantial range of problems sizes, and the results 

for this benchmark are astonishingly consistent. We conjecture that this consistent  
(dramatic) loss in runtime performance occurs because the efficiency with which the 
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allocator yields memory along with underlying processor speeds are entirely 
inconsequential when compared to the latency resulting from a profound lack of 

access Locality (L). 
 

Finally, we would like to provide a road map identifying where the use of local (arena) 
allocators is most indicated.  To that end, we plotted, for each (temporal, physical) 
coordinate in the proceeding graphs, the ratios corresponding to a subsystem that 

does not employ a local allocator to one that does.  The larger the value, the more 
relative benefit there is to having a local allocator.  Even a cursory inspection of the 
data below shows the spectacular opportunities to recover lost runtime performance 

due to the diffusion of memory across subsystems over time. 
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2−0 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 

21 0.95 1.03 1.03 1.07 1.02 0.92 0.97 0.87 0.98 

20 7.4 7.56 6.97 6.96 7.27 6.94 7.15 7.1 7.56 

19 9.02 8.56 8.95 8.99 8.92 8.92 8.61 7.82 8.17 

18 11.9 12.1 12.3 12.6 12.4 12.5 10.9 10 8.8 

17 4.07 4.16 4.26 4.31 5.85 6.48 5.78 6.97 8.27 

16 3.43 3.34 3.45 3.45 4.61 4.63 4.82 6.49 8.19 

15 4.11 4.11 4.16 4.06 3.56 4.71 4.84 6.14 8.09 

14 4.59 4.61 4.59 4.47 4.15 4.69 4.81 6.34 8.02 

13 5.11 5.08 4.96 4.9 4.52 4.76 4.82 6.03 7.47 

12 3.12 3.16 5.01 4.89 4.51 4.41 4.4 5.96 7.08 

11 3.41 3.27 2.09 4.31 3.9 3.54 3.45 4.91 6.15 

10 3.16 3.26 3.27 1.89 3.63 3.53 3.28 5.08 6.04 

9 1.98 2.15 2.24 3.68 2.48 4.43 3.66 4.51 5.56 

8 2.24 2.29 2.42 1.83 2.97 3.43 3.48 4.24 5.59 

7 1.64 1.67 1.77 2.07 1.85 2.45 3.49 4.7 5.49 

6 1.19 1.24 1.32 1.83 2.23 2.91 3.59 4.78 5.91 

5 1.1 1.2 1.29 1.55 1.97 2.5 3.96 5.17 5.61 

4 1.11 1.18 1.3 1.55 2.09 3 4.31 6.73 6.82 

3 1.09 1.18 1.33 1.6 2.23 3.02 4.99 9.3 9.03 

2 1.1 1.21 1.4 1.76 2.42 4.43 8.19 11.8 8.09 

1 1.09 1.24 1.41 1.85 2.73 5 13 11.7 9.7 

0 1.14 1.26 1.56 2.14 3.47 8.54 16.7 22.4 5.46 

Table 20: Problem size 221, Ratio 
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2−0 2−1 2−2 2−3 2−4 2−5 2−6 2−7 2−8 

