
Document Number: P0057R4
Date: 2016-05-29
Revises: P0057R3
Audience: CWG / LWG
Authors: Gor Nishanov <gorn@microsoft.com>

Jens Maurer <Jens.Maurer@gmx.net>
Richard Smith <richard@metafoo.co.uk>
Daveed Vandevoorde <daveed@edg.com>

Wording for Coroutines

Note: this is an early draft. It’s known to be incomplet and incorrekt, and it has lots of bad
formatting.

c© ISO/IEC P0057R4

Contents
Contents ii

List of Tables iii

1 General 1
1.1 Scope . 1
1.2 Acknowledgements . 1
1.3 Normative references . 1
1.4 Implementation compliance . 1
1.5 Feature testing . 1
1.9 Program execution . 1

2 Lexical conventions 3
2.12 Keywords . 3

3 Basic concepts 4
3.6 Start and termination . 4

5 Expressions 5
5.3 Unary expressions . 5
5.18 Assignment and compound assignment operators . 7
5.21 Yield . 7

6 Statements 8
6.5 Iteration statements . 8
6.6 Jump statements . 9

7 Declarations 10

8 Declarators 11
8.4 Function definitions . 11

12 Special member functions 15
12.8 Copying and moving class objects . 15

13 Overloading 16
13.5 Overloaded operators . 16

17 Library introduction 17

18 Language support library 18
18.1 General . 18
18.10 Other runtime support . 18
18.11 Coroutines support library . 18

Contents ii

c© ISO/IEC P0057R4

List of Tables
1 Feature-test macro . 1

16 C++ headers for freestanding implementations . 17

30 Language support library summary . 18

List of Tables iii

c© ISO/IEC P0057R4

1 General [intro]
1.1 Scope [intro.scope]

1 This Technical Specification describes extensions to the C++ Programming Language (1.3) that enable
definition of coroutines. These extensions include new syntactic forms and modifications to existing language
semantics.

2 The International Standard, ISO/IEC 14882, provides important context and specification for this Technical
Specification. This document is written as a set of changes against that specification. Instructions to modify
or add paragraphs are written as explicit instructions. Modifications made directly to existing text from the
International Standard use underlining to represent added text and strikethrough to represent deleted text.

1.2 Acknowledgements [intro.ack]
This work is the result of a collaboration of researchers in industry and academia. We wish to thank people
who made valuable contributions within and outside these groups, including Artur Laksberg, Chandler
Carruth, David Vandevoorde, Deon Brewis, Gabriel Dos Reis, Herb Sutter, James McNellis, Jens Maurer,
Jonathan Caves, Lawrence Crowl, Lewis Baker, Michael Wong, Nick Maliwacki, Niklas Gustafsson, Pablo
Halpern, Richard Smith, Robert Schumacher, Shahms King, Slava Kuznetsov, Stephan T. Lavavej, Tongari
J, Vladimir Petter, and many others not named here who contributed to the discussion.

1.3 Normative references [intro.refs]
1 The following referenced document is indispensable for the application of this document. For dated refer-

ences, only the edition cited applies.

—(1.1) ISO/IEC 14882:2014, Programming Languages – C++

ISO/IEC 14882:2014 is hereafter called the C++ Standard. Beginning with section 1.9 below, all clause
and section numbers, titles, and symbolic references in [brackets] refer to the corresponding elements of the
C++ Standard. Sections 1.1 through 1.5 of this Technical Specification are introductory material and are
unrelated to the similarly-numbered sections of the C++ Standard.

1.4 Implementation compliance [intro.compliance]
1 Conformance requirements for this specification are the same as those defined in section 1.4 of the C++

Standard. [Note: Conformance is defined in terms of the behavior of programs. —end note]

1.5 Feature testing [intro.features]
An implementation that provides support for this Technical Specification shall define the feature test macro
in Table 1.

Table 1 — Feature-test macro
Name Value Header

__cpp_coroutines 201606 predeclared

1.9 Program execution [intro.execution]
Modify paragraph 7 to read:

§ 1.9 1

c© ISO/IEC P0057R4

7 An instance of each object with automatic storage duration (3.7.3) is associated with each entry
into its block. Such an object exists and retains its last-stored value during the execution of the
block and while the block is suspended (by a call of a function, suspension of a coroutine (5.3.8),
or receipt of a signal).

