
Document No: WG21 N4551

Date: 2015-08-13

References: ISO/IEC PDTS 19571

Reply To: Barry Hedquist <beh@peren.com>

 INCITS/PL22.16 IR

National Body Comments

ISO/IEC PDTS 19571

 Technical Specification: C++ Extensions for Concurrency

Attached is WG21 N4551, National Body Comments for ISO/IEC PDTS 19217, Technical Specification

– C++ Extensions for Concurrency.

Document numbers referenced in this document are from WG21 unless otherwise stated.

National Body Comments ISO/IEC PDTS 19571, C++ Extensions for
Concurrency

Date:2015-08-11
Document: WG21 N 4551
SC22 N 5061

Project: ISO/IEC PDTS 19571

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 1 of 4

JP1 2 2.3 10 ge The first sentence of the note seems incorrect.
It says
"the validity of the future returned from then
cannot be established"

but the future returned from then should be
always valid
according to the postconditions.
Is "then" in the sentence actually
"continuation(func)"?

Note: In case of implicit unwrapping, the
validity of the future returned from then

func cannot be established until after the
completion of the continuation.

JP2 2 2.4 10 ge The same comment as JP1 for
shared_future.

Note: In case of implicit unwrapping, the
validity of the future returned from then

func cannot be established until after the
completion of the continuation.

JP3 2.7 2 te The return type of when_all is fixed to

std::vector in the current proposal.
Generalizing it to arbitrary sequence container
by passing it as a template parameter may
provide more flexibility for the users (e.g., use
of a custom allocator.)

template <class InputIterator,
class Container = vector<typename

 iterator_traits<InputIterator>::value_type>
>
future<Container>
 when_all(InputIterator first, InputIterator
last);

JP4 2 2.7 5 te The description should be changed to match
the change proposed by JP3.

A new shared state containing a Sequence is

created, where Sequence is either vector sequence

container or tuple based on the overload, as

specified above.

JP5 5 2.7 5 te The description should be changed to match
the change proposed by JP3.

If the first overload is called with first == last,

when_all returns a future with an empty vector

sequence container that is immediately ready.

JP6 2.9 2 te The same comment as JP3 for when_any (to
parametarize the return type sequence.)

template <class InputIterator,
class Container = vector<typename

National Body Comments ISO/IEC PDTS 19571, C++ Extensions for
Concurrency

Date:2015-08-11
Document: WG21 N 4551
SC22 N 5061

Project: ISO/IEC PDTS 19571

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 2 of 4

 iterator_traits<InputIterator>::value_type>
>
future<when_any_result<Container>>
 when_any(InputIterator first, InputIterator
last);

JP7 2 2.9 5 te The description should be changed to match
the change proposed by JP6.

A new shared state containing

when_any_result<Sequence> is created, where

Sequence is a vector sequence container for the first

overload and a tuple for the second overload.

JP8 2 2.9 5 ed The expression in “a vector for the first
overload and a tuple for the second overload”
differs from “either vector or tuple based on the
overload” in 2.7 paragraph 5. They should be
uniformed because they say the same thing.

Not sure which is better in English. It’s up to

the editor.

JP9 6 2.9 5 te The description should be changed to match
the change proposed by JP6.

The futures field is an empty vector sequence

container.

GB 1 Page 15 3.4 Te count_down(n) does not make sense when n > 1

It is stated that n ≥ counter, but a client does not know

the value of the counter.

Only is_ready() can tell whether count_down(n) is

viable or not when n is > 1.

It would be reasonable to have a function, called

get_counter(), that will return the current value of
the counter.

In addition, I suggest that count_down(n) should
probably return min(counter,n).

The return value is the actual value that is
subtracted from the counter.

Example:

If the counter is 8 and one of the threads calls

count_down(10),

this call will return 8 and the value of the counter

will become 0.

GB 2 Page 17 3.6 P10 Te The semantics of arrive_and_drop are unclear. The

concurrency TS gives the effects of arrive_and_drop
as:

Add a sentence to make it clear under what
circumstances the choice is made, and what it
means to remove the thread from the set without
"arriving" at the barrier.

National Body Comments ISO/IEC PDTS 19571, C++ Extensions for
Concurrency

Date:2015-08-11
Document: WG21 N 4551
SC22 N 5061

Project: ISO/IEC PDTS 19571

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 3 of 4

 Either arrives at the barrier's synchronization point
and then removes the current thread from the set of

participating threads, or just removes the current thread
from the set of participating threads.

It is not clear how this choice is made, or what it means
to "just remove the current thread from the set of

participating threads". If that thread isn't considered to
have "arrived", how are the waiting threads ever

supposed to be released?

GB 3 Page 18 3.9 Te What is the meaning of "flex" in flex_barrier? It's
unclear how the name of the class relates to its
functionality.

GB 4 Page 20 4.3 Te atomic<T> has two overloads of each compare-

exchange function for non-volatile values:

 bool
compare_exchange_weak(T&,T,memory_order,memor

y_order);

 bool

compare_exchange_weak(T&,T,memory_order);

The concurrency TS makes that 4 for
atomic_shared_ptr:

 bool

compare_exchange_weak(shared_ptr<T>&,shared_ptr
<T> const&,memory_order,memory_order);

 bool
compare_exchange_weak(shared_ptr<T>&,shared_ptr

<T>&&,memory_order,memory_order);

 bool

compare_exchange_weak(shared_ptr<T>&,shared_ptr
<T> const&,memory_order);

 bool
compare_exchange_weak(shared_ptr<T>&,shared_ptr

Either:

 Change the signatures back to match atomic<T>,

taking the new value by value rather than by
reference.

 Document the expected characteristics of the

different overloads.

National Body Comments ISO/IEC PDTS 19571, C++ Extensions for
Concurrency

Date:2015-08-11
Document: WG21 N 4551
SC22 N 5061

Project: ISO/IEC PDTS 19571

MB/

NC1

Line

number

Clause/

Subclause

Paragraph/

Figure/Table

Type of

comment
2

Comments Proposed change Observations of the

secretariat

1 MB = Member body / NC = National Committee (enter the ISO 3166 two-letter country code, e.g. CN for China; comments from the ISO/CS editing unit are identified by **)
2 Type of comment: ge = general te = technical ed = editorial

Page 4 of 4

<T>&&,memory_order);

However, there is no description of the difference in

semantics.

Presumably, the difference is that in the overloads with

rvalue references the operation can move from the
rvalue. However, without a semantic description it is not

clear at what point it can do that: should it only move on
success, or may the implementation always move,

even on failure? Is it *required* to move on success, or
may it always copy anyway?

GB 5 Page 20 4.3 Te atomic<T> has volatile overloads for every member
function. atomic_shared_ptr and atomic_weak_ptr are

missing those overloads.

Add volatile overloads for every member function to
atomic_shared_ptr and atomic_weak_ptr

GB 6 Page 21 4.3 Te The concurrency TS lists the assignment operator from
a shared_ptr as

 atomic_shared_ptr& operator=(shared_ptr<T>)
noexcept;

The atomic template in C++11 has

 T operator=(T) noexcept;

This is so that the returned value can be used without
having to reload from the atomic.

(A similar signature is also used for atomic_weak_ptr.)

Change the assignment operator to

 shared_ptr<T> operator=(shared_ptr<T>)

noexcept;