25 0.97 1.77 0.97 1.02 1.04 0.99 0.96 1.01 1 

24 0.5 8.26 8.17 8.38 8.43 8.52 8.4 8.3 8.57 

23 8.3 8.41 8.3 8.35 8.4 8.36 8.36 8.37 8.44 

22 9.53 9.57 9.4 9.43 9.41 9.65 9.42 9.41 9.04 

21 9.99 10 10 9.87 9.98 10.2 9.9 9.88 9.93 

20 10.4 10.3 10.3 10.2 10.2 10.2 10.2 10.3 10.3 

19 11.2 11.3 11.2 11 11 10.9 10.7 10.5 10.4 

18 15.9 16 16 15.6 15.4 14.8 13.9 12.3 10.6 

17 6.58 6.7 6.73 6.87 7.06 7.5 8.19 9.3 10.5 

16 4.53 4.57 4.56 4.76 5.04 5.56 6.47 8.11 10.3 

15 4.51 4.56 4.62 4.73 4.99 5.52 6.38 7.86 10.1 

14 4.51 4.54 4.62 4.72 4.98 5.43 6.28 7.7 9.75 

13 4.64 4.67 4.73 4.82 5.07 5.49 6.31 7.56 9.34 

12 4.38 4.38 4.48 4.58 4.8 5.18 5.86 7.1 8.78 

11 3.16 3.19 3.27 3.42 3.67 4.15 4.9 6.25 7.88 

10 2.18 2.25 2.37 2.58 2.91 3.39 4.28 5.48 7 

9 2.95 3.04 3.17 3.32 3.59 4.08 4.42 5.57 6.63 

8 2.6 2.62 2.8 3 3.4 3.84 4.4 5.42 6.5 

7 2.36 2.51 2.65 2.95 3.31 3.83 4.49 5.45 6.79 

6 1.82 1.99 2.26 2.62 3.1 3.74 4.59 5.97 7.62 

5 1.27 1.4 1.64 2.05 2.64 3.42 4.65 6.67 8.21 

4 1.13 1.22 1.42 1.76 2.32 3.18 4.79 8.02 11.3 

3 1.09 1.21 1.39 1.75 2.37 3.49 6.03 11.4 14.5 

2 1.11 1.22 1.45 1.86 2.66 4.51 9.49 18.3 18.4 

1 1.14 1.29 1.54 1.98 3.1 5.76 15.3 21.2 23.4 

0 1.19 1.38 1.7 2.5 4.18 8.99 19.3 39.2 7.66 

Table 21: Problem size 225, Ratio 

  
The graphs and tables above help to illustrate where the “sweet spots” for local 

allocator usage in this benchmark reside. This data confirms that the use of local 
allocators is not particularly indicated when both the physical and temporal locality is 
high, but are especially effective when either the physical locality is low (but not 

completely minimal) or whenever the temporal locality is low (especially minimal), yet 
both graphs indicate that there is bit of a lull in opportunity for the lower-mid-range 

of subsystem size, |S|, in the presence of low temporal locality.  

For practically relevant scenarios (e.g., where the subsystem size, |S|, is at least, 

say, 212),  the improvement factor is almost always at least ~4x-8x, sometimes ~8x-

12x, and occasionally even ~12x-16x or more. This data, we argue, provides 
compelling evidence that local allocators make a substantial difference in important 

practical use cases. 



P0089R1: On Quantifying Memory-Allocator Strategies Page 48 of 57 

9 Benchmark III: Variation in Utilization 

This benchmark was designed to demonstrate the effect of memory Utilization (U) – 

that is, the maximum fraction of the “total” amount of allocated memory “actively” in 
use at any one time (section 5.4) – on runtime performance. To that end, memory was 

allocated in chunks, of size S, until a first threshold was reached – the amount of 

active memory, A, to use at one time. Then, a chunk was deallocated and another one 

allocated until the desired total amount of allocated memory, T, was reached. After 

every allocation, the value at the first byte of the allocated memory was incremented 

(to deliberately access it). The data collected represents a wide variety of  values for 

A/T – the definition of Utilization (U). Note that, since almost no other work is done, 

the Density (D) of this benchmark’s allocations (section 5.1) is extremely high, and 

the memory-size Variation (V) is nil. 

The three size parameters T, A, and S are measured in bytes. The results in each row 

are normalized to the result for AS1. Specifically, the results in the AS1 column are 

times in seconds, and the values in the columns for the other allocator strategies 
tested – namely AS2, AS3, AS5, AS7, AS9, AS11, and AS13 – each represent a 

percentage of the AS1 value, where 100 would imply the same run time as that for 
AS1, and lower values imply shorter ones. 