§ 1.9 2

c© ISO/IEC P0057R4

2 Lexical conventions [lex]
2.12 Keywords [lex.key]
Add the keywords co_await, co_yield, and co_return to Table 4 "Keywords".

§ 2.12 3

c© ISO/IEC P0057R4

3 Basic concepts [basic]
3.6 Start and termination [basic.start]
3.6.1 Main function [basic.start.main]
Add underlined text to paragraph 3.

3 The function main shall not be used within a program. The linkage (3.5) of main is implementation-
defined. A program that defines main as deleted or that declares main to be inline, static,
or constexpr is ill-formed. The function main shall not be a coroutine (8.4.4). The name main
is not otherwise reserved. [Example: member functions, classes, and enumerations can be called
main, as can entities in other namespaces. —end example]

§ 3.6.1 4

c© ISO/IEC P0057R4

5 Expressions [expr]
5.3 Unary expressions [expr.unary]
Add await-expression to the grammar production unary-expression:

unary-expression:
postfix-expression
++ cast-expression
-- cast-expression
await-expression
unary-operator cast-expression
sizeof unary-expression
sizeof (type-id)
sizeof ... (identifier)
alignof (type-id)
noexcept-expression
new-expression
delete-expression

5.3.8 Await [expr.await]
Add this section to 5.3.

1 The co_await expression is used to suspend evaluation of a coroutine (8.4.4) while awaiting
completion of the computation represented by the operand expression.

await-expression:
co_await cast-expression

2 An await-expression shall appear only in a potentially-evaluated expression within the compound-
statement of a function-body outside of a handler (15). In a declaration-statement or in the
simple-declaration (if any) of a for-init-statement, an await-expression shall appear only in an
initializer of that declaration-statement or simple-declaration. An await-expression shall not
appear in a default argument (8.3.6). A context within a function where an await-expression can
appear is called a suspension context of the function.

3 Evaluation of an await-expression involves the following auxiliary expressions:
—(3.1) p is an lvalue naming the promise object (8.4.4) of the enclosing coroutine and P is the type

of that object.
—(3.2) a is cast-expression if an await-expression is an implicit one produced by yield-expression

(5.21), initial, or final suspend points (8.4.4).
—(3.3) Otherwise, the unqualified-id await_transform is looked up within the scope of P by class

member access lookup (3.4.5), and if this lookup finds at least one declaration, then a is
p.await_transform(cast-expression); otherwise, a is cast-expression.

—(3.4) If for an invocation of the operator co_await applied to expression a at least one viable op-
erator co_await candidate is visible (through unqualified name lookup (3.4.1) or argument-
dependent-lookup (3.4.2)) then o is the result of that invocation (which shall be well-formed);
otherwise o is a.

—(3.5) If o is a prvalue, e is a temporary object copy-initialized from o, otherwise e is an lvalue
referring to the result of evaluating o.

§ 5.3.8 5

c© ISO/IEC P0057R4

—(3.6) h is an object of type std::experimental::coroutine_handle<P> referring to the enclos-
ing coroutine.

—(3.7) await-ready is the expression e.await_ready(), contextually converted to bool.
—(3.8) await-suspend is the expression e.await_suspend(h), which shall be a prvalue of type void

or bool.
—(3.9) await-resume is the expression e.await_resume().

4 The await-expression has the same type and value category as the await-resume expression.
5 The await-expression evaluates the await-ready expression, then:

—(5.1) If the result is false, the coroutine is considered suspended. Then, the await-suspend
expression is evaluated. If that expression has type bool and returns false, the coroutine
is resumed. If that expression exits via an exception, the exception is caught, the coroutine
is resumed, and the exception is immediately re-thrown (15.1). Otherwise, control flow
returns to the current caller or resumer (8.4.4).

—(5.2) If the result is true, or when the coroutine is resumed, the await-resume expression is
evaluated, and its result is the result of the await-expression.

6 [Example:
template <typename T>
struct my_future {

...
bool await_ready();
void await_suspend(std::experimental::coroutine_handle<>);
T await_resume();

};

template <class Rep, class Period>
auto operator co_await(std::chrono::duration<Rep, Period> d) {

struct awaiter {
std::chrono::system_clock::duration duration;
...
awaiter(std::chrono::system_clock::duration d) : duration(d){}
bool await_ready() const { return duration.count() <= 0; }
void await_resume() {}
void await_suspend(std::experimental::coroutine_handle<> h){...}

};
return awaiter{d};

}

using namespace std::chrono;

my_future<int> h();

my_future<void> g() {
std::cout << "just about go to sleep...\n";
co_await 10ms;
std::cout << "resumed\n";
co_await h();

}

auto f(int x = co_await h()); // error: await-expression outside of function suspension context
int a[] = { co_await h() }; // error: await-expression outside of function suspension context

—end example]

§ 5.3.8 6

c© ISO/IEC P0057R4

5.18 Assignment and compound assignment operators [expr.ass]
Add yield-expression to the grammar production assignment-expression.

assignment-expression:
conditional-expression
logical-or-expression assignment-operator initializer-clause
throw-expression
yield-expression

5.21 Yield [expr.yield]
Add a new section to Clause 5.

yield-expression:
co_yield assignment-expression
co_yield braced-init-list

1 A yield-expression shall appear only within a suspension context of a function (5.3.8). Let e
be the operand of the yield-expression and p be an lvalue naming the promise object of the
enclosing coroutine (8.4.4), then the yield-expression is equivalent to the expression co_await
p.yield_value(e).
[Example:

template <typename T>
struct my_generator {

struct promise_type {
T current_value;
...
auto yield_value(T v) {

current_value = std::move(v);
return std::experimental::suspend_always{};

}
};
struct iterator { ... };
iterator begin();
iterator end();

};

my_generator<pair<int,int>> g1() {
for (int i = i; i < 10; ++i) co_yield {i,i};

}
my_generator<pair<int,int>> g2() {

for (int i = i; i < 10; ++i) co_yield make_pair(i,i);
}

auto f(int x = co_yield 5); // error: yield-expression outside of function suspension context
int a[] = { co_yield 1 }; // error: yield-expression outside of function suspension context

int main() {
auto r1 = g1();
auto r2 = g2();
assert(std::equal(r1.begin(), r1.end(), r2.begin(), r2.end()));

}

—end example]

§ 5.21 7

c© ISO/IEC P0057R4

6 Statements [stmt.stmt]
6.5 Iteration statements [stmt.iter]
Add the underlined text to paragraph 1.

1 Iteration statements specify looping.
iteration-statement:

while (condition) statement
do statement while (expression) ;
for (for-init-statement conditionopt; expressionopt) statement
for co_awaitopt (for-range-declaration : for-range-initializer) statement

6.5.4 The range-based for statement [stmt.ranged]
Add the underlined text to paragraph 1.

1 For a range-based for statement of the form
for co_awaitopt (for-range-declaration : expression) statement

let range-init be equivalent to the expression surrounded by parentheses1

(expression)

and for a range-based for statement of the form
for co_awaitopt (for-range-declaration : braced-init-list) statement

let range-init be equivalent to the braced-init-list. In each case, a range-based for statement is
equivalent to

{
auto && __range = range-init;
for (auto __begin = co_awaitopt begin-expr,
__end = end-expr;
__begin != __end;
co_awaitopt ++__begin) {
for-range-declaration = *__begin;
statement

}
}

where co_await is present if and only if it appears immediately after the for keyword, and
__range, __begin, and __end are variables defined for exposition only, and _RangeT is the type
of the expression, and begin-expr and end-expr are determined as follows: ...

Add the following paragraph after paragraph 2.
3 A range-based for statement with co_await shall appear only within a suspension context of a

function (5.3.8).

1) this ensures that a top-level comma operator cannot be reinterpreted as a delimiter between init-declarators in the decla-
ration of __range.

§ 6.5.4 8

c© ISO/IEC P0057R4

6.6 Jump statements [stmt.jump]
In paragraph 1 add two productions to the grammar:

jump-statement:
break ;
continue ;
return expressionopt;
return braced-init-list ;
coroutine-return-statement
goto identifier ;

6.6.3 The return statement [stmt.return]
Add the underlined text to paragraph 1:

1 A function returns to its caller by the return statement; that function shall not be a coroutine
(8.4.4).

Add the underlined text to the last sentence of paragraph 2:
2 ... Flowing off the end of a function that is not a coroutine is equivalent to a return with no

value; this results in undefined behavior in a value-returning function.