Total Allocated Memory (T) = 230 

    global ←monotonic→ ←multipool→ ←mono+multi→ 

    virtual  virtual  virtual  virtual 

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

30 15 10 0.063s 103 440 435 46 43 46 47 

30 16 10 0.069s 102 401 395 42 42 41 45 

30 17 10 0.064s 110 435 428 46 44 47 46 

30 18 10 0.063s 102 440 434 46 39 54 47 

30 19 10 0.063s 104 439 434 51 46 47 47 

30 20 10 0.064s 110 433 430 46 42 46 52 

30 20 11 0.035s 125 758 747 54 37 49 37 

30 20 12 0.022s 101 1216 1206 51 31 52 32 

30 20 13 0.013s 60 1985 1961 110 67 1996 1979 

30 20 14 0.008s 77 3356 3304 110 58 3276 3314 

30 20 15 0.004s 74 5985 6288 60 111 6016 6057 

 

In order to better understand the data provided by this benchmark, let’s take a closer 

look at the table above. The total amount of memory allocated (T), for each row in this 

table, is 230 bytes. In the first row, the maximum amount of memory allocated at once 



P0089R1: On Quantifying Memory-Allocator Strategies Page 49 of 57 

(A) was chosen to be 215 bytes, and the size of each allocated block (S) to be 210 bytes. 

What this means is that 25 blocks (each 210 bytes) will be allocated initially (bringing 

the initially allocated memory to 215 bytes; then, a block of the same size (S) will be 

deallocated and then immediately reallocated (230 – 215)/210 times. Finally, all of the 25 

remaining allocated blocks (each of size 210 bytes) will be deallocated (individually). 

Using the default allocator (AS1) on this platform caused the operations indicated 

above to run in 0.063 seconds. Allocating using the same new-delete allocator via an 
abstract base class (AS2) took 3% longer than when that same allocator was used 
directly (AS1). 

Next we tried using a monotonic allocator directly (AS3), and it took 440% of the time 
that the baseline allocator strategy (AS1) took (or 0.277s). Recall that a monotonic 

allocator doesn’t release freed memory back to the system, and thus is easily 
demonstrated as being ill-suited to this kind of usage scenario. 

We have chosen not to consider allocation strategies AS4, AS6, AS8, AS10, AS12, and 

AS14 because the “winking out” aspect, which each of the aforementioned strategies 
incorporates, when eventually applied to the comparatively small amount of 

remaining memory (A) out of a total (T) – even if it makes the release cost absolutely 

free – could not possibly (i.e., mathematically) make any meaningful difference in 
overall run time. 

Then we employed allocation strategy AS5, which uses the same (monotonic) 
allocator used in AS3, but this time accessed via an abstract base class. The runtime 
cost is 435% of the reference allocation strategy (AS1), which happens to be just a tad 

less than direct use of the monotonic allocator (perhaps suggesting that – on this 
platform, at least – the use of virtual functions to perform the allocations were 
successfully elided by the compiler). 

Next we used allocation strategy AS7, which employs a mulitpool allocator directly. 
Here we see that the runtime cost drops precipitously to just 46% of what the default 

allocator affords. AS9, the indirect use of this same allocator (via an abstract base 
class) is comparable at 43% (again suggesting that there is no penalty here for non-
direct access). 

Then we applied allocation strategy AS11, which employs a multipool allocator 
(accessed directly), backed by a monotonic allocator. The cost, relative to the baseline 

(AS1), shakes out at 46% and, when accessed indirectly (AS13), 47% – again no 
apparent statistically significant overhead with virtual-function-based access. 

In subsequent rows, we first increased the size of (A) from 215 to 220, and then (S) 

from 210 to 215. The data speaks for itself, but we will make just a few observations: 

(1) We believe the behavior of the AS1 column makes sense in that the runtime work 

done while we are increasing the allocation limit (A) remains fairly constant, while the 

work done as we increase the block-size (S) decreases proportionally. 

(2) The AS2 column tends to indicate that there seems to be no systemic penalty for 
accessing the allocator via an abstract base class. 
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(3) AS3, AS5, AS11, and AS13 confirm that any use of a monotonic allocator where 
Utilization (U) is low, and problem size is not tiny, is typically suboptimal, if not a 

genuinely a bad idea. The reason for the abrupt change near (S) = 212 is due to the 

internal boundaries within the multipool allocator’s implementation, which provides 

for large allocations (larger than 212) to pass through to the backing allocator. 

(4) AS7 and AS9 are clearly the winning allocation strategies until the block-size (S) 

exceeds the maximum size that can be accommodated internally by an adaptive pool 

(212), at which point there is a modest overhead (at most a few percent) to forward the 
allocation through to the backing allocator. 

Subsequent tables present experiments involving increasing total allocated memory 

(T) with similar results, reinforcing the preliminary conclusions presented above. As 

memory demands increase, it is possible that the performance degradation for 

strategies AS3 and AS5 (and, as we will see, even AS11 and AS13) may deteriorate to 
outright failure. 

Total Allocated Memory (T) = 231 

    global ←monotonic→ ←multipool→ ←mono+multi→ 

    virtual  virtual  virtual  virtual 

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

31 15 10 0.127s 104 428 434 39 38 39 41 

31 16 10 0.123s 102 442 446 42 42 41 40 

31 17 10 0.124s 102 439 442 45 45 42 45 

31 18 10 0.123s 102 442 447 47 46 41 42 

31 19 10 0.123s 107 441 446 42 41 46 43 

31 20 10 0.127s 99 431 434 44 42 41 41 

31 20 11 0.064s 102 815 824 48 40 52 48 

31 20 12 0.038s 93 1369 1387 57 51 47 54 

31 20 13 0.021s 102 2368 2392 108 80 2376 2401 

31 20 14 0.013s 61 3787 3833 109 67 3797 3844 

31 20 15 0.007s 54 6621 6706 112 59 6651 6708 
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Total Allocated Memory (T) = 232 

    global ←monotonic→ ←multipool→ ←mono+multi→ 

    virtual  virtual  virtual  virtual 

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

32 15 10 0.248s 103 fail fail 38 39 38 41 

32 16 10 0.248s 102 fail fail 38 41 38 39 

32 17 10 0.246s 102 fail fail 40 39 39 39 

32 18 10 0.246s 102 fail fail 40 40 39 40 

32 19 10 0.246s 102 fail fail 40 42 40 40 

32 20 10 0.246s 102 fail fail 40 41 41 41 

32 20 11 0.124s 102 fail fail 46 44 41 47 

32 20 12 0.062s 102 fail fail 44 45 46 56 

32 20 13 0.034s 108 fail fail 127 110 fail fail 

32 20 14 0.022s 72 fail fail 105 78 fail fail 

32 20 15 0.015s 87 fail fail 99 60 fail fail 
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Total Allocated Memory (T) = 233 

    global ←monotonic→ ←multipool→ ←mono+multi→ 

    virtual  virtual  virtual  virtual 

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

33 15 10 0.495s 102 fail fail 41 39 39 39 

33 16 10 0.493s 102 fail fail 38 39 38 41 

33 17 10 0.492s 102 fail fail 38 41 38 40 

33 18 10 0.492s 102 fail fail 40 41 39 40 

33 19 10 0.492s 102 fail fail 40 41 40 41 

33 20 10 0.492s 102 fail fail 40 40 40 41 

33 20 11 0.248s 102 fail fail 42 43 41 42 

33 20 12 0.122s 101 fail fail 43 47 45 47 

33 20 13 0.062s 102 fail fail 112 112 fail fail 

33 20 14 0.040s 89 fail fail 96 88 fail fail 

33 20 15 0.022s 102 fail fail 107 80 fail fail 

 