6.6.3.1 The co_return statement [stmt.return.coroutine]
Add this section to 6.6.

coroutine-return-statement:
co_return expressionopt;
co_return braced-init-list;

1 A coroutine returns to its caller or resumer (8.4.4) by the co_return statement or when suspended
(5.3.8).

2 The expression or braced-init-list of a co_return statement is called its operand. Let p be an
lvalue naming the coroutine promise object (8.4.4) and P be the type of that object, then a
co_return statement is equivalent to:

{ S; goto final_suspend_label; }

where final_suspend_label is as defined in 8.4.4 and S is an expression defined as follows:
—(2.1) S is p.return_value(braced-init-list), if the operand is a braced-init-list;
—(2.2) S is p.return_value(expression), if the operand is an expression of non-void type;
—(2.3) S is p.return_void(), otherwise;

S shall be a prvalue of type void.
3 [Note: See 8.4.4 about the flowing off the end of a coroutine. —end note]

§ 6.6.3.1 9

c© ISO/IEC P0057R4

7 Declarations [dcl.dcl]
7.1.5 The constexpr specifier [dcl.constexpr]
Insert a new bullet after paragraph 3 bullet 1.

3 The definition of a constexpr function shall satisfy the following constraints:
—(3.1) it shall not be virtual (10.3);
—(3.2) it shall not be a coroutine (8.4.4);
—(3.3) . . .

7.1.6.4 auto specifier [dcl.spec.auto]
Add the following paragraph.

15 A function declared with a return type that uses a placeholder type shall not be a coroutine
(8.4.4).

§ 7.1.6.4 10

c© ISO/IEC P0057R4

8 Declarators [dcl.decl]
8.4 Function definitions [dcl.fct.def]
8.4.4 Coroutines [dcl.fct.def.coroutine]
Add this section to 8.4.

1 A function is a coroutine if it contains a coroutine-return-statement (6.6.3.1), an await-expression
(5.3.8), a yield-expression (5.21), or a range-based for (6.5.4) with co_await. The parameter-
declaration-clause of the coroutine shall not terminate with an ellipsis that is not part of a
parameter-declaration.

2 [Example:
task<int> f();

task<void> g1() {
int i = co_await f();
std::cout << "f() => " << i << std::endl;

}

template <typename... Args>
task<void> g2(Args&&...) { // OK: ellipsis is a pack expansion

int i = co_await f();
std::cout << "f() => " << i << std::endl;

}

task<void> g3(int a, ...) { // error: variable parameter list not allowed
int i = co_await f();
std::cout << "f() => " << i << std::endl;

}

—end example]
3 For a coroutine f that is a non-static member function, let P1 denote the type of the implicit

object parameter (13.3.1) and P2 ... Pn be the types of the function parameters; otherwise let P1
... Pn be the types of the function parameters. Let R be the return type and F be the function-
body of f, T be the type std::experimental::coroutine_traits<R,P1,...,Pn>, and P be the
class type denoted by T::promise_type. Then, the coroutine behaves as if its body were:

{
P p ;
co_await p .initial_suspend(); // initial suspend point
F’

final_suspend :
co_await p .final_suspend(); // final suspend point

}

where F’ is
try { F } catch(...) { p .set_exception(std::current_exception()); }

if the unqualified-id set_exception is found in the scope of P by class member access lookup
(3.4.5), and F’ is F otherwise. An object denoted as p is the promise object of the coroutine and
its type P is the promise type of the coroutine.

§ 8.4.4 11

c© ISO/IEC P0057R4

4 The unqualified-ids return_void and return_value are looked up in the scope of class P . If
both are found, the program is ill-formed. If the unqualified-id return_void is found, flowing
off the end of a coroutine is equivalent to a co_return with no operand. Otherwise, flowing off
the end of a coroutine results in undefined behavior.

5 When a coroutine returns to its caller, the return value is obtained by a call to p.get_return_-
object(). A call to a get_return_object is sequenced before the call to initial_suspend and
is invoked at most once.

6 A suspended coroutine can be resumed to continue execution by invoking a resumption member
function (18.11.2.4) of an object of type coroutine_handle<P> associated with this instance
of the coroutine. The function that invoked a resumption member function is called resumer .
Invoking a resumption member function for a coroutine that is not suspended results in undefined
behavior.