Total Allocated Memory (T) = 234 

    global ←monotonic→ ←multipool→ ←mono+multi→ 

    virtual  virtual  virtual  virtual 

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

34 15 10 0.990s 103 fail fail 41 39 41 39 

34 16 10 0.986s 102 fail fail 38 39 38 40 

34 17 10 0.985s 102 fail fail 38 39 39 40 

34 18 10 0.984s 102 fail fail 40 40 39 40 

34 19 10 0.983s 102 fail fail 40 41 40 40 

34 20 10 0.984s 102 fail fail 40 41 40 41 

34 20 11 0.494s 102 fail fail 42 42 41 42 

34 20 12 0.241s 102 fail fail 43 42 47 44 

34 20 13 0.120s 107 fail fail 114 113 fail fail 

34 20 14 0.064s 102 fail fail 117 112 fail fail 

34 20 15 0.038s 96 fail fail 103 95 fail fail 
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Total Allocated Memory (T) = 235 

    global ←monotonic→ ←multipool→ ←mono+multi→ 

    virtual  virtual  virtual  virtual 

T A S AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

35 15 10 1.981s 102 fail fail 38 41 39 39 

35 16 10 1.975s 102 fail fail 39 40 38 39 

35 17 10 1.970s 102 fail fail 39 40 39 40 

35 18 10 1.967s 102 fail fail 39 39 39 40 

35 19 10 1.967s 102 fail fail 39 41 40 41 

35 20 10 1.968s 102 fail fail 40 41 40 40 

35 20 11 0.988s 102 fail fail 41 42 41 41 

35 20 12 0.481s 102 fail fail 42 42 44 44 

35 20 13 0.240s 102 fail fail 113 113 fail fail 

35 20 14 0.125s 102 fail fail 113 112 fail fail 

35 20 15 0.070s 94 fail fail 103 110 fail fail 

 

A striking result in this benchmark is that some of the tests failed to run to 
completion, because the system’s memory was exhausted. Clearly, when we choose 
an allocator, the need for re-use of deallocated memory is a critical factor. 

The results for the largest three values for (S) in all of these Benchmark III tables 

expose the effect of an implementation detail of the used multipool allocator: 

Allocations larger than an implementation-defined size – specifically 212 bytes (as per 

code inspection) – will be passed directly to the underlying allocator. As such, for S > 

212, there is noticeable performance degradation for the multipool allocators and the 

creation of failure scenarios even for AS11 and AS13. 

This utilization-focused experiment was purposefully simplistic. We reasoned that 
variations in allocated size were unlikely to affect either a monotonic or multipool 

allocator (this variation may have been of greater interest had a coalescing allocator 
been under consideration). Furthermore, altering the deallocation strategy from least 

recently allocated to some other (e.g., pseudo-random) one may have provided 
additional insight, but at the cost of conflating the effects of Locality (L) with those of 
Utilization (U). 

 

10 Benchmark IV: Variation in Contention 

This fourth and final benchmark was designed to demonstrate the effects of 

Contention (C) – i.e., the expected number of concurrent memory-allocation 
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operations in any given instant of time, over the duration of interest, divided by the 
number of active threads (W) – on runtime performance. In this experiment, a set of 

threads was created and used to repeatedly allocate and deallocate a chunk of 
memory. To emphasize the runtime cost of contention, every function called by a 

thread had an instance of an allocator. For the default global allocator, AS1, and the 
new/delete allocator, AS2, all of the threads contended for the same allocator. For the 
other (local) allocation strategies considered (AS3, AS5, AS7, AS9, AS11, and AS13), 

each thread had access to its own private unsynchronized allocator; hence, there is 
no contention except for when these allocators must make a request to their backing 

allocators. After every allocation the value at the first byte of the memory was 
incremented. Note that the allocation Density (D) of this experiment is extremely 
high. 

The chunk-size parameter, S, for this experiment is measured in bytes. The other 

parameters for this experiment are the number of iterations (N), and, from section 5, 

the number of active threads (W). The results of this experiment are normalized to the 

respective results for of AS1 in each row. Specifically, the results under AS1 are times 
in seconds, and the values under the other allocation strategies – AS2, AS3, AS5, 
AS7, AS9, AS11, and AS13 – are represented as percentages of the AS1 value, where, 

again, lower percentage values imply shorter run times. 
  