7 An implementation may need to allocate additional storage for the lifetime of a coroutine. This
storage is known as the coroutine state and is obtained by calling a non-array allocation func-
tion (3.7.4.1). The allocation function’s name is looked up in the scope of P . If this lookup
fails, the allocation function’s name is looked up in the global scope. If the lookup finds an
allocation function in the scope of P and that function takes exactly one parameter, it will be
used; otherwise, all parameters of the coroutine are passed to the allocation function after the
size parameter in order. A template instance is never considered to be an allocation function
with exactly one parameter, regardless of its signature.

8 The coroutine state is destroyed when control flows off the end of the coroutine or the destroy
member function (18.11.2.4) of an object of type std::experimental::coroutine_handle<P>
associated with this coroutine is invoked. In the latter case objects with automatic storage
duration that are in scope at the suspend point are destroyed in the reverse order of the con-
struction. The storage for the coroutine state is released by calling a non-array deallocation
function (3.7.4.2). If destroy is called for a coroutine that is not suspended, the program has
undefined behavior.

9 The deallocation function’s name is looked up in the scope of P . If this lookup fails, the dealloca-
tion function’s name is looked up in the global scope. If deallocation function lookup finds both a
usual deallocation function with only a pointer parameter and a usual deallocation function with
both a pointer parameter and a size parameter, then the selected deallocation function shall be
the one with two parameters. Otherwise, the selected deallocation function shall be the function
with one parameter. If no usual deallocation function is found, the program is ill-formed.

10 When a coroutine is invoked, an implementation may create a copy of one or more coroutine
parameters. Each such copy is direct-initialized from an lvalue referring to the corresponding
parameter if it is an lvalue reference, and an xvalue referring to it otherwise. A reference to a
parameter in the function-body of the coroutine is replaced by a reference to its copy. Initializa-
tions of parameter copies are sequenced before the call to the coroutine promise constructor and
indeterminately sequenced with respect to each other. Parameter copies scope is a block scope
of the coroutine promise.

11 The unqualified-id get_return_object_on_allocation_failure is looked up in the scope of
class P by class member access lookup (3.4.5). If a declaration is found, then the result of a
call to an allocation function used to obtain storage for the coroutine state is assumed to return
nullptr if it fails to obtain storage and; if a global allocation function is selected, ::operator
new(size_t, nothrow_t) form shall be used. If an allocation function returns nullptr, the
coroutine returns control to the caller of the coroutine and the return value is obtained by a call
to P::get_return_object_on_allocation_failure().
[Example:

§ 8.4.4 12

c© ISO/IEC P0057R4

// ::operator new(size_t, nothrow_t) will be used if allocation is needed
struct generator {

using handle = std::experimental::coroutine_handle<promise_type>;
struct promise_type {

int current_value;
static auto get_return_object_on_allocation_failure() { return generator{nullptr}; }
auto get_return_object() { return generator{handle::from_promise(*this)}; }
auto initial_suspend() { return std::experimental::suspend_always{}; }
auto final_suspend() { return std::experimental::suspend_always{}; }
auto yield_value(int value) {

current_value = value;
return std::experimental::suspend_always{};

}
};
bool move_next() { return coro ? (coro.resume(), !coro.done()) : false; }
int current_value() { return coro.promise().current_value; }
~generator() { if(coro) coro.destroy(); }

private:
generator(handle h) : coro(h) {}
handle coro;

};
generator f() { co_yield 1; co_yield 2; }

int main() {
auto g = f();
while (g.move_next()) std::cout << g.current_value() << std::endl;

}

—end example]
12 [Example:

// using a stateful allocator
class Arena;
struct my_coroutine {

struct promise_type {
...
template <typename... TheRest>
void* operator new(std::size_t size, Arena& pool, TheRest const&...) {

return pool.allocate(size);
}
void operator delete(void* p, std::size_t size) {

// reference to a pool is not available
// to the delete operator and should be stored
// by the allocator as a part of the allocation
Arena::deallocate(p, size);

}
};

};

my_coroutine (Arena& a) {
// will call my_coroutine::promise_type::operator new(<required-size>, a)
// to obtain storage for the coroutine state
co_yield 1;

}

§ 8.4.4 13

c© ISO/IEC P0057R4

int main() {
Pool memPool;
for (int i = 0; i < 1’000’000; ++i) my_coroutine(memPool);

};

—end example]

§ 8.4.4 14

c© ISO/IEC P0057R4

12 Special member functions [special]
Add new paragraph after paragraph 5.

6 A special member function shall not be a coroutine.

12.8 Copying and moving class objects [class.copy]
Modify paragraph 33 as follows:

33 When the criteria for elision of a copy/move operation are met, but not for an exception-declaration,
and the object to be copied is designated by an lvalue, or when the expression in a return
or co_return statement is a (possibly parenthesized) id-expression that names an object with
automatic storage duration declared in the body or parameter-declaration-clause of the innermost
enclosing function or lambda-expression, overload resolution to select the constructor for the copy
or the return_value overload to call is first performed as if the object were designated by an
rvalue. If the first overload resolution fails or was not performed, or if the type of the first
parameter of the selected constructor or return_value overload is not an rvalue reference to
the object’s type (possibly cv-qualified), overload resolution is performed again, considering the
object as an lvalue. [Note: This two-stage overload resolution must be performed regardless of
whether copy elision will occur. It determines the constructor or return_value overload to be
called if elision is not performed, and the selected constructor or return_value overload must
be accessible even if the call is elided. —end note]

§ 12.8 15

c© ISO/IEC P0057R4

13 Overloading [over]
13.5 Overloaded operators [over.oper]
Add co_await to the list of operators in paragraph 1 before operators () and [].
Add the following paragraph after paragraph 5.

6 The co_await operator is described completely in 5.3.8. The attributes and restrictions found
in the rest of this subclause do not apply to it unless explicitly stated in 5.3.8.

§ 13.5 16

c© ISO/IEC P0057R4

17 Library introduction [library]
17.6.1.3 Freestanding implementations [compliance]
Add a row to Table 16 for coroutine support header <experimental/coroutine>.

Table 16 — C++ headers for freestanding implementations

Subclause Header(s)
<ciso646>

18.2 Types <cstddef>
18.3 Implementation properties <cfloat> <limits> <climits>
18.4 Integer types <cstdint>
18.5 Start and termination <cstdlib>
18.6 Dynamic memory management <new>
18.7 Type identification <typeinfo>
18.8 Exception handling <exception>
18.9 Initializer lists <initializer_list>
18.10 Other runtime support <cstdalign> <cstdarg> <cstdbool>
18.11 Coroutines support <experimental/coroutine>
20.13 Type traits <type_traits>

Atomics <atomic>

§ 17.6.1.3 17

c© ISO/IEC P0057R4

18 Language support library
[language.support]
18.1 General [support.general]
Add a row to Table 30 for coroutine support header <experimental/coroutine>.

Table 30 — Language support library summary

Subclause Header(s)
18.2 Types <cstddef>

<limits>
18.3 Implementation properties <climits>

<cfloat>
18.4 Integer types <cstdint>
18.5 Start and termination <cstdlib>
18.6 Dynamic memory management <new>
18.7 Type identification <typeinfo>
18.8 Exception handling <exception>
18.9 Initializer lists <initializer_list>
18.11 Coroutines support <experimental/coroutine>

<csignal>
<csetjmp>
<cstdalign>

18.10 Other runtime support <cstdarg>
<cstdbool>
<cstdlib>
<ctime>

18.10 Other runtime support [support.runtime]
Add underlined text to paragraph 4.

4 The function signature longjmp(jmp_buf jbuf, int val) has more restricted behavior in this
International Standard. A setjmp/longjmp call pair has undefined behavior if replacing the
setjmp and longjmp by catch and throw would invoke any non-trivial destructors for any
automatic objects. A call to setjmp or longjmp has undefined behavior if invoked in a coroutine.
See also: ISO C 7.10.4, 7.8, 7.6, 7.12.