Number of Iterations (N) = 215, Size of Allocation (S) = 26 

    global ←monotonic→ ←multipool→ ←mono+multi→ 

    virtual  virtual  virtual  virtual 

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

15 6 1 0.041s 91 40 39 26 26 24 24 

15 6 2 0.037s 100 42 43 27 26 26 29 

15 6 3 0.038s 105 41 43 15 16 17 16 

15 6 4 0.032s 93 56 58 31 32 25 24 

15 6 5 0.032s 91 46 52 26 23 22 24 

15 6 6 0.030s 95 51 53 24 27 26 27 

15 6 7 0.033s 96 47 49 23 28 21 26 

15 6 8 0.029s 96 71 63 33 30 31 25 

Each of the runs represented in this first table (above) consist of 215 repetitions – per 

thread – of allocating and then immediately deallocating a chunk of memory of size 26 
bytes. The first row depicts a run in which the main program spawns just a single 
thread (W = 1). The runtime using the default allocator (AS1) is shown under the AS1 

column as 0.022 seconds. Using the same allocator via an abstract base class (AS2), 
we observed a runtime that was 174% of this reference time, considerably more than 

for direct access  When we used a local monotonic allocator directly (AS3), the 
relative cost was just 71% of that of using AS1. Accessing that same allocator via an 
abstract base (AS5), also yielded 71%. Switching to a multipool allocator – used 

directly and via an abstract base class – resulted in relative runtimes of 32% and 
36%, respectively. Finally when the combination of a multipool allocator backed by a 
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monotonic one was employed directly, the runtime was measured at 35% and, when 
accessed via a base class, 34%. 

In each successive row, we increase the number of spawned threads by 1, each 

executing the function performing 215 iterations of allocating and then immediately 

deallocating a block of 26 bytes. Note that the hardware used had more available 
processors than the maximum number of threads (W = 8) considered. 

A quick look at the tables below show that the global allocator (AS1-AS2) along with 
the monotonic one (AS3 and AS5) are poor candidates for this usage scenario. 
Incorporating additional threads did not generally increase the runtime cost of either 

of the global allocators, nor of any of the local ones. An early, fairly consistent pattern 
emerges, suggesting that there is fixed proportional speedup depending on the local 
allocator provided, with AS7 being the most consistent winner, yet any strategy that 

makes use of a multipool (AS7, AS9, AS11, and A13) is clearly preferable to the 
default (AS1) by a sizable factor (~4x). 

Number of Iterations (N) = 215, Size of Allocation (S) = 27 

    global ←monotonic→ ←multipool→ ←mono+multi→ 

    virtual  virtual  virtual  virtual 

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

15 7 1 0.023s 100 114 116 44 47 47 48 

15 7 2 0.043s 101 46 69 26 26 26 26 

15 7 3 0.041s 103 51 68 25 25 22 25 

15 7 4 0.033s 121 78 95 26 19 20 23 

15 7 5 0.031s 102 81 86 20 26 26 25 

15 7 6 0.032s 99 84 84 18 23 19 25 

15 7 7 0.029s 114 111 110 23 27 21 31 

15 7 8 0.029s 117 114 120 27 35 31 29 

 

Number of Iterations (N) = 215, Size of Allocation (S) = 28 

    global ←monotonic→ ←multipool→ ←mono+multi→ 

    virtual  virtual  virtual  virtual 

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

15 8 1 0.043s 101 87 89 23 23 22 23 

15 8 2 0.042s 102 61 59 23 23 27 26 

15 8 3 0.046s 90 85 111 23 25 24 25 

15 8 4 0.040s 84 100 98 18 18 19 22 

15 8 5 0.028s 136 190 200 30 30 30 38 

15 8 6 0.024s 125 209 201 33 33 31 29 

15 8 7 0.033s 108 162 162 24 29 26 26 

15 8 8 0.031s 114 184 188 34 33 36 42 
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Number of Iterations (N) = 216, Size of Allocation (S) = 28 