18.11 Coroutines support library [support.coroutine]
Add this section to clause 18.

1 The header <experimental/coroutine> defines several types providing compile and run-time
support for coroutines in a C++ program.
Header <experimental/coroutine> synopsis

namespace std {
namespace experimental {

§ 18.11 18

c© ISO/IEC P0057R4

inline namespace coroutines_v1 {

// 18.11.1 coroutine traits
template <typename R, typename... ArgTypes>

class coroutine_traits;

// 18.11.2 coroutine handle
template <typename Promise = void>

class coroutine_handle;

// 18.11.2.7 comparison operators:
bool operator==(coroutine_handle<> x, coroutine_handle<> y) noexcept;
bool operator!=(coroutine_handle<> x, coroutine_handle<> y) noexcept;
bool operator<(coroutine_handle<> x, coroutine_handle<> y) noexcept;
bool operator<=(coroutine_handle<> x, coroutine_handle<> y) noexcept;
bool operator>=(coroutine_handle<> x, coroutine_handle<> y) noexcept;
bool operator>(coroutine_handle<> x, coroutine_handle<> y) noexcept;

// 18.11.3 trivial awaitables
struct suspend_never;
struct suspend_always;

// 18.11.2.8 hash support:
template <class T> struct hash;
template <class P> struct hash<coroutine_handle<P>>;

} // namespace coroutines_v1
} // namespace experimental
} // namespace std

18.11.1 Coroutine traits [coroutine.traits]
1 This subclause defines requirements on classes representing coroutine traits, and defines the class

template coroutine_traits that satisfies those requirements.
2 The coroutine_traits may be specialized by the user to customize the semantics of coroutines.

18.11.1.1 Struct template coroutine_traits [coroutine.traits.primary]
1 The header <experimental/coroutine> shall define the class template coroutine_traits as

follows:
namespace std {
namespace experimental {
inline namespace coroutines_v1 {

template <typename R, typename... Args>
struct coroutine_traits {

using promise_type = typename R::promise_type;
};

} // namespace coroutines_v1
} // namespace experimental
} // namespace std

18.11.2 Struct template coroutine_handle [coroutine.handle]

§ 18.11.2 19

c© ISO/IEC P0057R4

namespace std {
namespace experimental {
inline namespace coroutines_v1 {

template <>
struct coroutine_handle<void>
{

// 18.11.2.1 construct/reset
constexpr coroutine_handle() noexcept;
constexpr coroutine_handle(nullptr_t) noexcept;
coroutine_handle& operator=(nullptr_t) noexcept;

// 18.11.2.2 export/import
void* address() const noexcept;
static coroutine_handle from_address(void* addr) noexcept;

// 18.11.2.3 capacity
explicit operator bool() const noexcept;

// 18.11.2.4 resumption
void operator()() const;
void resume() const;
void destroy() const;

// 18.11.2.5 completion check
bool done() const noexcept;

};

template <typename Promise>
struct coroutine_handle : coroutine_handle<>
{

// 18.11.2.1 construct/reset
using coroutine_handle<>::coroutine_handle;
static coroutine_handle from_promise(Promise&) noexcept;
coroutine_handle& operator=(nullptr_t) noexcept;

// 18.11.2.6 promise access
Promise& promise() const noexcept;

};

} // namespace coroutines_v1
} // namespace experimental
} // namespace std

1 Let P be a promise type of the coroutine (8.4.4). An object of type coroutine_handle<P > is
called a coroutine handle and can be used to refer to a suspended or executing coroutine. A
default constructed coroutine_handle object does not refer to any coroutine.
18.11.2.1 coroutine_handle construct/reset [coroutine.handle.con]

constexpr coroutine_handle() noexcept;
constexpr coroutine_handle(nullptr_t) noexcept;

1 Postconditions: address() == nullptr.
static coroutine_handle coroutine_handle::from_promise(Promise& p) noexcept;

2 Requires: p is a reference to a promise object of a coroutine.

§ 18.11.2.1 20

c© ISO/IEC P0057R4

3 Returns: coroutine handle h refering to the coroutine.
4 Postconditions: addressof(h.promise()) == addressof(p).

coroutine_handle& operator=(nullptr_t) noexcept;
5 Postconditions: address() == nullptr.
6 Returns: *this.