    global ←monotonic→ ←multipool→ ←mono+multi→ 

    virtual  virtual  virtual  virtual 

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

16 8 1 0.085s 97 109 107 23 23 23 23 

16 8 2 0.091s 101 104 106 22 21 22 21 

16 8 3 0.093s 100 105 104 22 21 21 21 

16 8 4 0.097s 94 93 121 20 20 18 17 

16 8 5 0.078s 118 108 130 24 18 17 18 

16 8 6 0.059s 87 138 136 21 26 22 26 

16 8 7 0.063s 93 137 135 17 27 21 20 

16 8 8 0.057s 109 162 164 29 28 28 26 

 

Number of Iterations (N) = 217, Size of Allocation (S) = 28 

    global ←monotonic→ ←multipool→ ←mono+multi→ 

    virtual  virtual  virtual  virtual 

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

17 8 1 0.090s 100 206 206 45 42 42 42 

17 8 2 0.179s 101 107 106 22 22 22 22 

17 8 3 0.179s 101 104 104 22 23 22 22 

17 8 4 0.209s 109 89 70 16 15 11 11 

17 8 5 0.177s 100 85 78 12 15 15 15 

17 8 6 0.108s 142 147 178 27 28 25 25 

17 8 7 0.140s 85 116 132 24 22 22 22 

17 8 8 0.118s 100 142 150 22 21 25 26 

 

Number of Iterations (N) = 218, Size of Allocation (S) = 28 

    global ←monotonic→ ←multipool→ ←mono+multi→ 

    virtual  virtual  virtual  virtual 

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

18 8 1 0.177s 109 177 177 45 45 45 46 

18 8 2 0.339s 100 95 95 24 24 24 24 

18 8 3 0.333s 102 99 95 24 25 24 25 

18 8 4 0.304s 98 93 93 24 21 26 21 

18 8 5 0.311s 94 97 86 22 24 25 20 

18 8 6 0.276s 95 118 122 16 17 18 17 

18 8 7 0.297s 79 109 108 18 18 21 18 

18 8 8 0.219s 114 176 186 26 21 21 23 
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Number of Iterations (N) = 219, Size of Allocation (S) = 28 

    global ←monotonic→ ←multipool→ ←mono+multi→ 

    virtual  virtual  virtual  virtual 

N S W AS1 AS2 AS3 AS5 AS7 AS9 AS11 AS13 

19 8 1 0.421s 89 134 134 28 23 21 25 

19 8 2 0.615s 101 93 93 25 26 26 26 

19 8 3 0.631s 99 93 93 25 25 25 25 

19 8 4 0.565s 107 95 103 28 28 29 28 

19 8 5 0.575s 119 106 101 27 28 27 27 

19 8 6 0.499s 114 126 113 17 25 28 22 

19 8 7 0.558s 100 113 115 18 18 15 16 

19 8 8 0.460s 105 149 148 19 21 18 21 

 

Since modern default global allocators were designed with threading as a concern, 
the results are not jaw-dropping. This benchmark demonstrates, again, the relative 

efficiency of the allocators; the default global allocator must pay a premium to handle 
multiple threads concurrently. Interestingly, the monotonic allocators performed 
more and more poorly as the total amount of memory allocated increased (perhaps 

due to a dearth of physical locality within the monotonic allocator’s buffer itself). 

11 Conclusion 

Object-level control over memory allocation is intrinsic to C++, and must always be so 

if we hope to maintain this language’s supremacy as the best-performing high-level 
“systems” language. Supporting object-specific memory allocation is admittedly an 
added burden – exacerbated by an initially difficult-to-use model – which is finally 

being addressed by N3916: Polymorphic Memory Resources. Any future incarnation of 
STL should incorporate the lessons elucidated here.  
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