18.11.2.2 coroutine_handle export/import [coroutine.handle.export]

static coroutine_handle from_address(void* addr) noexcept;
void* address() const noexcept;

1 Postconditions: coroutine_handle<>::from_address(address()) == *this.

18.11.2.3 coroutine_handle capacity [coroutine.handle.capacity]

explicit operator bool() const noexcept;

1 Returns: true if address() != nullptr, otherwise false.

18.11.2.4 coroutine_handle resumption [coroutine.handle.resumption]

void operator()() const;
void resume() const;

1 Requires: *this refers to a suspended coroutine.
2 Effects: resumes the execution of the coroutine. If the coroutine was suspended at the final

suspend point, behavior is undefined.
void destroy() const;

3 Requires: *this refers to a suspended coroutine.
4 Effects: destroys the coroutine (8.4.4).

18.11.2.5 coroutine_handle completion check [coroutine.handle.completion]

bool done() const noexcept;

1 Requires: *this refers to a suspended coroutine.
2 Returns: true if the coroutine is suspended at final suspend point, otherwise false.

18.11.2.6 coroutine_handle promise access [coroutine.handle.prom]

Promise& promise() noexcept;
Promise const& promise() const noexcept;

1 Requires: *this refers to a coroutine.
2 Returns: a reference to a promise of the coroutine.

18.11.2.7 Comparison operators [coroutine.handle.compare]

bool operator==(coroutine_handle<> x, coroutine_handle<> y) noexcept;

1 Returns: x.address() == y.address().
bool operator<(coroutine_handle<> x, coroutine_handle<> y) noexcept;

2 Returns: less<void*>()(x.address(), y.address()).
bool operator!=(coroutine_handle<> x, coroutine_handle<> y) noexcept;

3 Returns: !(x == y).
bool operator>(coroutine_handle<> x, coroutine_handle<> y) noexcept;

§ 18.11.2.7 21

c© ISO/IEC P0057R4

4 Returns: (y < x).
bool operator<=(coroutine_handle<> x, coroutine_handle<> y) noexcept;

5 Returns: !(x > y).
bool operator>=(coroutine_handle<> x, coroutine_handle<> y) noexcept;

6 Returns: !(x < y).

18.11.2.8 Hash support [coroutine.handle.hash]

template <class P> struct hash<experimental::coroutine_handle<P>>;

1 The template specializations shall meet the requirements of class template hash (20.9.12).

18.11.3 Trivial awaitables [coroutine.trivial.awaitables]
The header <experimental/coroutine> shall define suspend_never and suspend_always as
follows.

namespace std {
namespace experimental {
inline namespace coroutines_v1 {

struct suspend_never {
bool await_ready() { return true; }
void await_suspend(coroutine_handle<>) {}
void await_resume() {}

};
struct suspend_always {

bool await_ready() { return false; }
void await_suspend(coroutine_handle<>) {}
void await_resume() {}

};

} // namespace coroutines_v1
} // namespace experimental
} // namespace std

§ 18.11.3 22

	Contents
	List of Tables
	1 General
	1.1 Scope
	1.2 Acknowledgements
	1.3 Normative references
	1.4 Implementation compliance
	1.5 Feature testing
	1.9 Program execution

	2 Lexical conventions
	2.12 Keywords

	3 Basic concepts
	3.6 Start and termination
	3.6.1 Main function

	5 Expressions
	5.3 Unary expressions
	5.3.8 Await

	5.18 Assignment and compound assignment operators
	5.21 Yield

	6 Statements
	6.5 Iteration statements
	6.5.4 The range-based for statement

	6.6 Jump statements
	6.6.3 The return statement
	6.6.3.1 The co_return statement

	7 Declarations
	7.1.5 The constexpr specifier
	7.1.6.4 auto specifier

	8 Declarators
	8.4 Function definitions
	8.4.4 Coroutines

	12 Special member functions
	12.8 Copying and moving class objects

	13 Overloading
	13.5 Overloaded operators

	17 Library introduction
	17.6.1.3 Freestanding implementations

	18 Language support library
	18.1 General
	18.10 Other runtime support
	18.11 Coroutines support library
	18.11.1 Coroutine traits
	18.11.1.1 Struct template coroutine_traits

	18.11.2 Struct template coroutine_handle
	18.11.2.1 coroutine_handle construct/reset
	18.11.2.2 coroutine_handle export/import
	18.11.2.3 coroutine_handle capacity
	18.11.2.4 coroutine_handle resumption
	18.11.2.5 coroutine_handle completion check
	18.11.2.6 coroutine_handle promise access
	18.11.2.7 Comparison operators
	18.11.2.8 Hash support

	18.11.3 Trivial awaitables

